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ABSTRACT

This paper considers the problem of utilizing a large-scale text-to-image diffusion
model to tackle the challenging Inexact Segmentation (IS) task. Unlike traditional
approaches that rely heavily on discriminative-model-based paradigms or dense
visual representations derived from internal attention mechanisms, our method
focuses on the intrinsic generative priors in Stable Diffusion (SD). Specifically, we
exploit the pattern discrepancies between original images and mask-conditional
generated images to facilitate a coarse-to-fine segmentation refinement by establish-
ing a semantic correspondence alignment and updating the foreground probability.
Comprehensive quantitative and qualitative experiments validate the effectiveness
and superiority of our plug-and-play design, underscoring the potential of lever-
aging generation discrepancies to model dense representations and encouraging
further exploration of generative approaches for solving discriminative tasks.

1 INTRODUCTION

Recent breakthroughs in Diffusion Models (DMs) have empowered the field of visual generation for
images (Rombach et al., 2022; Ruiz et al., 2023) and video (Cho et al., 2024; Ho et al., 2022), demon-
strating their capacity of high-fidelity and diverse content synthesis. Meanwhile, there is a growing
interest in unlocking DMs for performing the discriminative task of visual dense recognition (Xu
et al., 2023a; Barsellotti et al., 2024a). However, similar to discriminative-model-based segmentation
frameworks (Kirillov et al., 2023; Huynh et al., 2022; Zhou et al., 2022b), these DM-based methods
rely heavily on large-scale pixel-level training datasets, which require costly and labor-intensive
labeling efforts. To relieve this, this paper explores the potential of DMs in tackling the Inexact
Segmentation (IS) problem, a more challenging task that achieves segmentation using only text
or image-level class labels, essentially merging two existing settings: Text-Supervised Semantic
Segmentation (TSSS) (Xu et al., 2022a; Ren et al., 2023; Xu et al., 2023b) and Weakly-Supervised
Semantic Segmentation (WSSS) (Ahn & Kwak, 2018; Wang et al., 2020b).

One line of current DM-based IS research is dedicated to excavating and refining the image-text
cross-attention map embedded in the noise predictor network (Wang et al., 2023b; Ma et al., 2023b).
Specifically, these methods leveraged the object-shape-characterized self-attention module to refine
the cross-attention map, yielding a segmentation mask for the query object. Another line of research
focuses on treating a diffusion process as a self-supervised denoising task and employing a diffusion
model as a general feature extractor (Xu et al., 2023a; Zhao et al., 2023). In these studies, diffusion
models serve as attention-guiding feature extractors, indirectly assisting segmentation tasks. In con-
trast, research on using generative paradigms to directly optimize segmentation remains unexplored,
leaving the fundamental generative ability of large-scale pretrained diffusion models underutilized.

In this paper, we delve into the generative nature of pretrained diffusion models to refine a
coarse segmentation mask from inexact segmentation. Specially, we are inspired by cases that
GPTs (Brown, 2020; Achiam et al., 2023) can generate responses closer to the alternative an-
swers under certain prompts to solve discriminative tasks without any extra training. For vi-
sual diffusion models, better condition guidance similarly results in a smaller discrepancy be-
tween the generated and initial images. Under such an implication, we can use the discrep-
ancy to obtain feedback to improve the condition itself. Prior work, DiffusionClassifier (Li
et al., 2023a), has proved that using a correct text prompt leads to a better denoising result for
a specific image, indicating better category classification. We incorporate this spirit into IS, a
more challenging discriminative grounding task without pixel-level supervision. A new frame-
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work, termed as G4Seg, is proposed, which leverages diffusion-based generation with coarse seg-
mentation mask injection and the semantic discrepancy between the generated and initial image
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Figure 1: The comparison illustration. Previous DM-based meth-
ods mine out features or the cross-attention for generating the
segmentation map with training. Our training-free method ex-
ploits the underlying semantic discrepancy after intervening the
generation process to improve the segmentation map.

(as shown in Figure. 1). It
is worth noting that G4Seg is
an inference-only framework in-
volving a large-scale pre-trained
diffusion model without any ex-
tra training or fine-tuning.

Technically, to achieve refine-
ment of the original mask in a
generative manner, the image to
be segmented should first be in-
verted into latent noise space or
added with noise at a suitable
time step. Then, the image is re-
constructed with the condition,
which includes the text prompt
and the inexact mask. Under the
imperfect mask, the generated
image shows some discrepancy
from the initial image. By means
of the pixel-wise Hausdorff dis-
tance as a discrepancy metric, a semantic correspondence alignment methodology is designed for a
better inexact segmented mask refinement.

Our contributions can be summarized as follows:

• Different from the popular discriminative-based segmentation paradigm and previous DM-based
training methods, we propose a novel training-free framework in a generation manner for inexact
segmentation refinement empowered by the condition capacity of pretrained diffusion models.

• We are among the first attempts to leverage the discrepancy between original and generated
images to refine the coarse mask by technically establishing a principled alignment to build the
correspondence and updating the foreground probability of each pixel with its paired pixel.

• Our framework has achieved a consistent performance gain in both open-vocabulary and weakly
supervised segmentation tasks on top of current state-of-the-art methods leveraging complemen-
tary knowledge sources from other post-refinement methods. The promising potential sheds
light on using generative models to solve discriminative tasks without training.

2 RELATED WORK

Diffusion Model-based Segmentation. Diffusion Models (DMs), while demonstrating powerful
image generation capabilities, have also exhibited emergent perception in object segmentation. A
line of segment-after-synthesize works intuitively turns to Stable Diffusion (SD) (Rombach et al.,
2022), representing the most powerful DM, to first synthesize extra high-quality pixel-level training
datasets, which are then used to enhance the segmentor’s performance (Li et al., 2023b; Nguyen
et al., 2024; Ma et al., 2023a; Wu et al., 2023). Specifically, these two-stage methods either focus on
exploiting the cross-attention map from SD for generating the first-stage mask or directly use the
fused visual features from SD to train the second-stage segmentation module. Differentiating from
such a two-stage pipeline, some methods shed light on directly transferring DMs into a discriminative
segmentation model by generating the pixel-level output conditioned on the input image (Amit et al.,
2021; Xu et al., 2023a; Burgert et al., 2022). For instance, ODISE (Xu et al., 2023a) proposed to
train an SD-based segmentation framework by aligning the generated visual mask output with the
corresponding caption and category labels. Contrary to these training-based frameworks, a stream
of works Tang et al. (2022); Karazija et al. (2023); Barsellotti et al. (2024a;b); Marcos-Manchón
et al. (2024); Yoshihashi et al. (2023), liberating from the costly pixel-level training process, has been
dedicated to treating SD as an explicit training-free segmentor by directly mining its inner dense visual
representation. OVDiff (Karazija et al., 2023) and FreeDA (Barsellotti et al., 2024b) tend to adopt the
SD-based visual feature to generate the visual semantic prototype, serving as the nearest neighbor
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Related work On-top-of Training-free GC w/o DA CAI

