A Experimental Details

Code for experiments can be found at: https://github.com/kzl/decision-transformer.

A.1 Atari

We build our Decision Transformer implementation for Atari games off of minGPT (https://
github.com/karpathy/minGPT), a publicly available re-implementation of GPT. We use most
of the default hyperparameters from their character-level GPT example (https://github.com/
karpathy/minGPT/blob/master/play_char.ipynb). We reduce the batch size (except in Pong),
block size, number of layers, attention heads, and embedding dimension for faster training. For
processing the observations, we use the DQN encoder from Mnih et al. [21] with an additional linear
layer to project to the embedding dimension.

For return-to-go conditioning, we use either 1x or 5x the maximum return in the dataset, but more
possibilities exist for principled return-to-go conditioning. In Atari experiments, we use Tanh instead
of LayerNorm (as described in Section 3) after embedding each modality, but did this does not make
a significant difference in performance. We search over K € {1, 10, 30,50} (see Appendix C for

analysis on K) and R € dataset_max X {1,3,5}. The full list of hyperparameters can be found in
Table 7.

Table 7: Hyperparameters of DT (and %BC) for Atari experiments.

Hyperparameter Value
Number of layers 6
Number of attention heads 8
Embedding dimension 128
Batch size 512 Pong
128 Breakout, Qbert, Seaquest
Context length K 50 Pong

Return-to-go conditioning

Nonlinearity

Encoder channels
Encoder filter sizes
Encoder strides
Max epochs
Dropout

Learning rate
Adam betas

Grad norm clip
Weight decay
Learning rate decay
Warmup tokens
Final tokens

30 Breakout, Qbert, Seaquest

90 Breakout (=~ 1x max in dataset)
2500 Qbert (=~ 5x max in dataset)
20 Pong (= 1x max in dataset)
1450 Seaquest (= 5x max in dataset)
ReLlU, encoder

GeLU, otherwise

32,64, 64

8x8,4x4,3x3

4,21

5

0.1

6+1074

(0.9,0.95)

1.0

0.1

Linear warmup and cosine decay (see code for details)

512 % 20
2 x 500000 * K

A.2 OpenAl Gym

A.2.1 Decision Transformer

Our code is based on the Huggingface Transformers library [67]. Our hyperparameters on all OpenAl
Gym tasks are shown below in Table 8. Heuristically, we find using larger models helps to model the
distribution of returns, compared to standard RL model sizes (which learn one policy). For reacher
we use a smaller context length than the other environments, which we find to be helpful as the
environment is goal-conditioned and the episodes are shorter. We choose return targets based on

16

expert performance for each environment, except for HalfCheetah where we find 50% performance
to be better due to the datasets containing lower relative returns to the other environments. Models
were trained for 10° gradient steps using the AdamW optimizer [68] following PyTorch defaults.
We search over K € {5,20,100} (which all yielded similar results), and did not search over R (we
conditioned on expert performance for all tasks, except in Cheetah where the dataset did not contain
expert data).

Table 8: Hyperparameters of Decision Transformer for OpenAl Gym experiments.

Hyperparameter Value
Number of layers 3
Number of attention heads 1
Embedding dimension 128
Nonlinearity function ReLU
Batch size 64
Context length K 20 HalfCheetah, Hopper, Walker
5 Reacher
Return-to-go conditioning 6000 HalfCheetah
3600 Hopper
5000 Walker
50 Reacher
Dropout 0.1
Learning rate 1074
Grad norm clip 0.25
Weight decay 1074
Learning rate decay Linear warmup for first 10° training steps

A.2.2 Behavior Cloning

As briefly mentioned in Section 4.2, we found previously reported behavior cloning baselines to be
weak, and so run them ourselves using a similar setup as Decision Transformer. We tried using a
transformer architecture, but found using an MLP (as in previous work) to be stronger. We train for
2.5 x 10* gradient steps; training more did not improve performance. Other hyperparameters are
shown in Table 9. The percentile behavior cloning experiments use the same hyperparameters.

