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Learning from Concealed Labels
Anonymous Authors

ABSTRACT
Annotating data for sensitive labels (e.g., disease, smoking) poses a
potential threats to individual privacy in many real-world scenarios.
To cope with this problem, we propose a novel setting to protect
privacy of each instance, namely learning from concealed labels for
multi-class classification. Concealed labels prevent sensitive labels
from appearing in the label set during the label collection stage, as
shown in Figure 1, which specifies none and some random sampled
insensitive labels as concealed labels set to annotate sensitive data.
In this paper, an unbiased estimator can be established from con-
cealed data under mild assumptions, and the learned multi-class
classifier can not only classify the instance from insensitive labels
accurately but also recognize the instance from the sensitive labels.
Moreover, we bound the estimation error and show that the multi-
class classifier achieves the optimal parametric convergence rate.
Experiments demonstrate the significance and effectiveness of the
proposed method for concealed labels in synthetic and real-world
datasets.

CCS CONCEPTS
• Computing methodologies → Supervised learning by classifica-
tion.

KEYWORDS
Concealed labels, Weakly supervised learning, Unbiased estimator,
Privacy labels learning, Corrected risk estimator

1 INTRODUCTION
Traditional ordinal supervised learning tasks face many challenges,
where obtaining massive amounts of data with accurate supervised
information is difficult, nay impossible in some real-world scenar-
ios. To mitigate this problem, various weakly supervised learning
frameworks [2, 16, 25, 29] have been extensively studied to bring
a new inspiration for improving learning performance, including
semi-supervised learning [8, 17, 18, 34], positive-unlabeled learn-
ing [4, 5, 11, 12, 27], multi-instance learning [19, 20, 24, 42] and
noisy-label learning [21, 31, 36, 37].

Another critical challenge in obtaining a large number of high-
quality labels arises when sensitive information cannot be released
to public [14, 15, 28]. For example, in both business and personal
life, there is a wealth of sensitive information (e.g., political pref-
erences or habits), whose labeling information needs to be con-
cealed during data collection. In this problem, collecting explicit
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sensitive labels becomes difficult, prohibiting learning from ordinal
supervised data. To overcome this bottleneck, researchers have
explored privacy-label learning approaches, such as Label Propor-
tions Learning (LPL)[1, 6, 23, 40], Complementary Label Learning
(CoLL) [13, 14, 22], pairwise similar learning [7, 10, 29], etc. LPL
is a well-studied setting that protects the sensitive information by
annotating the proportions of positive instances instead of provid-
ing explicit labels. CoLL is another widely used weakly supervised
learning method that protects privacy by specifying one of the
labels which the instance does not belong. Although those weakly
supervised learning approaches can protect sensitive information
during the label collection stage, they conceal all labels for each
instance, regardless of weather or not the label contains sensitive
information. Therefore, due to the complete absence of precisely
labeled data, these methods increase the difficulty of training the
classifier.

In this paper, we consider a novel privacy protection weakly su-
pervised learning setting, aiming to conceal sensitive labels during
the annotation of instances. Under this setting, as shown in Figure
1, the Concealed Label (CL) is introduced to prevent sensitive labels
from appearing in the label set during the label collection stage. CL
specifies none label and some random sampled insensitive labels
as concealed labels set to annotate sensitive data. This concealed
labels setting existing in many real-world scenarios. For example,
some individuals hesitate to admit to smoking in their daily life,
but they are willing to share information about cycling, drinking
and phoning, as shown in Figure 1. Another example is annotating
instances related to disease, where patients with diseases require
more privacy protection for their data compared to normal individ-
uals. Therefore, when we consider data privacy, sensitive labels will
not appearing in the label set. Fortunately, we can collect concealed
labels for data to train a multi-class classifier.

The goal of this paper is to propose a novel framework for learn-
ing from concealed labels, which utilizes the none label for ensuring
that the sensitive label is not disclosed to adversary. It is important
to note that the learned classifier has the capability to accurately
recognize instances from unconcealed labels and identify instances
from concealed labels. The contributions of this paper can be sum-
marized as follows:

(1) We propose a novel privacy-label weakly supervised learning
setting, i.e., learning from concealed labels, which prevents
sensitive labels from appearing in the label set.

(2) We propose an empirical risk minimization method that con-
structs an unbiased estimator for multi-class classification
using concealed labels data, and provides estimation error
bounds for the proposed method.

(3) We experimentally demonstrate that the learned classifier
is useful for recognizing instances from both unconcealed
and conceal labels on various benchmark datasets and two
real-world concealed labels datasets.

The rest of this paper is structured as follows. Section 2 reports
on related work. Section 3 gives formal definitions about conceal

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Illustrations a example of concealed labels during the annotation procedure in real-world scenario. Smoking, being a
sensitive label, is often a challenging attribute to collect data, due to people’s hesitancy in admitting their smoking habits in
daily life. To ensure privacy protection, it is crucial not to include the sensitive label. Concealed labels are employed to prevent
the inclusion of the sensitive label that needs to be concealed. By utilizing the none label, data privacy can be safeguarded,
ensuring that the sensitive label remains undisclosed for adversary.

labels and presents the proposed approach with theoretical analyses.
Section 4 reports the results of the comparative experiment. Finally,
Section 5 concludes this paper.

2 RELATEDWORK
In this section, we discuss several research topics that are related
to concealed labels, including privacy-label learning and positive
and unlabeled learning.

2.1 Privacy-label learning
Recently, to protect the privacy of the data during instance anno-
tating, researchers have studied various privacy label annotating
settings, including Label Proportions Learning (LPL) [9, 28, 40],
Complementary Label Learning (CoLL) [14], Similarity and Unla-
beled Learning (SUL) [10, 29] and Similarity-Confidence Learning
(SCL) [7, 43].

