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1 STEP-BY-STEP VISUALIZATION OF THE PROPOSED ALGORITHM

In order to help the reader further their understanding of the intuition behind our proposed algorithm we will
be conducting a mental experiment with the help of some visual examples. Note that for ease of understand-
ing the figures will follow the convention of 2+1 dimensional euclidean space.

Given a frame F0 we embed it on our space as in Figure 1a. As the next frame F1 can only have finite
differences in content compared to the first, our intuition dictates that its embedding has to lie close to the
original F0, we denote this region with yellow in Figure 1b.

(a) Lets assume a frame F0 that we embed in our space. (b) The position of the next frame should be close in this
space.

Figure 1

In Figure 2a we assume without loss of generality a position where F1 will be embedded. If the next frame
was known then we would simply embed it in our space in a manner similar to F0.

Lets assume now that we have repeated the aforementioned process for a total of 3 frames and embedded
them on our space. For conceptual ease, we assume frames F0,F1,F2 are known a priori and we simply
embed them in our space. The question that arises is where would F3 lie? To tackle this question we have
to remember that the frames constitute a sequence, hence time is also a factor that would affect our answer
to the above question. In a 2D space we can model the passage of time by increasing the radius of the
circles where the next frames lie. We base this observation on the fact that as time progresses, the content
of subsequent frames can be increasingly different. Thus their embedding will be increasingly further away
from our original frame F0.
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Frame F3, however is the consequence frame of all Frames F0,F1,F2, Hence given the circles of past frames
are scaled accordingly to signify the passage of time from their original time t to t′ in question, the new
frame has to lie in the intersection of these. As seen in figure 2b

(a) Embedding of a second frame.

(b) Embedding of a third frame F2 and enlargement of the circles of frames 0,1. A fourth frame
has to lie on the intersection of the circles.

Figure 2

Our mental experiment thus far has been treating time as an invisible factor that only alters the radius of
the circles. If we were to represent time as a separate observable dimension (2+1 dimensional space) then
the aforementioned circles become cones, as seen in Figure 3. Hence the intersection of circles to find the
constrained latent space where F3 would lie becomes the intersection of cones. We visualize this in Figure 4

The above has been a step by step intuition of our proposed algorithm, mathematical description of the steps
can be seen in Section 3 of the main paper.
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Figure 3: In space-time this would look like the intersection of cones. Due to the fact that the increasing
radius of the 2D circles create a cone in 3D.

2 POINCARÉ BALL

As stated in the main paper, Riemannian Geometry can be seen as a curved generalization of Euclidean
space. In this section we will be focusing on the Poincaré ball Riemannian manifold, as it forms the basis of
our implementation. We note that there is no theoretical reason why we extend the Poincaré VAE Mathieu
et al. (2019) other than simplicity of implementation and proven results in the image domain.

Many works rely on a Poincaré ball, as has been argued in Nickel & Kiela (2017); Mathieu et al. (2019);
Ganea et al. (2018a) that embedding the latent space on a Poincaré Ball – a hyperbolic space with nega-
tive curvature – allows to naturally embed continuous hierarchical relationships between data points. This
follows from the qualitative properties of such a hyperbolic space:

1. The entirety of the Poincaré Ball Bdc is contained within a hypersphere of radius 1/
√
c and dimen-

sionality d, in what amounts to compactification of infinite space.

2. The distance function (and thus area element) of this space grows rapidly as one approaches the
edges of Bdc , such that reaching the edge would require traversing an infinite distance in latent
space.

3. This behaviour naturally emulates the properties of hierarchical trees, whose size grow exponen-
tially as new branches "grow" from previously existing branches.

Quantitatively, the space Bdc is endowed with a metric tensor gc which relates to flat Euclidean space,

gc(r) =

(
2

1− c|r|2

)2

ge(r), (1)
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Figure 4: Two potential causal paths from points a,b to a new point c. Note that if its these points represent
a sequence then the causal path will have to pass from A→ B → C

where r is a d-dimensional vector in latent space and ge(r) the Euclidean metric. As a result, the distance
element in Bdc may be written, in spherical coordinates,

ds2 =

(
2

1− cr2

)2

(dr2 + r2dΩ2
d), (2)

where r = |r| is the radius from the origin of the space and dΩd is the differential solid angle element in
d dimensions. It easy to see that the distance element diverges as r → 1/

√
c, thus encoding the infinite

hypervolume contained near the edges of the Poincaré Ball. Furthermore, as c → 0, the radius of the
Poincaré Ball becomes infinity and gc(z) → ge(z), up to a constant rescaling of the coordinates. Let
γ : t→ γ(t) be a curve in Bdc , where t ∈ [0, 1] such that its length is defined by

L(γ(t)) =

∫ 1

0

√
ds2(t)dt =

∫ 1

0

√
vT (t) ĝc v(t) dt, (3)

where ĝc is the matrix form of gc and v ≡ dr
dt is the trajectory’s velocity vector. In component form, this

reads

=

∫ 1

0

√√√√ d∑
µ=1

d∑
ν=1

dxµ(t)

dt
gcµν

dxν(t)

dt
dt =

∫ 1

0

(
2

1− cr2(t)