Table 9: Hyperparameters of Behavior Cloning for OpenAl Gym experiments.

Hyperparameter Value

Number of layers 3
Embedding dimension 256
Nonlinearity function =~ ReLU

Batch size 64

Dropout 0.1

Learning rate 1074

Weight decay 1074

Learning rate decay Linear warmup for first 10® training steps

A.3 Graph Shortest Path

We give details of the illustrative example discussed in the introduction. The task is to find the
shortest path on a fixed directed graph, which can be formulated as an MDP where reward is 0 when
the agent is at the goal node and —1 otherwise. The observation is the integer index of the graph
node the agent is in. The action is the integer index of the graph node to move to next. The transition
dynamics transport the agent to the action’s node index if there is an edge in the graph, while the
agent remains at the past node otherwise. The returns-to-go in this problem correspond to negative
path lengths and maximizing them corresponds to generating shortest paths.

17

s shortest path
transformer
0.6 W= random walk

proportion of paths

0.0 LIl s . [|
1 2 3 4 5 6

7 8 9 o
of steps to goal

Figure 6: Histogram of steps to reach the goal node for random walks on the graph, shortest possible
paths to the goal, and attempted shortest paths generated by the transformer model. oo indicates the
goal was not reached during the trajectory.

In this environment, we use the GPT model as described in Section 3 to generate both actions
and return-to-go tokens. This makes it possible for the model it generate its own (realizable)
returns-to-go R. Since we require a return prompt to generate actions and we do assume knowl-
edge of the optimal path length upfront, we use a simple prior over returns that favors shorter

paths: Pyior(R = k) o< T+ 1 — k, where T is the maximum trajectory length. Then, it is com-
bined with the return probabilities generated by the GPT model: P (]A%t\s():t, ao:t—1, RO:t—l) =
PGPT(Rt|80;t, a0:t—1, Ro:tﬂ) X Pprior(ﬁit)lo. Note that the prior and return-to-go predictions are
entirely computable by the model, and thus avoids the need for any external or oracle information like
the optimal path length. Adjustment of generation by a prior has also been used for similar purposes
in controllable text generation in prior work [60].

We train on a dataset of 1,000 graph random walk trajectories of 7" = 10 steps each with a random
graph of 20 nodes and edge sparsity coefficient of 0.1. We report the results in Figure 6, where we
find that transformer model is able to significantly improve upon the number of steps required to
reach the goal, closely matching performance of optimal paths.

There are two reasons for the favorable performance on this task. In one case, the training dataset
of random walk trajectories may contain a segment that directly corresponds to the desired shortest
path, in which case it will be generated by the model. In the second case, generated paths are entirely
original and are not subsets of trajectories in the training dataset - they are generated from stitching
sub-optimal segments. We find this case accounts for 15.8% of generated paths in the experiment.

While this is a simple example and uses a prior on generation that we do not use in other experiments
for simplicity, it illustrates how hindsight return information can be used with generation priors to
avoid the need for explicit dynamic programming.

B Atari Task Scores

Table 10 shows the normalized scores used for normalization used in Hafner et al. [22]. Tables 11
and 12 show the raw scores corresponding to Tables 1 and 4, respectively. For %BC scores, we use
the same hyperparameters as Decision Transformer for fair comparison. For REM and QR-DQN,
there is a slight discrepancy between Agarwal et al. [16] and Kumar et al. [17]; we report raw data
provided to us by REM authors.

18

Game Random Gamer

Breakout 2 30
Qbert 164 13455
Pong —-21 15
Seaquest 68 42055

Table 10: Atari baseline scores used for normalization.