LPL [9, 28, 40] aims to protect sensitive information by anno-
tating the proportions of positive instances in the bag instead of
specifying the label directly. LPL can be used in the field of medi-
cal and health classification, such as disease prediction, where the
patient pay attention to privacy information. Given the difficulty
in acquiring fully supervised data, the adoption of the LPL set-
ting emerges as a comparatively secure approach to safeguarding
privacy.

SUL [10, 29] and SCL [7, 43] aim to train a binary classifier
using only unlabeled data pairs, where data annotation is based
on the similarity between two instances rather than explicit label
assignment for each instance to protect privacy. In this scenario,
individuals are unable to precisely discern the sensitive label. If the
instance pair is annotated with a similar label, this helps prevent
substantial privacy leakage.

In addition, CoLL [14] and its cousin, i.e., Partial Labels Learning
(PLL) [3, 32, 35, 39] have tried to addressed the privacy protection
problem by specifying label that the instance does not belong to.
For example, collecting some medical data may require privacy
questions, which would be more mentally demanding. It would be
easy for the patient to provide some incorrect answers rather than
sensitive exactly label, which is a safe way for collecting privacy
labels.

To best of our knowledge, previous privacy-label learning ap-
proaches conceal all labels for each instance, even if some labels
does not contain sensitive information. Therefore, those approaches
increase the difficulty for training the classifier. In this paper, we
propose the concealed labels learning framework to overcome this
limitation, reducing the overhead of learning from insensitive labels
on real-world datasets.

2.2 Positive and unlabeled learning
Another line of related works focuses on a widely studied weakly
supervised framework called Positive and Unlabeled Learning (PUL)
[4, 11, 33, 45], which trains a binary classifier using only positive
and unlabeled data without negative instance. PUL is a special semi-
supervised learning task which can be used for augmented classes
learning [44]. Due to the absence of labeled negative instances, PUL
provides privacy protection for the negative label in data collection
tasks. However, while PUL effectively leverages the unknown neg-
ative instances in the unlabeled dataset, it does not offer privacy
protection for the sensitive information associated with positive
labels, which are more important in real-world tasks.

Recently, [38] extended PUL to handle multi-class data (MPUL)
[30]. This approach utilizes labeled instances from multiple positive
labels, and unlabeled instances from the unknown negative label to
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learn a multi-class classifier. However, the MPUL methods can not
actively protect the sensitive label in annotation process, which is
also important in real-world tasks. Specifically, to protect privacy
information, the MPUL methods must collect two datasets, one
labeled dataset (including sensitive label) and one unlabeled dataset.
Then, the already labeled data (with sensitive label) would be set
to unlabeled data, which exposes sensitive labels to adversaries. In
contrast, conceal labels prevent the inclusion of the sensitive label,
ensuring that the sensitive label remains undisclosed to adversaries,
as shown in Figure 1 in the main text.

3 METHODOLOGY
In this section, we present a formal description of learning from
concealed labels, focusing on the construction of an unbiased risk
estimator using the concealed data distribution. Besides, we propose
a correction risk estimator to enforce the risk to be non-negative.
Furthermore, we prove the estimation error bound of proposed
unbiased risk estimator.

3.1 Problem setup
Since the specific partition of labels that need to be concealed is
unknown, the classifier will recognize all of them as a single label
𝑐𝑙 . Let X ⊂ 𝑅𝑑 and Y = {1, ..., 𝐾, 𝑐𝑙} be a d-dimensional instance
and multi-class label space, where 𝐾 denotes the number of classes,
respectively, and let 𝐷 = {(𝑥𝑖 , 𝑌𝑖 , 𝑠𝑖 )}𝑛𝑖=1 be concealed labels data
sampled from distribution 𝑃 (𝑥,𝑌, 𝑠) defined overX×Y𝑟 ×S, where
Y𝑟 ⊂ {1, ..., 𝐾} is random sampled label set space, 𝑌𝑖 ∈ Y𝑟 is a set
of random sampled labels for instance 𝑥𝑖 ∈ X, and 𝑠𝑖 is sampled
from concealed labels space S = {1, ..., 𝐾, 𝑠𝑛𝑜𝑛𝑒 } for instance 𝑥𝑖 ,
and 𝑠𝑛𝑜𝑛𝑒 denotes the label of none. We denote the event that the
true label 𝑦 of instance 𝑥 does not appear in random sampled label
set 𝑌 (i.e., 𝑦 ∉ 𝑌 ) by 𝑠 = 𝑠𝑛𝑜𝑛𝑒 , and otherwise by 𝑠 = 𝑦.

In our setup, the randomly sampled label set 𝑌 contains 𝐿 labels,
and the probability of each label appearing in this set is the same,
denoted as 𝑃 (𝑦𝑘 ∈ 𝑌 ) = 𝑃 (𝑦𝑘 ′ ∈ 𝑌 ), where 𝑦𝑘 and 𝑦𝑘 ′ represent
two sampled labels from the random sampled label set. Addition-
ally, the randomly sampled label set offers some weak supervisory
information for concealed label data by excluding certain incorrect
labels.

It is worth noting that 𝑠𝑛𝑜𝑛𝑒 and sensitive labels are not equiv-
alent. While all sensitive labels are annotated as 𝑠𝑛𝑜𝑛𝑒 , some non-
sensitive labels can also be annotated as 𝑠𝑛𝑜𝑛𝑒 . Next, to formulate
the generation process of concealed labels data and derive unbiased
risk estimation, we introduce the following assumption, which fa-
cilitates the implementation of our approach for real-world data
annotation tasks.