)2 √
vTv dt, (4)

where xµ represents each coordinate, gcµν is the component form of ĝc and in the last step we have used in
Eq. (1). In hyperbolic space, “straight lines” are defined by geodesics γg(t), i.e., curves of constant speed
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and least distance between points x and y. Thus,

γg(t) = argmin [L(γ(t))]
γ(1)=y
γ(0)=x and

∣∣∣∣dγ(t)

dt

∣∣∣∣ = 1. (5)

With Eq. (4) and Eq. (5), one may show that the distance function dc(x,y) between two points x and y on
Bdc can be computed to yield

dc(x,y) =
1√
c

arccosh
(

1 + 2c
|x− y|2

(1− c|x|2)(1− c|y|2)

)
. (6)

3 WRAPPED NORMAL

While embedding data on a Riemannian space with the use of a Riemannian VAE, it is important to embed
the used distribution in this space as well. Multiple ways have been proposed to perform this operation. We
follow the wrapped normal distribution approach Grattarola et al. (2019); Mathieu et al. (2019).

For this, a normal distribution is mapped onto the manifold using the manifold’s exponential map. Given a
normal distribution ze ∼ N (0,Σ) and the Riemannian sample z = expcµ( zeλcµ

), the distribution’s density can
be described as

NW
Bdc

(z|µ,Σ) =
dvW (z|µ,Σ)

dM(z)
= N (λcµlogµ(z)|0,Σ)(

√
cdcp(µ, z)

sinh(
√
cdcp(µ, z))

)d−1. (7)

With c→ 0 the Euclidean normal distribution can be obtained.

4 ARCHITECTURAL CONSIDERATIONS

In order to properly embed information on a manifold, a set of considerations have to be taken into account
as developed by Ganea et al. Ganea et al. (2018b). In this paper we are following the architectural guidance
of Ganea et al. (2018b); Mathieu et al. (2019) regarding the last layer of the encoder and the first layer of the
decoder. Specifically in the encoder we use the Fréchet mean as calculated by the exponential mapping expc0
and a solftplus variance σ. In terms of the decoder we utilize the gyroplane layer as developed by Ganea
et al. (2018b); Mathieu et al. (2019). Our architecture follows the consideration from Mathieu et al. (2019)
with the additions of the extended mapping using equations 5,6 from the main paper and increased capacity
of the hidden layers as our input is 32× 32 rather than the original 28× 28.

Optimization: In terms of optimization we tested both a Riemannian stochastic gradient descent as seen
in Nickel & Kiela (2017) and Mathieu et al. (2019). These approaches use the exponential mapping to bring
the model’s parameters onto the manifold. As there were inconsequential practical differences between the
two methods and as both are theoretically sound we opted for Mathieu et al. (2019)’s approach to maintain
computational simplicity.

5 ONLINE LEARNING AND ANOMALY DETECTION

A limitation of current causal analysis methods is that they fail to include unseen causal sources. For example
in the case of an autonomous vehicle simulation the addition of a second car by the researcher would entail
a causal anomaly in the world model of the autonomous vehicle where it used to be the only vehicle in
existence. It is obvious that causal future predictions are impossible to perform in such a case as the system
is assumed to be impervious to modifications from outside sources.
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However, by presenting an anomaly like that and mapping it on our world model we are able to raise an
anomaly flag. If an observation is made that falls outside the perceived light cone of the system then if an
event like this has happened before we are able to adapt the aperture of the cone, or as in the case of the
scientist inserting a new vehicle, re-structure the world model of the system based on the new observation.
This can be considered as a method of online fine-tuning. We believe that beyond fully retraining our model
we are able to adjust the embedding space and subsequently the light cones by modifying the metric with
the use of free parameters. Investigations on which method is optimal are intriguing for future work.

6 CODE

The proposed algorithm was implemented in PyTorch and the code will be made available by the time of the
conference.

7 EXTRA EXPERIMENTAL RESULTS

Below we showcase a few more experimental results related to Exp. 2, 3 of the main paper. In Figure 5 we
show 2 more cases of the handwaving action and 1 of the walking action. We note that the walking action
depicts direction 3 of the KTH dataset - an away from the camera movement. We further show digits 7, 8 at
a variety of movements.

Figure 5: Experimental results related to experiments 2,3 from the main paper.
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Figure 6: Comparison of the degradation of SSIM in our model against . Note that our model does not
require 5 context frames (reason for starting to compare at frame 6) but only 1 and consists of only a simple
1-hidden-layer MLP compared to 70 convolutional layers in .

8 SSIM ANALYSIS

In Figure 6 we calculate the SSIM of our predicted frames against the ground truth and compare against
Denton & Fergus (2018), we note that over the course of 10 time steps the quality of our frames does not
degrade contrary to the autoregressive method of Denton & Fergus (2018). It is worth mentioning some
crucial differences between the two approaches, Denton & Fergus (2018) uses a large architecture, ∼ 70
layers, and conditioning on at least five past frames. In contrast to this, our results were generated with a
1-hidden-layer MLP and only one previous frame is required to infer the future sampling path in the MST
latent space.
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