Game DT (Ours) CQL QR-DQN REM BC
Breakout 76.9 £27.3 61.1 6.8 4.5 40.9+17.3
Qbert 2215.8 £1523.7 14012.0 156.0 160.1 2464.1 +1948.2
Pong 17.1£29 19.3 —-14.5 —-20.8 9.7£7.2
Seaquest 1129.3 +189.0 779.4 250.1 370.5 968.6 £ 133.8

Table 11: Raw scores for the 1% DQN-replay Atari dataset. We report the mean and variance across
3 seeds. Best mean scores are highlighted in bold. Decision Transformer performs comparably to
CQL on 3 out of 4 games, and usually outperforms other baselines.

C Additional Discussions

C.1 How does context length affect the performance of Decision Transformer?

Results in Atari games with varying context lengths are shown in Table 13. It is important to use
K > 1 (i.e., to include past context before the current transition). This is interesting since it is
generally considered that the previous state (i.e. K = 1) is enough for reinforcement learning
algorithms when frame stacking is used, as we do. One hypothesis is that when we are representing a
distribution of policies — like with sequence modeling — the context allows the transformer to identify
which policy generated the actions, enabling better learning and/or improving the training dynamics.
K = 30 and K = 50 generally work well across games, with the exception of Qbert. If one desires

to use the same K across all games, K = 30 works well. For this ablation, we used R = 1150 for

Seaquest and R = 14000 for Qbert instead of the values in Table 7 but this does not significantly
affect performance.

C.2 Why does Decision Transformer avoid the need for value pessimism or behavior
regularization?

One key difference between Decision Transformer and prior offline RL algorithms is that we do
not require policy regularization or conservatism to achieve good performance. Our conjecture is
that TD-learning based algorithms learn an approximate value function and improve the policy by
optimizing this value function. This act of optimizing a learned function can exacerbate and exploit
any inaccuracies in the value function approximation, causing failures in policy improvement. Since
Decision Transformer does not require explicit optimization using learned functions as objectives, it
avoids the need for regularization or conservatism.

C.3 How can Decision Transformer benefit online RL regimes?

Offline RL and the ability to model behaviors has the potential to enable sample-efficient online
RL for downstream tasks. Works studying the transition from offline to online generally find that
likelihood-based approaches, like our sequence modeling objective, are more successful [69, 70].
As a result, although we studied offline RL in this work, we believe Decision Transformer can
meaningfully improve online RL methods by serving as a strong model for behavior generation. For
instance, Decision Transformer can serve as a powerful “memorization engine” and in conjunction
with powerful exploration algorithms like Go-Explore [71], has the potential to simultaneously model
and generative a diverse set of behaviors.

19

Game DT (Ours) 10%BC 25%BC 40%BC 100%BC

Breakout 76.9 £27.3 10.0 £ 2.3 22.6+1.8 32.3+£18.9 409+£17.3
Qbert 2215.8 £1523.7 1045 +£232.0 2302.5+1844.1 1674.1£776.0 2464.1 +1948.2
Pong 17.1+29 —20.3+£0.1 —-16.2+£1.0 5.2+4.38 9.7+ 7.2
Seaquest 1129.3 £189.0 521.3+103.0 549.3 £96.2 758 £169.1 968.6 = 133.8

Table 12: %BC scores for Atari. We report the mean and variance across 3 seeds. Decision
Transformer usually outperforms %BC.

Game K=1 K =10 K =30 K =50

Breakout 73.9+10 183.2+£32.1 267.5+97.5 196.74+106.0
Qbert 23.0+10.6 38.2+11.6 25.1+18.1 20.9 +24.4
Pong 24+0.2 32.2+51.9 94.6 + 10.5 106.1 £8.1
Seaquest 0.6+0.2 20+04 24+0.7 1.8£0.5

Table 13: Results in Atari games with varying context lengths. Decision Transformer generally
performs better when using a longer context length.

20

	Experimental Details
	Atari
	OpenAI Gym
	Decision Transformer
	Behavior Cloning

	Graph Shortest Path

	Atari Task Scores
	Additional Discussions
	How does context length affect the performance of Decision Transformer?
	Why does Decision Transformer avoid the need for value pessimism or behavior regularization?
	How can Decision Transformer benefit online RL regimes?