Definition 1 (Concealed Labels Assumption). The conditional
distribution of concealed labels, i.e., {𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 |𝑥,𝑦 = 𝑖)}𝐾

𝑖=1 ∪
𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 |𝑥,𝑦 = 𝑐𝑙) and 𝑃 (𝑠 = 𝑗 ≠ {𝑖 ∧ 𝑠𝑛𝑜𝑛𝑒 }|𝑥,𝑦 = 𝑖) are under
the concealed labels assumption as follows:

𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 |𝑥,𝑦 = 𝑐𝑙) = 1 (1)

𝑃 (𝑠 = 𝑗 ≠ {𝑖 ∧ 𝑠𝑛𝑜𝑛𝑒 }|𝑥,𝑦 = 𝑖) = 0 (2)

𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 |𝑥,𝑦 = 1) = 𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 |𝑥,𝑦 = 2)
...

= 𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 |𝑥,𝑦 = 𝐾)
= (𝐾 − 𝐿)/𝐾

(3)

Concealed labels assumption states that the data sampled from
unconcealed labels is annotated as 𝑠 = 𝑠𝑛𝑜𝑛𝑒 with uniform probabil-
ity. Then, the random sampled label set 𝑌 can be generated easily
by sampling labels from unconcealed labels setY𝑢 = {1, ..., 𝐾} with
uniform probability.

The goal of learning from concealed labels is to obtain a multi-
class classifier 𝑓 : X → Y𝑚 by minimizing the expected ordinary
supervised risk as follows:

𝑅𝑚 (𝑓 ) = E(𝑥,𝑦)∼𝑝 (𝑥,𝑦)L
(
𝑓 (𝑥), 𝑦

)
= E𝑥∼𝑀

[ [ 𝐾∑︁
𝑖=1

𝑝 (𝑦 = 𝑖 |𝑥 )L
(
𝑓 (𝑥), 𝑖

) ]
+ 𝑝 (𝑦 = 𝑐𝑙 |𝑥 )L

(
𝑓 (𝑥), 𝑐𝑙

) ] (4)

where𝑀 := 𝑃 (𝑥), 𝑃 (𝑥,𝑦) and 𝑃 (𝑦 = 𝑖 |𝑥 ) denote the joint and con-
ditional distributions of ordinary supervised data and L

(
𝑓 (𝑥), 𝑦

)
)

denotes the multi-class loss function.

3.2 Unbiased risk estimator
In this section, we present our formulation of unbiased risk for
learning the multi-class classifier using only concealed labels data,
based on the setup described above. In Eq.(4), the conditional dis-
tribution 𝑃 (𝑦 = 𝑖 |𝑥 ) is unavailable for training the multi-class
classifier since we do not have access to ordinary supervised data.
Fortunately, we can use concealed labels data to represent it by
introducing the conceal labels conditional distribution 𝑃 (𝑠 = 𝑖 |𝑥 )
and 𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 |𝑥 ).

Lemma 2. Under the concealed labels assumption, we can ex-
press conditional distribution 𝑃 (𝑦 = 𝑖 ≠ 𝑐𝑙 |𝑥 ) and 𝑃 (𝑦 = 𝑐𝑙 |𝑥 ) in
terms of 𝑃 (𝑠 = 𝑖 |𝑥 ), 𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 |𝑥 ) as

𝑃 (𝑦 = 𝑖 ≠ 𝑐𝑙 |𝑥 ) = 𝐾

𝐿
𝑃 (𝑠 = 𝑖 |𝑥) (5)

𝑃 (𝑦 = 𝑐𝑙 |𝑥 ) = 𝐾

𝐿
𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 |𝑥) −

𝐾 − 𝐿
𝐿

(6)

Proof Sketch. To prove the conditional distribution, we rewrite
the probability 𝑃 (𝑠 = 𝑦𝑖 |𝑥 ) according to the Definition 1, and prove
𝑃 (𝑦 = 𝑖 ≠ 𝑐𝑙 | 𝑥) = 𝑃 (𝑠 = 𝑖 | 𝑥) + 𝐾−𝐿

𝐾
𝑃 (𝑦 = 𝑖 ≠ 𝑐𝑙 | 𝑥). Then,

we prove 𝑃 (𝑦 = 𝑐𝑙 | 𝑥) =
∑
𝑌 𝑃 (𝑌, 𝑠 = 𝑠𝑛𝑜𝑛𝑒 , 𝑦 = 𝑐𝑙 | 𝑥) in a

similar way and decompose the probability 𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 , 𝑌 | 𝑥)
into four parts. Finally, we demonstrate 𝑃 (𝑦 = 𝑐𝑙 |𝑥 ) = 𝑃 (𝑠 =

𝑠𝑛𝑜𝑛𝑒 | 𝑥) + 𝐾−𝐿
𝐾
𝑝 (𝑦 = 𝑐𝑙 | 𝑥) − 𝐾−𝐿

𝐾
by substituting the rewritten

probability 𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 , 𝑌 | 𝑥) into ∑
𝑌 𝑃 (𝑌, 𝑠 = 𝑠𝑛𝑜𝑛𝑒 , 𝑦 = 𝑐𝑙 | 𝑥)

and using the Definition 1. □
The main technique for proving this lemma is to utilize the Bayes

Rule and Total Probability Theorem, then we can prove this lemma.
The more details of the proof is provided in Appendix.
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Thus, By plugging Eq.(5) and (6) into Eq.(4), we can evaluate the
ordinary supervised classification risk 𝑅𝑚 (𝑓 ) using an equivalent
risk 𝑅𝐶𝐿 (𝑓 ) during the training stage.