VPD (Zhao et al., 2023) % % % % "

ODISE (Xu et al., 2023a) % % % % %

OVDiff (Karazija et al., 2023) % " % % %

DiffSegmentor (Wang et al., 2023b) % " % " "

Freeda (Barsellotti et al., 2024c) % " % % "

DatasetDiffusion (Nguyen et al., 2024) " " % " "

UniGS (Qi et al., 2024) % % " " %

G4Seg (Ours) " " " " "

Table 1: Comparison of related work across different criteria. ‘GC’ means Generative Content. ‘DA’
means Discriminative Assistance. ‘CAI’ means Cross Attention Initialization.

guiding the object segmentation in a zero-shot manner. DAAM (Tang et al., 2022), OVAM (Marcos-
Manchón et al., 2024), Attn2mask (Yoshihashi et al., 2023), and DiffSegmenter (Wang et al., 2023b)
explore and consolidate the usage of cross-attention across blocks, timestamps, and attention heads
into a single attention map, which serves as a promising initial segmentation map. There is also one
line of works unifying the generation and segmentation in one framework (Qi et al., 2024), which is
trained end-to-end proposed for various segmentation and generation tasks.

Furthermore, we provide Table 1 to compare G4Seg and former methods in multiple aspects compre-
hensively, and more analysis can be found in Appendix K.

Discriminative Models for Inexact Segmentation. To liberate humans from exhaustive pixel-level
annotation, recent years have witnessed extraordinary progress in Inexact Segmentation (IS), which
aims to achieve a segmentation network equipped with coarse-grained labels. In this paper, we
mainly discuss two derivative streams, i.e., Weakly-supervised Semantic Segmentation (WSSS) (Ahn
& Kwak, 2018; Ahn et al., 2019; Zhang et al., 2021; Wang et al., 2020b; Zhu et al., 2023), and
Text-Supervised Semantic Segmentation (TSSS) (Xu et al., 2022a; Zhang et al., 2023; Cha et al.,
2022; Shin et al., 2022). WSSS regulates a segmenter trained with merely image-level labels.
Most methods addressing WSSS focus on refining the seed areas generated by Class Activation
Mapping (CAM) (Zhou et al., 2016), which merely captures the highly discriminative object regions.
These methods, starting from early pooling-based mechanism modifications (Kwak et al., 2017) and
regularized data augmentation enhancements (Zhang et al., 2021; Wang et al., 2020b), have gradually
shifted to inter-pixel or semantic relation mining (Ahn et al., 2019; Xu et al., 2022b; Zhu et al., 2023).

TSSS aims to develop a segmentation model, trained with merely image-text pairs, that is able to
segment arbitrary objects beyond predefined classes. This ability is also known as open-vocabulary
segmentation. Most discriminative-model-based works addressing this can be categorized into
two groups based on whether CLIP (Radford et al., 2021) is adopted for mask generation. The
first category concentrates on extracting coarse localization features from CLIP through either the
image-text cross-attention map (Shin et al., 2022; Cha et al., 2022; Zhou et al., 2022a) or the
CAM (Zhou et al., 2016)-based attention map Lin et al. (2023), which are subsequently refined to
achieve fine-grained segmentation performance. The second category, different from those CLIP-
based training-free methods, focuses on enhancing plain Vision Transformers (ViT) (Dosovitskiy
et al., 2020) by injecting grouping and clustering recognition from massive image-text training pairs,
leading to a foundational segmentation model (Xu et al., 2022a; Ren et al., 2023; Luo et al., 2022;
Zhang et al., 2023).

Segmentation Post-Refinement The segmentation post-refinement enhances the quality and pre-
cision of initial segmentation outputs by leveraging additional priors to address inaccuracies and
improve overall performance. Dense CRF (Krähenbühl & Koltun, 2011) refines segmentation results
by applying a fully connected Conditional Random Field (CRF) to the predicted probability map,
leveraging pixel similarity and spatial relationships from the image. CascadePSP (Cheng et al., 2020)
refines local boundaries with a novel refinement module, achieving pixel-accurate, class-agnostic
segmentation across resolutions. SegRefiner (Wang et al., 2023c) enhances object masks using a
discrete diffusion-based refinement approach. In comparison, our approach exploits image generation
discrepancies empowered by a pretrained diffusion model to refine existing segmentation masks.

Visual Correspondence. Visual correspondence typically describes the matching relationship
between specific points or features across different images that represent the same semantic, geometric,
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or temporal meaning. Establishing semantic correspondence between different images can be crucially
beneficial to various vision tasks, such as object segmentation (Liu et al., 2021; Zhang et al., 2020;
Rubio et al., 2012; Xu et al., 2023c; Lan et al., 2021; Liu et al., 2023) and object recognition (Berg
et al., 2005; Hao et al., 2013; Peng et al., 2017; Tang et al., 2020). For instance, Lan et al. (2021)
utilized the semantic and geometric correspondence between images of the same region-of-interest
features as consistency regularization for mask generation. Traditional correspondences have been
modeled by hand-crafted features such as SIFT (Lowe, 2004) and SURF (Bay et al., 2006). With the
rapid advances in deep neural architectures, a stream of works has intuitively developed a supervised
training paradigm to find the correspondence (Lee et al., 2021; Zhao et al., 2021; Kim et al., 2017;
Xiao et al., 2022). Nevertheless, these fully-supervised methods require massive correspondence
annotations in the training datasets, limiting the model’s scalability for practical applications. To
address this issue, some works turn to correspondence models with only pose supervision (Wang
et al., 2020a) or self-supervision (Wang et al., 2019; Jabri et al., 2020; Caron et al., 2021; Tumanyan
et al., 2022). This work exploits DM-based semantic correspondence to improve the segmenter’s
performance explicitly.

