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1 Implementation Details

1.1 Neural Network Architecture Details

We use a two layer feedforward neural network of 256 and 256 hidden nodes respectively. Rectified
linear units (ReLU) are put after each layer for both the actor and critic except the last layer. For
the last layer of the actor network, a tanh function is used as the activation function to squash the
action range within [−1, 1]. GRAC then multiplies the output of the tanh function by max action to
transform [-1,1] into [-max action, max action]. The actor network outputs the mean and sigma of a
Gaussian distribution.

1.2 CEM Implementation

Our CEM implementation is based on the CEM algorithm described in Pourchot [1].

Algorithm 1 CEM
Input: Q-function Q(s,a); size of population Npop; size of elite Nelite where Nelite ≤ Npop; max
iteration of CEM Ncem.
Initialize the mean µ and covariance matrix Σ from actor network predictions.

1: for i = 1..., Ncem do
2: Draw the current population set {apop} of size Npop from N (µ,Σ).
3: Receive the Q values {qpop} = {Q(s, a)|a ∈ {apop}}.
4: Sort {qpop} in descending order.
5: Select top Nelite Q values and choose their corresponding apop as elite {aelite}.
6: Calculate the mean µ and covariance matrix Σ of the set {aelite}.
7: end for

Output: The top one elite in the final iteration.

1.3 Additional Detail on Algorithm 1: GRAC

The actor network outputs the mean and sigma of a Gaussian distribution. In Line 2 of Alg.1, the actor
has to select action a based on the state s. In the test stage, the actor directly uses the predicted mean
as output action a. In the training stage, the actor first samples an action â from the predicted Gaussian
distribution πφ(s), then GRAC runs CEM to find a second action ã = CEM(Q(s, ·; θ2), πφ(·|s)).
GRAC uses a = arg max{ã,â}{minj=1,2Q(s, ã; θj),minj=1,2Q(s, â; θj)} as the final action.

2 Appendix on Experiments

2.1 Hyperparameters used

Table 1 and Table 2 list the hyperparameters used in the experiments. [a, b] denotes a linear schedule
from a to b during the training process.
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Parameters Values
discount γ 0.99
replay buffer size 1e6
batch size 256
optimizer Adam [2]
learning rate in critic 3e-4
learning rate in actor 2e-4
Ncem 2
Npop 256
Nelite 5

Table 1: Hyperparameter Table

Environments ActionDim K in Alg.1 α in Alg.1 CemLossWeight Reward Scale
Ant-v2 8 20 [0.7, 0.9] 1.0/ActionDim 1.0
Hopper-v2 3 20 [0.85, 0.95] 0.3/ActionDim 1.0
HalfCheetah-v2 6 50 [0.7, 0.85] 1.0/ActionDim 0.5
Humanoid-v2 17 20 [0.7, 0.85] 1.0/ActionDim 1.0
Swimmer-v2 2 20 [0.5, 0.75] 1.0/ActionDim 1.0
Walker2d-v2 6 20 [0.8, 0.9] 0.3//ActionDim 1.0

Table 2: Environment Specific Parameters

2.1.1 Additional Learning Curves for Policy Improvement with Evolution Strategy

The learning curves are shown in Fig 1.
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Figure 1: Learning curves for the OpenAI gym continuous control tasks. The GRAC actor network
uses a combination of two actor loss functions, denoted as QLoss and CEMLoss. QLoss Only
represents the actor network only trained with QLoss. CEM Loss Only represents the actor network
only trained with CEMLoss. In general GRAC achieves a better performance compared to either
using CEMLoss or QLoss.
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Figure 2: Learning curves of DDPG w/o target network, w/ target regularization and DDPG on
the OpenAI gym continuous control tasks within one million steps over four random seeds. DDPG
w/o target network, w/ target regularization outperforms DDPG by large margins in five out of six
Mujoco tasks.

2.2 Additional Learning Curves for Ablation Study of Self-Regularized TD Learning

We report results in Figs 2 and 3.

In additional to learning curves, we also plot in Figure 4 how the regularization term changes as
training progress, with and without self-regularized TD learning.