Theorem 3. Under the concealed labels assumption, for multi-
class classifier 𝑓 , we have 𝑅𝑚 (𝑓 ) = 𝑅𝐶𝐿 (𝑓 ) , where 𝑅𝐶𝐿 (𝑓 ) is
defined as

𝑅𝐶𝐿 (𝑓 ) =E(𝑥,𝑠 )∼𝑃 (𝑥,𝑠≠𝑠𝑛𝑜𝑛𝑒 )
𝐾

𝐿
L
(
𝑓 (𝑥), 𝑠

)
+ E(𝑥,𝑠 )∼𝑃 (𝑥,𝑠=𝑠𝑛𝑜𝑛𝑒 )

𝐾

𝐿
L
(
𝑓 (𝑥), 𝑐𝑙

)
− E𝑀

𝐾 − 𝐿
𝐿

L
(
𝑓 (𝑥), 𝑐𝑙

) (7)

Proof. According to the Lemma 2, we have

𝑅𝑚 (𝑓 )

= E𝑥∼𝑀

{
𝐾∑︁
𝑖=1

𝑃 (𝑦 = 𝑖 | 𝑥)L (𝑓 (𝑥), 𝑖)

+ 𝑃 (𝑦 = 𝑐𝑙 | 𝑥)L (𝑓 (𝑥), 𝑐𝑙)
}

= E𝑥∼𝑀
𝐾∑︁
𝑖=1

𝐾

𝐿
𝑃 (𝑠 = 𝑖 | 𝑥)+[

𝐾

𝐿
𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 | 𝑥) − 𝐾 − 𝐿

𝐿
L (𝑓 (𝑥), 𝑐𝑙)

]
= E(𝑥,𝑠 )∼𝑃 (𝑠,𝑠≠𝑠𝑛𝑜𝑛𝑒 )

𝐾

𝐿
L (𝑓 (𝑥), 𝑠)

+ E(𝑥,𝑠 )∼𝑃 (𝑠,𝑠=𝑠𝑛𝑜𝑛𝑒 )
𝐾

𝐿
L (𝑓 (𝑥), 𝑐𝑙)

− E𝑀
𝐾 − 𝐿
𝐿

L (𝑓 (𝑥), 𝑐𝑙)

= 𝑅𝐶𝐿 (𝑓 )

(8)

which concludes the proof. □
As we can see from Eq.(7), 𝑅𝐶𝐿 (𝑓 ) can be assessed in the training

stage using the number of classes 𝐾 and sampled labels set 𝐿.
Here, we rearrange our concealed labels dataset asX𝑐 = {X𝑠 }𝐾𝑠=1∪

X𝑛𝑜𝑛𝑒 , where X𝑠 and X𝑛𝑜𝑛𝑒 denote the samples with concealed la-
bels 𝑠 ≠ 𝑠𝑛𝑜𝑛𝑒 and 𝑠 = 𝑠𝑛𝑜𝑛𝑒 respectively. Then, the classification
risk 𝑅𝐶𝐿 can be approximated by

𝑅𝐶𝐿 (𝑓 ) =
1

#{X𝑠 }𝐾𝑠=1

𝐾∑︁
𝑠=1

∑︁
𝑥 𝑗 ∈X𝑠

𝐾

𝐿
L
(
𝑓 (𝑥 𝑗 ), 𝑠

)
+ 1
#X𝑛𝑜𝑛𝑒

∑︁
𝑥 𝑗 ∈X𝑛𝑜𝑛𝑒

𝐾

𝐿
L
(
𝑓 (𝑥 𝑗 ), 𝑐𝑙

)
− 1
#X𝑐

∑︁
𝑥 𝑗 ∈X𝑐

𝐾 − 𝐿
𝐿

L
(
𝑓 (𝑥 𝑗 ), 𝑐𝑙

)
(9)

where #X𝑖 denotes the number of samples in the data set X𝑖 . We
can then train a multi-class classifier by minimizing the proposed
empirical approximation of the unbiased risk estimator in Eq.(9).

3.3 Corrected risk estimator
Since the classification risk is an expectation over non-negative loss
function L

(
𝑓 (𝑥), 𝑦

)
, both the risk and its empirical approximator

have lower bounds, i.e., 𝑅𝐶𝐿 (𝑓 ) ≥ 0 and 𝑅𝐶𝐿 (𝑓 ) ≥ 0. In fact,
similar to issue of the empirical approximator going negative in
binary classification from positive and unlabeled data, Eq.(9) can
also become negative due to the negative term, when a flexible
model is used. Therefore, the proposed risk estimator suffers from
overfitting during the training of the multi-class classifier.

Each term in the ordinary supervised risk is non-negative, in-
dicating that the optimal risk corresponding to each label is also
non-negative and approaches to zero. Therefore, we can reformu-
late Eq.(7) to express the counterpart risk for each label as follows:

𝑅𝐶𝐿 (𝑓 ) =E𝑀
𝐾∑︁
𝑖=1

[ 𝑃 (𝑦=𝑖 |𝑥 )︷         ︸︸         ︷
𝐾

𝐿
𝑃 (𝑠 = 𝑖 |𝑥)

]
L
(
𝑓 (𝑥), 𝑖

)
+ E𝑀

[
𝐾

𝐿
𝑃 (𝑠 = 𝑠𝑛𝑜𝑛𝑒 ) −

𝐾 − 𝐿
𝐿︸                         ︷︷                         ︸

𝑃 (𝑦=𝑐𝑙 |𝑥 )

]
L
(
𝑓 (𝑥), 𝑐𝑙

) (10)

Enforcing the classification risk to be non-negative is a useful
approach in the context of weakly supervised learning, such as,
binary classification from positive and unlabeled data and learning
from complementary labels. Here, we propose a correction risk
estimator for learning from concealed labels by

𝑅
𝑔

𝐶𝐿
(𝑓 ) = 1

#{X𝑠 }𝐾𝑠=1

𝐾∑︁
𝑠=1

∑︁
𝑥 𝑗 ∈X𝑠

𝐾

𝐿
L
(
𝑓 (𝑥 𝑗 ), 𝑠

)
+ 𝑔

[
1

#X𝑛𝑜𝑛𝑒

∑︁
𝑥 𝑗 ∈X𝑛𝑜𝑛𝑒

𝐾

𝐿
L
(
𝑓 (𝑥 𝑗 ), 𝑐𝑙

)
− 1
#X𝑐

∑︁
𝑥 𝑗 ∈X𝑐

+ 𝐾 − 𝐿
𝐿

L
(
𝑓 (𝑥 𝑗 ), 𝑐𝑙

) ]
(11)

where𝑔[𝑧] denotes the correction function, such as themax-operator
function 𝑔[𝑧] =𝑚𝑎𝑥{0, 𝑧}.