3 METHOD

3.1 PROBLEM FORMULATION

Suppose we have an image I together with its coarse mask Sc. It is worth noting that obtaining
an inexact coarse segmentation mask Sc is simple and low-cost, achievable through methods like
cross-attention extraction (Wang et al., 2023b) or by utilizing models such as CLIP (Lin et al., 2023).
Towards our goal, we expect to use a pretrained diffusion model M to first obtain a generated
image Ig =M(In; T ,Sc), where In is the reversed embedding of I in the noise space and T is
the text prompt. Then, by carefully comparing I and Ig, we will get a mask with better quality
Sr = Φ(Ig, I,Sc) using the algorithm Φ.

3.2 PRELIMINARY

The visual diffusion model works by progressively adding noise to the image in the forward process
and then using a deep network to recover the initial image from the pure noise in the backward
process. In the forward process, the clean image x0 is added with Gaussian noise scaled by a specific
timestep t: 0 ≤ t ≤ T , obtaining a noisy sample xt =

√
αtx0 +

√
1− αtϵ, where αt and βt are the

pre-defined noise schedules, αt =
∏t

s=1(1− βs) and ϵ ∼ N (0, I). Then a deep learning network
ϵθ(xt, t) is trained to predict the noise ϵ from xt:

Et∼U(0,T ),ϵ∼N (0,I)[||ϵ− ϵθ(xt, t, y)||22, (1)

where y is the condition. With a pre-trained diffusion model, a clean image can be generated from
Gaussian noise p(xT ) ∼ N (0, I) step by step by xt−1 = 1√

1−βt
(xt − βt√

1−αt
ϵθ(xt, t, y)) + σtz,

where z ∼ N (0, I). This can be divided into two substeps. The first is to predict the original image
x0 (termed as x̃0 to distinguish from x0) using the current xt and the model prediction ϵθ(xt, t, y):

x̃0 = fθ(xt, t; y) =
xt −

√
1− αtϵθ(xt, t, y)√

αt
. (2)

Then, xt−1 can be calculated as xt−1 =
√
αt−1x̃0 +

√
1− αt−1 − σ2

t ϵθ(xt, t, y) + σtz.

3.3 G4SEG: A MORE EFFICIENT GENERATIVE METHOD FOR INEXACT SEGMENTATION

In Section 3.1, we generate images conditioned on the coarse mask Sc. Normally, we can follow the
method of full generation with null text inversion in (Mokady et al., 2023) to achieve near-perfect
reconstruction for I. To improve inference efficiency, we simplify the calculation of inverting In
into a noise addition and denoising operation. For example, given a specific image x0, we first select
a candidate timestep ts and calculate the noisy sample xts . Then, we shorten the whole generation
process with only one step inference, using Eq. (2) to directly get the prediction x̃0. As for the
generation process intervened by the coarse prior Sc, we first transform the coarse mask Sc into two
masks respectively injected into the cross attention and self-attention of diffusion backbone, which
is detailed in Section 3.3.1. Then, x̃0 can be calculated under such a mask injection. Finally, the
coarse mask is refined by employing the semantic correspondence alignment between x0 and x̃0 in
Section 3.3.2. In the following, we concretely discuss the two critical components of our method.
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Figure 2: The overall framework of our proposed G4Seg. First, the noisy sample conditioned on
the injected coarse mask is fed into the diffusion model to obtain the denoised image. Then, the
foreground probability of each pixel is estimated with paired pixels in the semantic correspondence
alignment. Finally, the updated segmentation mask is calculated from the pixel foreground probability.

3.3.1 EXPLICIT MASK INJECTION

In Stable Diffusion, the textual prompt T is first tokenized and fed into the CLIP text encoder,
forming a textual embedding. The denoising U-Net then utilizes cross-attention mechanisms with
the embedding to leverage textual information for conditioning. At the same time, self-attention is
employed to model the relationships between pixels, which can be leveraged for better generation. In
this study, we utilize the aforementioned features of cross-attention and self-attention in our diffusion
model to inject our prior coarse segmentation mask into the inference process.

Specifically, in the attention layers of diffusion models, the intermediate image feature is first mapped
as a query and updated via calculating the attention maps A ∈ Rq×k with A = softmax

(
QK⊤
√
d

)
,

where q and k are the lengths of the query Q and the key K, which are derived from the context.
The context could either be a text embedding or the image feature itself, noted as cross-attention
and self-attention, respectively. We incorporate the coarse mask as a representation of the ideal
correlations between pixels and textual embeddings, integrating it into the generation process of our
diffusion model, following the spirit of DenseDiffusion (Kim et al., 2023).

For clarity, we flatten the 2D image mask into a 1D signal, facilitating alignment with the 1D textual
signal. We assign a superscript to such signals for representation, e.g., S1D

c denotes the coarse mask
that is flattened into 1D. For a coarse mask provided for the category c with the name Tc, we prepare
the prompt T as “A photo of Tc” and map it to a textual embedding as the key feature. Suppose
the index set of Tc in the textual embedding is α(Tc)

1. The injection mask for cross attention
Across ∈ Rq×k is designed as:

Across(i, j;Sc) =

{
1 if j ∈ α(Tc) and Sc[i] = 1

0 otherwise
. (3)

Across(i, j;Sc) represents the relation between two types of signals, image, and text, which is set to 1
once the textual embedding and the foreground image token is matched, otherwise 0. Similarly, we
can define the injection mask for self-attention Aself ∈ Rq×q . However, as the self-attention performs
between image tokens, we can compute the mask on the internal Sc, which is formulated as follows

Aself(i, j;Sc) =

{
1 if Sc[i] = Sc[j] = 1

0 otherwise
. (4)

Given two injection masks Aself and Across, we can respectively intervene in the computation of the
cross attention and the self-attention in image generation with the pretrained diffusion model

A′
cross = softmax(

QK⊤ + αAcross√
d

), A′
self = softmax(

QK⊤ + αAself√
d

), (5)

1The index of the class name is represented as a set, as a single long word may correspond to multiple token
embeddings, or the class name may consist of two or more words.
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where the α is the injection weight. By incorporating the intervention of the coarse mask Sc by Eq. 3,
Eq. 4 and Eq. 5, the image generation result x̃0 is affected. In the next section, we will illustrate how
to employ the gap between the reconstructed image x̃0 and the original image x0.