2.3 Hyperparameter Sensitivity for the Termination Condition of Critic Network Training

We also run experiments to examine how sensitive GRAC is to some hyperparameters such as K and
α listed in Alg.1. The critic networks will be updated until the critic loss has decreased to α times
the original loss, or at most K iterations, before proceeding to update the actor network. In practice,
we decrease α in the training process. Fig.5 shows five learning curves on Ant-v2 running with five
different hyperparameter values. We find that a moderate value of K = 10 is enough to stabilize the
training process, and increasing K further does not have significant influence on training, shown on
the right of Fig.5. α is usually within the range of [0.7, 0.9] and most tasks are not sensitive to minor
changes. However on the task of Swimmer-v2, we find that α needs to be small enough (< 0.7) to
prevent divergence. In practice, without appropriate K and α values, divergence usually happens
within the first 50k training steps, thus it is quick to select appropriate values for K and α.
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Figure 5: Learning curves for the OpenAI gym Ant-v2 environment.

2.4 Additional Learning Curves for OpenAI Gym Tasks

Due to time limit, we did not finished running GRAC on all 25 seeds. In Figure 6, we plot all
the seeds we have for GRAC, which includes 20 seeds for Ant-v2, 15 seeds for Hopper-v2, 13
seeds for Humanoid-v2, 12 seeds for HalfCheetah-v2, 15 seeds for Swimmer-v2, and 10 seeds for
Walker2d-v2.
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Figure 3: Learning curves and average Q1 values (y′1 in Alg. 1 of the main paper). DDPG w/o target
network quickly diverges as seen by the unrealistically high Q values. DDPG is stable but often
progresses slower. If we remove the target network and add the proposed target regularization, we
both maintain stability and achieve a faster or comparable learning rate.
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Figure 4: Learning curves (top left) and the self-regularized TD component (top right, bottom right)
on Ant-v2. Top right and bottom right both plot the regularization term, except top right plots 3
million time-steps, while bottom right plots 15000 time-steps. GRAC w/o regularization achieves
very low average returns, and the regularization term explodes.
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Figure 6: Learning curves for the OpenAI gym continuous control tasks. All curves are based on 10
seeds except for GRAC. Due to time limit, we have not finished running all 25 seeds for GRAC. For
GRAC, we plot 20 seeds for Ant-v2, 15 seeds for Hopper-v2, 13 seeds for Humanoid-v2, 12 seeds
for HalfCheetah-v2, 15 seeds for Swimmer-v2, and 10 seeds for Walker2d-v2.
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2.5 Robustness of GRAC to Local Noise in the Q Function

We design a comparison experiment to demonstrate that GRAC is robust to local noise in the Q
function. We add noise to the Q function by adding noise to the last fully-connected layer of the
Q function at every time-step. For each weight parameter, the noise is sampled from a Gaussian
distribution of mean zero and variance one percent of the parameter magnitude. We add the noise in
a similar way to TD3 [3] and compare their relative performances with and without noise in the Q
function. Due to limited time, we run the experiment only on Ant-v2. Learning curves are available
in Figure 7.
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Figure 7: Learning curves for GRAC and TD3, with and without noise in the Q function. We add
noise to the Q function by adding random Gaussian noise to the last fully-connected layer of the Q
function at every time-step. We evaluate the result on Ant-v2 for three million time-steps. GRAC
can still achieve a relatively high reward compared to without noise, while TD3 experiences high
instability when noise is added in the Q function.

2.6 Extra Compute Cost of CEM in GRAC

The CEM component in GRAC introduces additional compute cost. Adding the CEM search in both
the actor and critic slows down training clock time by 10% compared to GRAC without using CEM.

3 Theorems and Proofs

For the sake of clarity, we make the following technical assumption about the function approximation
capacity of neural networks that we use to approximate the action distribution.

State separation assumption: The neural network chosen to approximate the policy family Π is
expressive enough to approximate the action distribution for each state π(s, ·) separately.

3.1 Theorem 1: Q-loss Policy Improvement

Theorem 1. Starting from the current policy π, we update the policy to maximize the objective
Jπ = E(s,a)∼ρπ(s,a)Q

π(s, a). The maximization converges to a critical point denoted as πnew. Then
the induced Q function, Qπnew , satisfies ∀(s, a), Qπnew(s, a) ≥ Qπ(s, a).

Proof of Theorem 1. Under the state separation assumption, the action distribution for each state,
π(s, ·), can be updated separately, for each state we are maximizing Ea∼π(s,·)Qπ(s, a). Therefore,
we have ∀s,Ea∼πnew(s,·)Q

π(s, a) ≥ Ea∼π(s,·)Qπ(s, a) = V π(s).