Although the correction empirical risk using max-operator en-
sures non-negative for certain mini-batch, it prevents the risk of
each label from approaching to zero. Instead, it neglects the op-
timization of negative risk, which cannot decrease the degree of
overfitting. To address this issue, an alternative correction function
𝑔[𝑧] = |𝑧 | can be employed to alleviate overfitting. Here, |𝑧 | denotes
the absolute value of 𝑧, i.e., |𝑧 | = 𝑚𝑎𝑥{0, 𝑧} −𝑚𝑖𝑛{0, 𝑧}. This cor-
rection function ensures that the risk of each label approaches zero
during the training stage, making it a preferable choice to mitigate
overfitting.

3.4 Practical Implementation
In this section, we introduce the practical implementation of the
proposed method.

Loss functions.As discussed in the previous section, the classifi-
cation risk of learning from concealed labels can be recovered using
arbitrary loss functions. One common approach is to employ the
One-Versus-Rest (OVR) [41] strategy, where the binary surrogate
losses 𝜙 : 𝑅 → [0, +∞) are utilized. Examples of such surrogate
losses include the logistic loss 𝜙 (𝑧) = 𝑙𝑜𝑔

(
1 + 𝑒𝑥𝑝 (−𝑧)

)
, hinge loss
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𝜙 (𝑧) = 𝑚𝑎𝑥{0, 1 − 𝑧} and Square Loss (SL) 𝜙 (𝑧) = (1 − 𝑧)2. The
OVR strategy has theoretical guarantees and demonstrates good
practical performance in multi-class supervised learning scenarios.

Additionally, the popular softmax cross-entropy loss can be em-
ployed within the proposed method to learn a multi-class classifier.
This loss function is widely used in deep learning approaches and
offers effective training for multi-class classification tasks.

Model. Our method can be implemented using deep learning
or other classifier, such as linear classifiers, etc. However, due to
the large number of parameters in deep learning models, directly
optimizing a deep model may lead to overfitting and negative risk.
Then, we can utilize the correction methods proposed in section
3.3 to train deep models for learning from conceal labels.

3.5 Estimation error bound
Here, the estimation error bound of the proposed unbiased risk
estimator is derived to theoretically justify the effectiveness of
our approach when implemented using deep neural networks with
OVR strategy. Let f = [𝑓1, ..., 𝑓𝐾 , 𝑓𝑐𝑙 ] denote the classification vector
function in the hypothesis set F . We assume that there exist a
constant 𝐶𝜙 > 0, such that 𝑠𝑢𝑝𝑧𝜙 (𝑧) ⩽ 𝐶𝜙 . Let 𝐿𝜙 be the Lipschitz
constant of 𝜙 , we can introduce the following lemma.

Lemma 4. For any 𝛿 > 0, with the probability at least 1 − 𝛿 ,

sup
f∈F

���𝑅𝑠 (f) − 𝑅𝑠 (f)���
⩽ 2𝐿𝜙ℜ𝑛𝑠 (F ) + 2

𝐶𝜙𝐾

𝐿

√︄
ln(2/𝛿)
2𝑛𝑠

(12)

sup
f∈F

���𝑅𝑛𝑜𝑛𝑒 (f) − 𝑅𝑛𝑜𝑛𝑒 (f)���
⩽ 2𝐿𝜙ℜ𝑛𝑛𝑜𝑛𝑒 (F ) + 2

𝐶𝜙 (𝐾 − 𝐿)
𝐿

√︄
ln(2/𝛿)
2𝑛𝑛𝑜𝑛𝑒

(13)

sup
f∈F

���𝑅𝑐 (f) − 𝑅𝑐 (f)���
⩽ 2𝐿𝜙ℜ𝑛𝑐 (F ) + 2

𝐶𝜙𝐾

𝐿

√︄
ln(2/𝛿)
2𝑛𝑐

(14)

where 𝑅𝑠 (f) = E(𝑥,𝑠 )∼𝑃 (𝑥,𝑠≠𝑠𝑛𝑜𝑛𝑒 )
𝐾
𝐿
L
(
𝑓 (𝑥), 𝑠

)
, 𝑅𝑐 (f) =

E𝑀
𝐾−𝐿
𝐿

L
(
𝑓 (𝑥), 𝑐𝑙

)
, 𝑅𝑛𝑜𝑛𝑒 (f) = E(𝑥,𝑠 )∼𝑃 (𝑥,𝑠=𝑠𝑛𝑜𝑛𝑒 )

𝐾
𝐿
L
(
𝑓 (𝑥), 𝑐𝑙

)
and 𝑅𝑠 (f) denote the empirical risk estimator to 𝑅𝑠 (f), 𝑅𝑛𝑜𝑛𝑒 (f)
and 𝑅𝑐 (f) respectively. ℜ𝑛𝑠 (F ), ℜ𝑛𝑛𝑜𝑛𝑒 (F ) and ℜ𝑛𝑐 (F ) are the
Rademacher complexities[26] of F for the sampling of size 𝑛𝑠 from
𝑃 (𝑥, 𝑠 ≠ 𝑠𝑛𝑜𝑛𝑒 ), the sampling of size 𝑛𝑛𝑜𝑛𝑒 from 𝑃 (𝑥, 𝑠 = 𝑠𝑛𝑜𝑛𝑒 ) and
the sampling of size 𝑛𝑐 from 𝑃 (𝑥).