3.3.2 SEMANTIC CORRESPONDENCE ALIGNMENT

With explicit mask injection, we have obtained a model that can generate images conditioned on the
coarse mask. In other words, without loss of generality, we have a generative model p(x|S), where S
is a given mask and x is the target image. However, in a segmentation task, we actually want to find
maxS p(S|x) given an image x. Intrinsically, they can be connected by using Bayes’ Law as below

max
S

p(S|x) = max
S

p(x|S)p(S)
p(x)

⇔ max
S

p(x|S), (6)

since p(x) and p(S) should be constant for a specific x. Here, the segmentation task can be treated as
a conditional generation problem, which fits our intuition that with more accurate mask condition, the
probability of generating x is more likely to be maximized. Following this spirit, we assume that p(x|S)
follows a distribution that is inversely related to d(x, x̃(S)), namely p(x|S) ∝ −d(x, x̃(S)), where
x(S) denotes the corresponding generation conditioned on the mask S, and d represents an image-
wise distance measure. Consequently, the problem reduces to minS d(x, x̃(S)). In this study, we
realize the image-level distance measure by means of the pixel-level Hausdorff distance (Huttenlocher
et al., 1993), denoted as dHaus(·, ·), which provides us the inspiration of transforming the optimization
into a semantic correspondence alignment based on image discrepancy, formulated as below.

max
S

p(x|S) reduce−−−→ min
S

dHaus(x, x̃(S)) : S[j]← S[j] + γ
∂D(x[δj ], x̃(S)[j])

∂S[j]
, (7)

where x̃(S)[j] denotes the jth pixel in the generated image x̃(S) and δj denotes the index of the
corresponding pixel in the original image x that requires to be searched. D is a pixel metric based
on the semantic gap between two pixels. The detailed deduction can be found in Appendix C. For a
specific category as foreground, if we treat S[j] as the foreground probability, we can interestingly
observe that S[j] is updated based on the discrepancy (D in the Equation, which denotes as a semantic
gap) between the probability of the pixel in the original and generated images.

Despite the potential insight inherent in Eq. 7, it is intractable due to the discrete operation im-
plemented on the coarse mask S in Eq. 3 and Eq. 4. However, we can follow its spirit to build a
semantic correspondence alignment to achieve a similar goal. That is: 1) we first find the optimal
pixel alignment δj as in Eq. 7; 2) and then we use a simple linear mixing between paired pixels in the
generated and initial images to approximate the segmentation (foreground) mask updating direction.
For the first step, we use a predefined feature extractor F (·) to embed the generated and original
images are into the feature space, denoted as F (x̃(S)) and F (x). For the jth pixel in the generated
image, the corresponding point δj can be searched via:

δj = argmin
j′
D(F (x)[j′], F (x̃(S))[j]), (8)

where D(·, ·) denotes the cosine similarity metric defined in the feature space for semantic correspon-
dence alignment. For a specific pixel, we obtain the pixel-wise feature from the image feature and
then search for the pixel in the original image that has the smallest distance. Then, for the second
step, we can estimate the foreground probability S⋆ at position j as follows,

S⋆[j] = βS[j] + (1− β)S[δj ], (9)

where β is the mixing coefficient. Finally, with the refined foreground probability S⋆[·] of each pixel,
we obtain the refined segmentation mask.

Intuitively, the linear mixing of paired pixels could adaptively refine the pixels in the wrongly
segmented area. For instance, if the foreground area is wrongly segmented as background (under-
segmented, often near the edge), under the condition of a mask that does not fully cover the foreground,
the entire foreground object tends to shrink inward after the generation. The pixel in this under-
segmented area can be paired with a shrunken foreground area in the generated image, which is in
the interior of the object with higher foreground probability. Then after probability mixing, the pixel
is more likely to be classified as foreground. The analysis remains similar to the over-segmented area.
More analysis and examples can be found in Appendix. F.
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4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets and Evaluation Metric. Following Lin et al. (2023); Xu et al. (2022a); Zhang et al. (2023),
we evaluate G4Seg on three benchmarks, i.e., PASCAL VOC12 (20 foreground classes) Everingham
et al. (2015), PASCAL Context (59 foreground classes) Mottaghi et al. (2014), and MS COCO
Object 2014 datasets Lin et al. (2014) (80 foreground classes). All of these datasets contain 1 extra
background class. During the inference, only the image-level (class) label is used to generate the
mask. The mean Intersection-over-Union (mIoU) is adopted as the evaluation metric (%).

Inference Settings Our model is fully based on Stable Diffusion 2-1Rombach et al. (2022), which is
trained on LAION Schuhmann et al. (2022). In our experiment, all images are resized to (512, 512).
All experiments are merely conducted on 1 RTX 3090 GPU equipped with 24 GB of memory without
any extra training. Our method, working in an on-top-of manner, follows a refine-after-generate
paradigm: generating the masks from the selected mask-free baseline first and then refining them
via our proposed method without additional training. For the mask generation process, we strictly
follow the settings in the selected baselines. For explicit mask injection, our parameter follows the
DenseDiffusion Kim et al. (2023) and the added noise step is 400. For the semantic correspondence
alignment, the feature extractor we adopt is a CLIP image encoder to better distinguish between
generated and initial image. The pixel correspondence mixing coefficient β is set to 0.8 for open-
vocabulary segmentation and 0.9 for weakly-supervised semantic segmentation. For each specific
class, We treat all other segments as background and update the current segment logit independently.
Then the final segmentation is refined with updated logit after normalization. As the framework is
dedicated to a mask refining task, we only select the confusion areas in the coarse mask Sc, providing
the upper and lower bounds of the foreground probability. The confusion area is selected as where the
foreground probability value is within the range of [0.2, 0.6] of the maximum foreground probability
value for the current class, and the distance to the edge does not exceed 40 pixels.

4.2 INEXACT SEGMENTATION PERFORMANCE

Table 2: Comparison with TSSS methods.

Methods VOC12 Context COCO

Training-based
ViL-Seg (Liu et al., 2022) 34.4 16.3 16.4
TCL (Cha et al., 2022) 51.2 24.3 30.4
GroupViT (Xu et al., 2022a) 52.3 22.4 20.9
ViewCo (Ren et al., 2023) 52.4 23.0 23.5
SegCLIP (Luo et al., 2022) 52.6 24.7 26.5
PGSeg (Zhang et al., 2023) 53.2 23.8 28.7
OVSegmentor (Xu et al., 2023b) 53.8 20.4 25.1
G4Seg+GroupViT 53.4+1.1 23.9+1.5 22.1+1.2

Training-free
ReCo (Shin et al., 2022) 25.1 19.9 15.7
MaskCLIP (Zhou et al., 2022a) 38.8 23.6 20.1
SCLIP (Wang et al., 2023a) 59.1 30.4 30.5
DiffSegmenter (Wang et al., 2023b) 60.1 27.5 37.9
G4Seg+SCLIP 59.8+0.7 31.3+0.9 30.9+0.4
G4Seg+DiffSegmenter 60.6+0.5 28.1+0.6 38.5+0.6

Performance on TSSS. Here we first
evaluate the performance of our method
in TSSS. Table 2 lists the mIoU of 11
state-of-the-art (SOTA) methods on the
validation of PASCAL VOC12, PAS-
CAl Context, and COCO Object. No-
tably, these methods are categorized
into two splits, i.e., training-based and
training-free, and we implement our on-
top-of method based on 3 methods (1
training-based + 2 training-free).