Qπ(s, a) = r(s, a) + γ Es′ V π(s′)
≤ r(s, a) + γ Es′ Ea′∼πnew Qπ(s′, a′)
= r(s, a) + γ Es′ Ea′∼πnew [r(s′, a′) + γ Es′′ V π(s′′)]
≤ r(s, a) + γ Es′ Ea′∼πnew r(s′, a′) + γ2 Es′ Ea′∼πnew Es′′ Ea′′∼πnew Qπ(s′′, a′′)
= . . . (repeatedly unroll Q function )
≤ Qπnew(s, a)

(1)
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3.2 Theorem 2: CEM Policy Improvement

Theorem 2. We assume that the CEM process is able to find the optimal action of the state-action
value function, a∗(s) = arg maxaQ

π(s, a), where Qπ is the Q function induced by the current
policy π. By iteratively applying the update E(s,a)∼ρπ(s,a)[Q(s, a∗)−Q(s, a)]+∇ log π(a∗|s), the
policy converges to πnew. Then Qπnew satisfies ∀(s, a), Qπnew(s, a) ≥ Qπ(s, a).

Proof of Theorem 2. Under the state separation assumption, the action distribution for each state,
π(s, ·), can be updated separately. Then, for each state s, the policy πnew will converge to
a delta function at a∗(s). Therefore we have ∀s,maxaQ

π(s, a) = Ea∼πnew(s,·)Q
π(s, a) ≥

Ea∼π(s,·)Qπ(s, a) = V π(s). Then, following Eq. (1) we have ∀(s, a), Qπnew(s, a) ≥ Qπ(s, a)

3.3 Theorem 3: Max-Min Double Q-learning Convergence

Theorem 3. We keep two tabular value estimates Q1 and Q2, and update via

Qt+1,1(s, a) = Qt,1(s, a) + αt(s, a)(yt −Qt,1(s, a))
Qt+1,2(s, a) = Qt,2(s, a) + αt(s, a)(yt −Qt,2(s, a)),

(2)

where αt(s, a) is the learning rate and yt is the target:

yt = rt(st, at) + γmaxa′∈{aπ,a∗}mini∈{1,2}
Qt,i(st+1, a

′)
aπ ∼ π(st+1)
a∗ = argmaxa′Qt,2(st+1, a

′)

We assume that the MDP is finite and tabular and the variance of rewards are bounded, and γ ∈ [0, 1].
We assume each state action pair is sampled an infinite number of times and both Q1 and Q2

receive an infinite number of updates. We further assume the learning rates satisfy αt(s, a) ∈ [0, 1],∑
t αt(s, a) = ∞,

∑
t[αt(s, a)]2 < ∞ with probability 1 and αt(s, a) = 0,∀(s, a) 6= (st, at).

Finally we assume CEM is able to find the optimal action a∗(s) = arg maxa′ Q(s, a′; θ2). Then
Max-Min Double Q-learning will converge to the optimal value function Q∗ with probability 1.

Proof of Theorem 3. This proof will closely follow Appendix A of [3].

We will first prove that Q2 converges to the optimal Q value Q∗. Following notations of [3], we have

Ft(st, at) , yt(st, at)−Q∗(st, at)
= rt + γmaxa′∈{aπ,a∗}mini∈{1,2}Qt,i(st+1, a

′)−Q∗(st, at)
= FQt (st, at) + ct

(3)

Where

FQt (st, at) = rt + γQt,2(st+1, a
∗)−Q∗(st, at)

= rt + γmax
a′

Qt,2(st+1, a
′)−Q∗(st, at)

ct = γ max
a′∈{aπ,a∗}

min
i∈{1,2}

Qt,i(st+1, a
′)− γQt,2(st+1, a

∗)

FQt is associated with the optimum Bellman operator. It is well known that the optimum Bellman
operator is a contractor, We need to prove ct converges to 0.