The proof is provided in Appendix. Based on the Lemma 4, we
can obtain the estimation error bound as follows.

Theorem 5. For any 𝛿 > 0, with the probability at least 1 − 𝛿 ,

𝑅𝐶𝐿 (f̂𝐶𝐿) −min
f∈F

𝑅𝐶𝐿 (f)

⩽ 4𝐿𝜙ℜ𝑛𝑠 (F ) + 4𝐿𝜙ℜ𝑛𝑛𝑜𝑛𝑒 (F ) + 4𝐿𝜙ℜ𝑛𝑐 (F )

+ 4
𝐶𝜙𝐾

𝐿

√︄
ln(2/𝛿)
2𝑛𝑠

+ 4
𝐶𝜙 (𝐾 − 𝐿)

𝐿

√︄
ln(2/𝛿)
2𝑛𝑛𝑜𝑛𝑒

+ 4
𝐶𝜙𝐾

𝐿

√︄
ln(2/𝛿)
2𝑛𝑐

(15)

where f̂𝐶𝐿 is trained by minimizing the classification risk 𝑅𝐶𝐿 .
The proof is provided in Appendix. Lemma 4 and Theorem 5

demonstrate that as the number of concealed labels data increases,
the estimation error of the trained classifiers decreases. This implies
that the proposed method is consistent. When deep network hy-
pothesis set F is fixed and ℜ𝑛 (F ) ⩽ 𝐶F/

√
𝑛, we have ℜ𝑛𝑠 (F ) =

O(1/√𝑛𝑠 ), ℜ𝑛𝑛𝑜𝑛𝑒 (F ) = O(1/√𝑛𝑛𝑜𝑛𝑒 ) and ℜ𝑛𝑐 (F ) = O(1/√𝑛𝑐 ),
then

𝑛𝑠 , 𝑛𝑛𝑜𝑛𝑒 , 𝑛𝑐 → ∞ =⇒ 𝑅𝐶𝐿 (f̂𝐶𝐿) −min
f∈F

𝑅𝐶𝐿 (f) → 0

Lemma 4 and Theorem 5 theoretically justify the effective of
our method for learning from concealed labels. Besides, it is worth
noting that this error bound is relate to the the number of classes
𝐾 and sample label set 𝐿. Lemma 4 and Theorem 5 accord with
our intuition that learning from conceal labels using unbiased risk
estimator will be harder if the number of class 𝐾 increases or the
number of sample label set 𝐿 decreases, which aligns well with the
experimental results in section 4.4.

4 EXPERIMENTS
In this section, we experimentally evaluate the performance of the
proposed concealed labels data learning algorithm with compara-
tive studies against state-of-the-art multi-positive and unlabeled
learning and augmented classes learning approaches. Besides, we
examine the issue of negative risk and perform the experiments
with varying size of random sampled label set.

4.1 Experimental setup
Datasets. We employ four wide-used benchmark datasets: MNIST,
Kuzushiji-MNIST, Fashion-MNIST and CIFAR-10. Additionally, we
utilize two real-world concealed labels datasets, namely CLDS (Con-
cealed Labels Data of Smoking) and CLDD (Concealed Labels Data
of Disease). For CLDS and CLDD, each instance is a 156 × 156 × 3
image. We report the brief descriptions of all used datasets and
corresponding base model in Table.1. During training, we only use
concealed labels data, which can be generated by the assumption
of Eq.(3).

We collect the dataset CLDS for evaluating the effectiveness of
the proposed method. CLDD is a daily scene classification dataset
consists of 1350 training images and 200 testing images across 4
classes: smoking, drinking, cycling and phoning. As mentioned
in the introduction, the smoking label is considered sensitive for
some individuals, who hesitate to admit to smoke in their daily
lives. Therefore, we generate concealed labels data by designating
smoking as the concealed label in this dataset.
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Table 1: The statistics of the experimental datasets. Fashion is Fashion-MNIST and Kuzushi is Kuzushi-MNIST 5-C and 2-F NN
denotes the neural networks with 5 convolutional layers and 2 fully-connected layers.

Name # Training # Testing # Dim # Classes Model

MNIST 60K 10K 784 10 Linear, 5-C and 2-F NN
Fashion 60K 10K 784 10 Linear, 5-C and 2-F NN
Kuzushi 60K 10K 784 10 5-C and 2-F NN
CIFAR-10 50K 10K 2048 10 5-C and 2-F NN
CLDS 1350 150 73008 4 5-C and 2-F NN
CLDD 4080 1020 73008 3 5-C and 2-F NN

Table 2: Classification accuracy of each algorithm on MNIST and Fashion-MNIST. 𝑐𝑙 denotes the label that needs to be concealed.
We report the mean and standard deviation of results over 5 trials. The best method is shown in bold (under 5% t-test).