Note that our method does not involve
any training process. As shown in
this table, it is clear that our method,
regardless of the training paradigm,
could achieve an overall improvement
compared to all the adopted base-
line methods, with an average ela-
tion of 0.77%, 1.00%, and 0.73% across these three benchmarks. Additionally, with such
prominent improvement, our method yields new SOTA performance against all methods
in TSSS. Figure 3 shows some illustrative samples for a visualized comparison, validat-
ing the effectiveness and superiority of our method in open-domain segmentation refinement.
Performance on WSSS. Here we compare our methods with a line of works in WSSS. As downstream
training is required, WSSS evaluates the model’s ability to segment task-specific objects. In this way,
to evaluate the effectiveness of our method in task-specific learning, Table 3 reports the performance
of our method in comparison with 8 prevailing WSSS frameworks. Here we would like to emphasize
that two post-processing refining mechanisms are commonly utilized in WSSS, i.e., RW (Ahn et al.,
2019) and dCRF (Chen et al., 2017), which helps refine the coarse Seed into the fine-grained Mask.
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Image SCLIP +G4Seg +G4SegCLIP-ES GT

Figure 3: Qualitative results on PASCAL VOC12. Compared with the baseline, G4Seg could further
segment the object in a more complete and delicate way.

As shown in Table 3, our method based on two WSSS frameworks achieves an overall consistent
improvement compared to the adopted baselines, leading to an average accuracy increase of 2.0%
(1.2%) on Seed (Mask). We observed the average improvement brought by G4Seg on samples
with varying initial mask quality: for samples with an initial IoU below 40, G4Seg achieved an
improvement of 0.2; for those with an initial IoU between 40 and 80, it provided a significant boost
of 1.9; for samples with an initial IoU between 80 and 100, it enhanced performance by 1.1.

Table 3: Comparison with WSSS methods on VOC12
train. The mask is generated from Seed refined with Post-
processing (Post.) approaches. * denotes that Zhu et al.
(2023) adopts a designed self-training strategy. All these
methods merely adopt the image-level labels during the in-
ference.

Methods Post. Seed Mask

CAM Ahn & Kwak (2018) dCRF 48.0 52.4
IRN Ahn et al. (2019) RW+dCRF 48.5 63.5
SEAM Wang et al. (2020b) RW+dCRF 55.4 63.6
MCTformer Xu et al. (2022b) RW+dCRF 61.7 69.1
ViT-PCM Rossetti et al. (2022) dCRF 67.7 71.4
ToCo Ru et al. (2023) - 73.6 73.6
WeakTr Zhu et al. (2023) Self-Training* 66.2 76.5
CLIP-ES Lin et al. (2023) dCRF 70.8 74.9

G4Seg+CAM dCRF 50.8+2.8 54.2+1.8
G4Seg+CLIP-ES dCRF 72.0+1.2 75.4+0.5

These experimental results further val-
idate the versatility of our method
in domain-specific segmentation. In
this way, our approach with CLIP-ES
yields a new SOTA performance in
WSSS, further demonstrating the ex-
cellence of our training-free method
in zero-shot IS. Figure 3 showcases
some illustrative samples that are pro-
duced from the adopted baseline and
our methods. It is observed that our
method could process fine-grained
segmentation by refining the object
boundary. More results are provided
in Appendix O.

4.3 ABLATION STUDIES

In this Section, unless specifically
specified, we use the Seed of G4Seg with CLIP-ES to implement all ablation studies on PASCAL
VOC12 in detail, which mainly contains the effectiveness of the modules in G4Seg, the influence of
time step, and some illustrative visualized results.

Table 4: Ablation studies on the modules in G4Seg.

Baseline EMI SCA CF-[0.2,0.6] CF-[0.1,0.7] mIoU (%)

" 70.8
" " 71.3+0.5

" " " 71.7+0.9

" " " " 72.0+1.2

" " " " 71.6+0.8

Effectiveness of Individual Mod-
ule. Table 4 presents the effectiveness
of each individual module in G4Seg.
As shown in this table, adding EMI
could explicitly bring a certain ela-
tion (+0.5%) compared with the base-
line, indicating the benefits of mask
injection during the denoising stage.
Additionally, further improvements
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GT t=100 t=300 t=500 t=900

Figure 4: Visualized analysis of G4Seg under different denoising timesteps.

achieved through SCA (+0.9%) demonstrate that establishing a correspondence between the mask-
injected image and the original image can emphasize the importance of key matching points for
fine-grained segmentation. We also propose the CF strategy to further improve the performance of
SCA by matching and modifying the most uncertain points. Consequently, it is observed a proper
setting of the filtering range could yield the boosting of G4Seg (+1.2%), achieving a final 72.0%
performance together with all modules.

100 200 300 400 500 600 700
Timestep

70.50

70.75

71.00

71.25

71.50

71.75

72.00

72.25

72.50

m
Io

U

Mask quality under different denoising timesteps

G4Seg
baseline

Figure 5: The mask quality under different
noise scale with correspondent timestep.

Different Timesteps. G4Seg adopts the fixed
noising-denoising step for the generated image. To
investigate the impact of the denoising timestep, we
conduct our method by setting different timesteps ob-
tained from {100, 200, 300, 400, 500}. As shown in
Figure 5, it can be observed that our method is overall
robust to the timestep due to a merely small perfor-
mance fluctuation. The best performance is achieved
at step 400, and then the larger/smaller timestep could
yield a performance decrease. Figure 4 shows one
illustrative sample generated with different timesteps.
Clearly, a timestep that is too small, representing a
minor perturbation to the original image, would rea-
sonably yield insufficient knowledge injection. Con-
versely, a timestep that is too large results in a sub-
stantial visual discrepancy between the generated and
original images, leading to invalid correspondence
matching.

Table 5: The influence of Null-text Inversion (NtI). The unit of
speed is second(s) for processing one sample.