Based on the update rules (Eq. (A2)), it is easy to prove that for any tuple (s, a), ∆t(s, a) =
Qt,1(s, a) − Qt,2(s, a) converges to 0. This implies that ∆t(s, a

π) = Qt,1(s, aπ) − Qt,2(s, aπ)
converges to 0 and ∆t(s, a

∗) = Qt,1(s, a∗) − Qt,2(s, a∗) converges to 0. Therefore,
mini∈{1,2}Qt,i(s, a) − Qt,2(s, a) ≤ 0 and the left hand side converges to zero, for a ∈ aπ, a∗.
Since we have Qt,2(s, a∗) >= Qt,2(s, aπ), then

min
i∈{1,2}

Qt,i(s, a
∗) ≤ max

a′∈{aπ,a∗}
min
i∈{1,2}

Qt,i(s, a
′) ≤ Qt,2(s, a∗)
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Therefore ct = γmaxa′∈{aπ,a∗}mini∈{1,2}Qt,i(s, a
′)−Qt,2(s, a∗) converges to 0. And we proved

Qt,2 converges to Q∗.

Since for any tuple (s, a), ∆t(s, a) = Qt,1(s, a)−Qt,2(s, a) converges to 0, Qt,1 also converges to
Q∗.

3.4 Max-min Double Q-Learning

We additionally verify the effectiveness of the proposed Max-min Double Q-Learning method. We
run an ablation experiment by replacing Max-min by Clipped Double Q-learing [3] denoted as GRAC
w/o CriticCEM. In Fig. 8, we visualize the learning curves of the average return, Q1 (y′1 in Alg. ??),
and Q1 −Q2 (y′1 − y′2 in Alg.1). GRAC achieves high performance while maintaining a smoothly
increasing Q function. Note that the difference between Q functions, Q1 −Q2, remains around zero
for GRAC. GRAC w/o CriticCEM shows high variance and drastic changes in the learned Q1 value.
In addition, Q1 and Q2 do not always agree. Such unstable Q values result in a performance crash
during the learning process.
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Figure 8: Learning curves (left), average Q1 values (middle), and average of the difference between
Q1 and Q2 (right) on Ant-v2. Average Q values are computes as minibatch average of y′1 and y′2,
defined in Alg.1. GRAC w/o CriticCEM represents replacing Max-min Double Q-Learning with
Clipped Double Q-Learning. Without Max-min double Q-Learning to balance the magnitude of Q1

and Q2, Q1 blows up significantly compared to Q2, leading to divergence.

4 In-Hand Manipulation Experiment

Besides the six mujoco locomotion tasks, we demonstrate that GRAC can learn a policy to solve
in-hand manipulation tasks on a complex multi-fingered hand. We train the robotic hand [4] in
simulation to rotate a cube by 50 degrees around the direction of gravity and demonstrate the zero-
shot transfer capability to the real world. We use the simulation environment in [4] based on Mujoco
2.0. and a visualization of the simulation is in Fig 6. of [4]. The input states to the policy are the
current, previous, initial, and target object position and orientation, and all nine gripper joint positions
at the current time step. The actions are nine joint positions for the gripper at the next time step.
We implement a function to linearly map the action range [−1, 1] of GRAC to the actuator range of
the hand [lower joint limit, upper joint limit]. We use the same evaluation metric introduced in [4]
which calculates the pose difference between the current pose and the target pose denoted as Ert.
The reward at time step t is Ert−1 − Ert. The task is considered successful if the pose difference
at the current step is less than 10% of the pose difference at the initial step. We train the policy for
500k iterations in simulation and transfer the learned policy to the real hand without finetuning. The
real-world experimental setup includes the robotic hand and an overhead Intel Realsense D400series
RGBD camera. To track object position and orientation in the real world, QR-tags are put on all
cube’s six faces. We test three trials in the real world. GRAC learns a policy that successfully
completes all three trials demonstrating the proposed algorithm’s effectiveness at solving in-hand
manipulation tasks on a complex multi-fingered hand. The video is available in the supplementary
material.
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4.1 Results on In-Hand Manipulation Task

We train GRAC, TD3 [3], and SAC [5] for five hundred thousand time-steps. Figure 9 shows the
corresponding learning curves. All three algorithms discovered a policy that produces maximum re-
ward, which corresponds to task success. There are no significant differences between the algorithms’
performance on this specific task. The motivation of this experiment is to demonstrate that GRAC
has the potential to be useful in robotic manipulation tasks.
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Figure 9: Learning curves for the in-hand manipulation task. We train each algorithm for five hundred
thousand time-steps. There are no significant differences between different algorithms at this specific
task. Both SAC and GRAC converge to the maximum reward, corresponding to task success. This
result indicates that GRAC has the potential to be applied to robotic manipulation tasks.
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