Dataset 𝑐𝑙 MPU AREA CoMPU EULAC CLCE CLF

1 94.39 ± 0.78 94.52 ± 0.69 95.53 ± 0.62 69.67 ± 4.05 96.60 ± 0.06 97.72 ± 0.06

3 93.85 ± 0.67 93.21 ± 1.12 95.37 ± 0.47 69.54 ± 2.01 95.82 ± 0.51 97.40 ± 0.32

MNIST 5 93.79 ± 0.09 93.04 ± 1.04 95.27 ± 0.22 70.53 ± 3.01 95.88 ± 0.15 97.36 ± 0.20

7 94.28 ± 0.06 93.30 ± 0.30 95.41 ± 0.46 71.75 ± 6.38 95.87 ± 0.35 97.30 ± 0.55

9 94.15 ± 0.48 93.45 ± 0.78 95.57 ± 0.43 63.73 ± 6.10 96.20 ± 0.44 97.43 ± 0.02

0 79.20 ± 0.44 79.96 ± 1.50 80.49 ± 0.39 62.68 ± 1.77 82.22 ± 0.48 84.39 ± 0.55

2 79.51 ± 0.54 79.75 ± 0.51 80.66 ± 1.06 63.63 ± 2.00 81.82 ± 0.54 83.42 ± 0.69

Fashion 4 79.77 ± 0.50 79.27 ± 1.23 80.58 ± 0.57 66.14 ± 1.30 81.68 ± 0.45 83.70 ± 0.28

6 80.17 ± 0.92 79.31 ± 0.46 81.14 ± 0.68 63.27 ± 2.06 82.06 ± 0.49 83.01 ± 0.59

8 79.84 ± 1.60 78.95 ± 1.53 81.47 ± 0.52 64.95 ± 1.89 82.91 ± 0.26 84.89 ± 0.12

Table 3: Classification accuracy of each algorithm on Kuzushiji-MNIST and CIFAR-10. 𝑐𝑙 denotes the label that needs to be
concealed. We report the mean and standard deviation of results over 5 trials. The best method is shown in bold (under 5%
t-test).

Dataset 𝒄𝑙 MPU AREA CoMPU EULAC CLCE CLF

0 70.64 ± 3.02 76.29 ± 0.84 75.22 ± 1.17 46.09 ± 4.83 77.13 ± 0.04 81.74 ± 1.18

2 67.57 ± 2.97 75.90 ± 4.44 72.63 ± 3.53 41.34 ± 2.76 77.47 ± 1.16 82.13 ± 0.05

Kuzushiji 4 67.18 ± 5.89 76.36 ± 1.32 74.54 ± 1.14 40.95 ± 1.93 77.51 ± 1.22 82.37 ± 0.50

6 67.00 ± 2.41 74.79 ± 1.21 73.61 ± 1.67 48.04 ± 1.84 78.23 ± 0.88 82.85 ± 0.95

8 64.33 ± 2.76 73.64 ± 1.45 73.38 ± 1.24 42.76 ± 6.27 78.08 ± 1.43 82.60 ± 1.51

1 49.70 ± 3.02 54.55 ± 2.97 57.22 ± 1.69 45.22 ± 1.34 70.65 ± 0.80 71.32 ± 0.27

3 50.27 ± 2.07 53.42 ± 2.06 52.62 ± 1.04 44.87 ± 2.35 70.47 ± 0.08 70.04 ± 0.48
CIFAR-10 5 49.68 ± 1.39 52.24 ± 0.17 55.15 ± 0.24 45.38 ± 1.40 70.45 ± 0.41 71.02 ± 0.23

7 48.46 ± 1.08 53.62 ± 2.81 55.31 ± 2.50 42.56 ± 1.89 70.31 ± 0.40 71.31 ± 0.45

9 51.25 ± 2.14 56.45 ± 1.55 57.32 ± 1.56 44.44 ± 2.98 70.49 ± 0.41 71.28 ± 0.27
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Figure 2: Illustrations the negative risk of base models in experiments with various two datasets.

Table 4: Classification accuracy of different sizes of random sampled label set on Kuzushiji-MNIST. 𝑐𝑙 denotes the label that
needs to be concealed. 𝐿 = 2 denotes the size of labels in the random sampled label set. We report the mean and standard
deviation of results over 5 trials. The best method is shown in bold (under 5% t-test).

Dataset 𝒄𝑙 𝑳 = 2 𝑳 = 3 𝑳 = 4 𝑳 = 5 𝑳 = 6 𝑳 = 7

1 85.85 ± 0.11 87.62 ± 0.92 89.24 ± 0.31 89.77 ± 0.43 90.23 ± 0.35 90.28 ± 0.26

3 85.61 ± 0.69 88.13 ± 0.97 89.33 ± 0.57 89.97 ± 0.34 90.50 ± 0.34 90.58 ± 0.23

Kuzushiji 5 86.23 ± 0.56 88.41 ± 1.10 89.43 ± 0.32 90.10 ± 0.35 90.43 ± 0.24 90.54 ± 0.14

7 85.21 ± 0.84 86.95 ± 0.45 87.94 ± 0.63 88.35 ± 0.20 88.66 ± 0.59 89.41 ± 0.29

9 86.18 ± 0.27 88.24 ± 0.48 89.05 ± 0.52 89.83 ± 0.18 90.22 ± 0.19 90.41 ± 0.23

Table 5: Classification accuracy of each algorithm on real-world concealed labels datasets. 𝐿 means the number of labels in
random sampled label set. We report the mean and standard deviation of results over 3 trials. The best method is shown in bold
(under 5% t-test).

Dataset L MPU AREA CoMPU EULAC CLMO CLF CLAV

CLDS
1 65.00 ± 1.32 59.33 ± 1.52 62.83 ± 3.32 50.33 ± 2.51 72.00 ± 2.50 72.16 ± 1.04 71.33 ± 2.08
2 66.83 ± 0.28 67.33 ± 1.44 63.33 ± 2.92 59.66 ± 2.25 74.66 ± 0.28 76.33 ± 1.25 74.83 ± 2.02

CLDD 1 36.56 ± 3.91 48.22 ± 1.37 40.26 ± 3.04 40.98 ± 1.32 47.23 ± 0.58 39.71 ± 2.81 49.97 ± 0.73

In addition, we also collect another real-world concealed labels
dataset, CLDD, which consists of 3 classes: including normal, benign
and disease. This dataset includes 1360 training images and 340
testing images for each class. In the context of data collection, the
information regarding diseases of patients holds commercial value
for pharmaceutical companies. Therefore, the label of disease needs
to be protected during the annotation process. In this dataset, we

specifically selected disease as the concealed label for annotating
examples.