Method G4Seg+GroupViT / + NtI G4Seg+CLIP-ES / + NtI

mIoU 54.0 / 54.2 72.0 / 72.1
Speed(s) +1.2/5.5 +1.1/5.2

Involvement of Null-text Inver-
sion. G4Seg utilizes the differ-
ence between the generated and
original image to help refine the
mask. Due to the single-step
noising-denoising process, it is
hard to flawlessly reconstruct the
original image. Intuitively, here we explore whether better reconstruction could bring more ex-
plicit improvement. To this end, we introduce Null-text Inversion (NtI) for our method, achieving
near-perfect reconstruction by finding the corresponding initial noise during the inversion. Table 5
reports the performance and the inference speed comparison between our method and NtI-involved
paradigm. Interestingly, the involvement of NtI simply showcases the marginal improvement as
expected. Figure 6 presents some visualized samples. Despite better image reconstruction, there is a
low discrepancy in the segmentation performance between NtI-free and -based methods.

Computational Analysis. Our method is training-free; it directly uses a pre-trained diffusion model,
thus saving a significant amount of resources that would otherwise be consumed during training.
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Unlike the generative process of diffusion, which requires multiple forward passes, our method only
requires a single forward pass for a specific segment. But there are still some limitations if there are
segments in a single image, the model should forward multiple times. However, with the development
of the composed diffusion process Wu et al. (2024) where multiple object priors can be injected
in a single forward pass, the computational cost of our method will be significantly reduced. The
correspondence calculation is performed on a much more compact space with lower dimensions and
other restrictions declared in Section. 4.1, resulting in a significant saving in computational cost.

Comparison with other mask refinement methods In this section, we compare with three other
mask refinement methods: CascadePSP (Cheng et al., 2020), SegRefiner (Wang et al., 2023c), and
Dense CRF (Perez & Wang, 2017). CascadePSP and SegRefiner focus on improving segmentation
and require pixel-wise annotations for training. As for semantic segmentation, these methods
may focus more on improving segmentation around the boundary. Dense CRF is a widely used
traditional method that leverages priors constructed from the image itself to refine the coarse mask.

Table 6: Comparison with other mask refinement methods

Methods VOC Context

SCLIP 59.1 30.4
+G4Seg 59.8(+0.7) 31.3(+0.9)

+SegRefiner (Wang et al., 2023c) 59.3(+0.2) 30.7(+0.3)
+CascadePSP (Cheng et al., 2020) 59.5(+0.4) 30.9(+0.5)

+ CRF (Krähenbühl & Koltun, 2011) 60.9(+1.8) 31.2(+0.8)
+G4Seg + CascadePSP 60.1(+1.0) 31.6(+1.2)
+G4Seg+Dense CRF 62.1(+3.0) 32.0(+1.6)

According to the Table 6, we
make the following comments:

Although CascadePSP and
SegRefiner use many pixel-
level labels for training, the
performance improvement in
in-exact semantic segmenta-
tion is still quite limited.
DenseCRF, as a method that
refines coarse predictions by
leveraging the information of
image formation, improves the
initial segmentation with a significant margin when the number of classes is limited. However, as the
number of classes increases, the improvements achieved by DenseCRF become less significant. The
improvements of our method are roughly comparable to those of the DenseCRF on Context dataset.
Since the source of segmentation knowledge in our method differs from that of other approaches
(CascadePSP relies on annotations, and DenseCRF leverages image-based priors), G4Seg can be
further combined with these methods to achieve additional improvements.

Table 7: The segmentation results with other inexact
forms of weak labels with boxes, points and scribbles.

IS form Point Box Scribble

SPML (Ke et al., 2021) 72.7 75.3 72.5
SPML+G4Seg +1.5 +1.1 +1.6

General Applications on other forms of
Inexact Segmentation. We further inves-
tigated the impact of G4Seg on improving
IS under weak label forms such as box and
scribble, where the complete coarse mask
is firstly obtained with these labels, the re-
sults are shown in Table 7. The experi-
ments have demonstrated that our method provides consistent improvements across various forms of
inexact segmentation under weakly supervised labels.

5 CONCLUSION

This paper explored an intuitive yet feasible training-free solution based on Stable Diffusion (SD),
a representative large-scale text-to-image diffusion model, to tackle the challenging vision task of
Inexact Segmentation (IS), which aims at achieving segmentation using merely texts or image-level
labels as minimalist supervision. Most SD-based trials, following the discriminative-model-exploited
pipelines, fall into the pure exploitation of the visual dense representations inherently arising from
the inner attention mechanism. In contrast, this paper emphasized the underlying generation prior in
SD, i.e., the pattern discrepancy between the original and mask-conditioning reconstructed images, to
encourage a coarse-to-fine segmentation refinement by progressively aligning the generated-original
representations. Furthermore, we proposed establishing the pixel-level semantic correspondence
between the generated-original patterns, yielding a delicate correction towards flawless segmentation
for the matched point. Through quantitative and qualitative experiments, we have demonstrated
the effectiveness and superiority of this plug-and-play design. Our results highlight the potential of
utilizing generation discrepancies to model dense representations in diffusion models. We hope this
work inspires further exploration of diffusion models in discriminative tasks.
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ETHICS STATEMENT

Note that our method uses the diffusion model to generate the image data, which may raise eth-
ical and moral concerns. Specifically, these generated data could defame individuals and spread
misinformation, posing serious threats to personal reputations and societal trust. Besides, there is
the risk of generating inappropriate or harmful content, which can have psychological and social
repercussions. The online-collected benchmark used in our paper contains a wide range of objects,
and the generated artificial images based on these benchmarks may have a biased understanding for
humans and deep networks to learn the visual patterns. Furthermore, our method aims to generate a
dense representation from simply human-annotated text supervision, which may also lead to biased
orientation if the annotation lacks certain regulations.

REPRODUCIBILITY STATEMENT

In order to ensure the reproducibility of our work, we will provide access to the full implementation
of our methods, including all necessary code and scripts, upon acceptance. An anonymous link to our
code repository will be shared during the discussion phase of the review process. This repository will
contain detailed instructions for reproducing the experiments, including dataset preparation, model
training, and evaluation procedures. Additionally, the exact configurations (e.g., hyperparameters)
are illustrated in Section. 4.1 used to generate the reported results to facilitate easy replication.
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A LIMITATIONS AND FUTURE WORK

Though promising performance is achieved by our method, such a DM-based method inevitably
meets the comparably slow-mask-inference issue due to the sampling denoising process. Besides,
since SD is simply trained on natural images, our training-free method may not be applicable in
some non-natural image domains, such as medical and agricultural imaging. Finally, due to resource
limitations, we do not implement the latest SD version (SD-XL, SD3, Flux), and additional tuning on
our method is also not achieved, both of which shall lead to better segmentation performance.

B TIME AND MEMORY EFFICIENCY

Our G4Seg could be implemented on simply 1 RTX 3090 GPU, generating 1 mask at a time and
occupying 15GB. Since our method simply requires a direct single-step noising-denoising process to
the original image, G4Seg could finish the inference of all 1449 images in VOC12 validation images
within 1.5 hours (3 seconds per image), leading to a reasonable level of computational efficiency.
Note that adopting multiple GPUs or multiprocessing could further speed up the inference process.
In fact, we implement our G4Seg with 4 3090 GPUs. In this way, the inference time is reduced to
about 18 minutes.

C A HAUSDORFF DISTANCE VIEW OF CORRESPONDENCE ALIGNMENT

Here we illustrate our method in a more theoretical view. Suppose we have a mask S conditioned
generation model, which could estimate p(x|S).Then, we want to inverse this process with p(S|x)
which denotes that given a x the S distribution should be estimated. So in a segmentation task, we
want to estimate:

max
S

p(S|x), (10)

where x denotes specific samples. Owing to the law of condition probability:

p(S|x) = p(x|S)p(S)
p(x)

.

For the given x and suppose all the segmentation masks share the same probability, we omit the p(x)
and p(S) terms. Then the final result is equivalent as the:

max
S

p(x|S) with specific x. (11)

where indicates our institution, with accurate mask condition, the probability of generating x is
maximized. This is truly our basic stone.

Here we make further assumption, owing to the Gaussian essence of diffusion generation, the p(x|S)
could be estimated by:

p(x|S) ∝ exp(−d(x, x̃(S))2), (12)
where the x̃(S) denotes the generating x̃ based on S. Then the problem is equivalent to
minS d(x, x̃(S)). The problem becomes, finding a more appropriate mask, then minimum the
gap between the mask-conditioned generation and initial image.

Then we based on this update the S with stochastic gradient descent:

S = S + γ
∂d(x, x̃(S))

∂S
, (13)

where γ denotes the step size. Then we consider a Hausdorff distance between two images (A,B)
with pixel-wise (a, b) distance:

H(A,B) = sup
a∈A

inf
b∈B

D(a, b), (14)

where D denotes the pixel-wise distance to distinguish from the image-wise distance d. Here we
consider the initial image and conditioned generated image,

H(x̃(S), x) = sup
x̃(S)j∈x̃(S)

inf
x[i]∈x

D(x[i], x̃(S)[j]), (15)

where the [i, j] indicates the i’th and j’th pixel of the initial and generated image. If we carefully look
at the infx[i]∈x D(x[i], x̃(S)[j]), the term indicates the correspondence pixel among all x[i]s in x

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Input
Image

w/o  NtI 
Generated

w/  NtI
Generated

Semantic
Output

Semantic
Output

Figure 6: Visualized comparison between G4Seg w/ NtI and w/o NtI.

with minimum distance towards x̃(S)[j]. Here we consider an equivalent formation substituting
superb with summation.

H ′(x̃(S), x) =
∑

x̃(S)[j]∈x̃(S)

D(x[δj ], x̃(S)[j]), (16)

where xδj denotes the correspondence point with x̃(S)[j]. With specific j’th pixel x̃(S)[j], we
substitute Eq. 16 into Eq. 13, then we obtaining:

S[j]← S[j] + γ
∂D(x[δj ], x̃(S)[j])

∂S[j]
, (17)

where this could be treated as mask optimization and updating process.

D VISUALIZATION FOR G4SEG AND NULL TEXT INVERSION

The results could be found in Figure. 6.

E CORRESPONDENCE ANALYSIS.

Input Image Generated Image

Figure 7: Visualization analysis on SCA.
SCA is able to correct the wrongly seg-
mented pixels based on the generated-
original image discrepancy.

Our proposed SCA explicitly refines the mask by build-
ing the feature-level semantic correspondence. Figure 7
presents the visualized correspondence matching map.
SCA builds a one-to-one mapping between the original
(stars) and mask-injected generated images (circles). The
matched pixel from the generated image (marked by the
small circles) reflects the same semantic content as the
original image (marked by the stars). However, with the
coarse mask injection, the generated image shall have
wrongly-recognized regions for the query object. Specif-
ically, there is a generated semantic of “train” for the
railroad in the generated image, which is the result of
the over-segmented coarse mask (marked by the green
box). With the help of correspondence alignment, the
mis-segmented pixel is corrected to embrace the appropri-
ate object regions, relieving the over-segmented regions.
In this way, we observe that the incorporation of corre-
spondence helps improve the boundary regions. Such
fine-grained refinement further validates the effectiveness
of G4Seg, demonstrating the rationality of adopting gen-
eration discrepancy in segmentation which is consistent
with the discussion in Section 3.3.2.
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F ADAPTIVE ADJUSTMENT
FOR OVER/UNDER-SEGMENTED AREA

Different types of errors can introduce various impacts on the generated results. We make a more
detailed discussion on the Figure 8. We divided these errors into two categories and discussed the
points in each area:

F.1 OVER-SEGMENTED

Definition: segmenting some background as foreground.

Phenomenon: The generated area tends to expand, incorporating the semantic of the object into
areas that were originally background, as shown in the first row of Figure 9.

Segmentation refining: The corresponding point moves to the exterior with a lower probability.
Then the mixing in Eq. 9 would lead to a lower foreground probability, the point is more likely to be
recognized as background correctly.

F.2 UNDER-SEGMENTED

Definition: segmenting some foreground as background.

Phenomenon: The generated object tends to shrink, converting areas originally belonging to the
object into the background, as shown in the second row of Figure 9.

Segmentation refining: The corresponding point moves to the interior of the object with increasing
foreground probability. Then after the points probability mixing, the point is more likely classified as
foreground correctly.

Generated

x

Object

Over Segment

ObjectObject

Under Segment

ObjectGeneratedx

Object 

Background 

Segmentation
Edge

Point
Correspondence

x Source/Target
Point

Figure 8: the linear mixing of foreground probability of paired pixels could adaptively adjust the
over-/under segmented area.

In summary, our method generates corresponding defective images based on the flaws in the existing
segmented mask. The mixed probability is then adaptively adjusted according to different scenarios.
A visualization result can be found in Figure 9.