Approaches. We compare with the 4 approaches that we have
proposed in section 3, including CLF (Free, Square Loss), CLMO
(Max Operator, Square Loss), CLAV (Absolute Value, Square Loss)
and CLCE (Free, Cross Entropy). Additionally, we also compare with
three the-state-of-the-art multi-positive and unlabeled learning
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approachesMPU[38], AREA [30] and CoMPU[46], and a augmented
classes learning approach EULAC [44].

For MPU, AREA and CoMPU, we treat unconcealed labels as
positive labels and concealed label as the negative label. In order
to fairly compare with those approaches, we also assume the class
priors are known in the training stage, which play a crucial role in
rewriting the multi-class classification risk. For EULAC, we treat
unconcealed labels as known labels, and concealed label as un-
known label. During the training stage, we assume that the mixture
proportions are known to facilitate the practical implementation of
the method.

To ensure a fair comparison, we adopt the same base model for
all the compared approaches. We implement all approaches using
PyTorch on a single NVIDA 4090 GPU, and use Adam optimization
method with learning rate candidates {5𝑒 − 1, 3𝑒 − 1, 1𝑒 − 1, 8𝑒 −
2, 5𝑒 − 2, 3𝑒 − 2, 1𝑒 − 2} and the weight-decay is fixed at 0.5. The
mini-batch size is set to 256 and the number of epoch is fixed at
100. The hyperparameters for all compared approaches are selected
to maximize the accuracy on a validation set, i.e., 10% of training
concealed labels dataset.

4.2 Experimental results
Benchmark datasets.We conduct experiment on four benchmark
datasets with 𝐿 = 1 for MNIST, Kuzushiji-MNIST, Fashion-MNIST
and 𝐿 = 8 for CIFAR-10.

Table 2 and 3 show the mean and standard deviation of the test
accuracy over 5 trials for different approaches. Firstly, we observe
that the proposed methods consistently outperform the compared
methods on all datasets, although MPU methods utilize informa-
tion from the distribution of privacy labels. This demonstrates the
effectiveness of our approach for learning from concealed labels.
Next, from the two tables, we can see that CLF also achieve the best
performance among all the approach, which uses square loss. On
the other hand, CLCE achieves comparable performance, although
it is slightly inferior to CLF. This can be attributed to the difference
in their loss functions.

Real-world concealed labels datasets. Table 5 shows themean
and standard deviation of test accuracy over 5 trials for different
approaches. From the table, we observe that on the CLDS dataset,
the performance of CLF is better than the proposed corrected risk
methods CLAV and CLMO, which aim to alleviate overfitting due
to negative risk. This suggests that the deep model used in our
experiments is suitable for training classifiers on this dataset, and
thus the correction function is not necessary in this case. Addi-
tionally, we observe that the absolute value correction function
(CLAV) performs better than the max-operator correction function
(CLMO), indicating that considering both positive and negative risk
contributions leads to improved performance.

On the other hand, we observe that CLAV achieves the best
performance among all the approaches on the CLDD dataset. This
suggests that the absolute value correction function is effective in
addressing the negative risk issue and improving the classification
accuracy on this dataset.

4.3 Issue of negative risk
We present the training risk and testing accuracy to illustrate the
issue of the empirical estimator going negative when using complex

models with 𝐿 = 1. Figure 2 provides a visual representation of
these results. This confirms the discussion in Section 3.3, highlight-
ing the effectiveness of the correction function in improving the
performance of the classifiers. For linear models, CLF, CLMO and
CLAV have the similar performance. However, for deep models,
correction functions obtain better performance than unbiased risk
estimator.

It is easy to observe from the experimental results that when
the risk of training becomes negative, the accuracy of classification
deteriorates, especially when using complex models. However, for
simple models, such experimental results do not occur. The reason
behind this is that simple models typically have fewer parameters
and less complexity compared to complex models.

4.4 Size of random sampled label set
We explore the impact of the size of the random sampled label set
on the performance of the classifier. We vary the size from 2 to 7
on the Kuzushiji-MNIST dataset, and the experimental results are
presented in Table 4. From the table, we can observe that as the size
of the random sampled label set increases, the classifier achieves
better performance. This confirms the intuitive expectation that
the classifier achieves higher classification accuracy when more
instances are annotated with the true label.

An important observation is that when the number of random
sampled label set exceeds five, further increasing the number of
instances does not improve the accuracy of the model. A reason is
that the increase in labeled instances is very small compared to the
existing labeled instances. Additionally, there has been a reduction
in the number of unlabeled instances.

In this scenario, when the increase in labeled instances quantity
is relatively small, it may have a limited impact on the model’s
learning capability and generalization ability. When the labeled in-
stances quantity is low, each additional instance brings a relatively
large increase in information, helping the model better learn pat-
terns and relationships in the data. However, when there is already
a large number of labeled instances, the impact of adding more
instances may become smaller and may not significantly improve
the model’s performance.

5 CONCLUSION
In this paper, we introduced a novel weakly supervised learning
setting and approach for learning from concealed labels. This set-
ting is particularly useful for tasks where sensitive labels cannot
be accessed during data collection. We proposed an unbiased risk
estimator based on concealed labels data and improved its perfor-
mance by incorporating a risk correction function. Besides, the
consistency of the minimizers of proposed risk estimator is proved.
The experimental results on benchmark datasets as well as real-
world concealed labels datasets showed the effectiveness of our
approach in various scenarios.

In the future, it would be intriguing to explore concealed labels
in multi-label learning, a more challenging task compared to the
problem settings examined in this paper. Additionally, another
future research direction involves designing more effective methods
to further enhance experimental performance.
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