G MASK INJECTION BOTTLENECK

In Sect. 3.3.1, we introduced a mask conditioning method, which is based on cross-attention and
self-attention. These attention-based generation methods do not perform well in a mask-conditioned
generation. If we adopt a stronger mask conditioning method, such as ControlNet, the performance
would significantly improve, as shown in the following Table:
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Initial Image Generated Image Coarse Mask Refined Mask

Figure 9: Visualization of correspondence and segmentation refining. Random 15 points are selected
for visualization. In the ships in the second row, the coarse segmentation reveals that the middle
part of the smaller ship is missing. The semantics of pixels in the middle part are eroded by the
background in generated image. The points under-segmented in red circles are mapped to the edges
of the ship and the hull of the larger ship with higher target probability.

Method CLIP-ES VOC SCLIP COCO SCLIP Context

G4Seg+EMI(Attn Injection) 72.0 30.9 31.3
G4Seg+EMI(Controlnet (Zhang et al.)) 74.1 33.1 33.8

H ON TOP OF FULLY/SEMI-SUPERVISED METHODS

Fully/semi-supervised open-vocabulary semantic segmentation To better evaluate our methods, we
build G4Seg on top of some fully/semi-supervised open-vocabulary semantic segmentation methods:

• OVAM (Marcos-Manchón et al., 2024): OVAM uses manually annotated masks of generated
images to update token embeddings, which are then used to generate more images and
corrected cross-attention-based pseudo masks.

• DeOP (Han et al., 2023) DeOP is inherently a fully supervised method trained with precisely
annotated pixel labels.

Methods VOC Context

OVAM 61.2 28.3
+G4Seg 62.1(+0.9) 28.9(+0.6)
DeOP 91.7 48.8

+G4Seg 92.1 (+0.4) 49.3(+0.5)

Fully supervised closed setting Our method relies on a pre-trained diffusion model and allows for
sample-wise segmentation improvement by providing the image and its corresponding coarse mask.
For closed-set semantic segmentation we conduct our method on ADE20k with three fully supervised
segmentation approaches(SegFormer (Xie et al., 2021), Mask2Former (Cheng et al., 2022)) with
semantic segmentation and panoptic segmentation (Xu et al., 2023a).

Fully supervised cross-domain semantic segmentation We evaluate the performance of our method
on a cross-domain setting and adopt a baseline (Wei et al., 2023) for nighttime semantic segmentation
on NightCity-fine (Tan et al., 2021).
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Table 8: Closed set fully supervised semantic segmentation

Methods mIoU/PQ

SegFormer (B1) 42.2
+G4Seg 42.9(+0.7)

Mask2Former(R50) 47.2
+G4Seg 47.8(+0.6)

ODISE(panoptic) 22.4
+G4Seg 23.0(+0.6)

Table 9: Cross domain fully supervised semantic segmentation

Methods mIoU

DP (Wei et al., 2023) 64.0
DP+G4Seg 64.5(+0.5)

I SENSITIVITY ASSESSMENT ON COARSE MASK QUALITY BEFORE
REFINEMENT

Ideally, our method does not rely on the initial mask quality. To show how sensitive the proposed
method relying on the initial segmentation quality, since our approach is sample-wise, we performed
stratification based on different quality levels of coarse segmentation and then calculated the mean
IoU improvement for samples with different levels for the VOC dataset: When the initial mask quality

Initial Mask Quality(IoU range) 0-40 40-80 80-100

# samples(#/# total samples) 56(3.4%) 679(47.3%) 237(49.3%)
Avg G4Seg Gain +0.2 +1.9 +1.1

Avg Controlnet (Zhang et al.) Gain +0.75 +4.2 +4.1
Avg CascadedPSP (Cheng et al., 2020) Gain +0.2 +1.5 +1.0

is poor, the improvement of our method is also limited. The improvement from our method is most
significant for initial IoU values between 40 and 80. This indicates that our approach is particularly
effective when the initial segmentation is already of reasonable quality. When the initial segmentation
is already nearly perfect(80-100), the improvement from our method becomes limited due to the
bottleneck caused by errors inherent in the mask injection process.

J RESULTS WITH OTHER MASK INJECTION METHOD

The overall pipeline of G4Seg is firstly obtaining a mask S conditioned generative models p(x|S)
then updating the mask using the generative result with coarse mask. In first step, for serving the
in-exact nature, we only use the attention perturbation in diffusion backbone avoiding involving exact
pixel-level annotation.

Pursuing a better result with permission to use a pixel-level annotation, we could involving a more
stronger mask injection method, Controlnet (Zhang et al.). The ControlNet consists of approximately
half of a diffusion backbone and functions as a feature extractor that can accept arbitrary signals
(such as segmentation masks) as input. The extracted features are then integrated into the diffusion
backbone to control the generative output, ϵ(xt, t, S). For images-annotation pairs(x0 and S), then
the controlnet is trained with:

Lcn = Eϵ∼N(0,I)||ϵ− ϵ(xt, t, S)||22
For our implementations, we use the pretrained segmentation conditioned model provided
by Lvmin Zhang & Agrawala which is then fine-tuned on the corresponding training set with the
nearest palette defined by Lvmin Zhang & Agrawala. With an improved pipeline, the performance
would significantly improve, as shown in the following table:
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Method CLIP-ES VOC SCLIP CoCo SCLIP Context

G4Seg+EMI(Attn Injection) 72.0 30.9 31.3
G4Seg+EMI(ControlNet Injection) 74.1 33.1 33.8

K COMPARISON WITH RELATED WORKS

On-top-of. Our method, as a plug-and-play framework, can be simply and efficiently integrated into
various existing segmentation modules to enhance the performance online with the current single
sample.

Generative content with generated-original bias. Some work such as VPD (Zhao et al., 2023)
and ODISE (Xu et al., 2023a) use pretrained diffusion model as feature extractor with a self-
supervised denoising loss. While another line of research, such as OVDiff (Karazija et al., 2023) and
Freeda Barsellotti et al. (2024c), merely utilize the content directly generated by diffusion models for
target prototype retrieval. In our work, we explore the discrepancy between the generative content
and the initial image to refine the discriminative result.

Discriminative assistance. Some diffusion-based training-free segmentation works such as
Freeda (Barsellotti et al., 2024c) and OVDiff (Karazija et al., 2023) employ pre-trained discriminative
models such as DINO (Caron et al., 2021) as assistance, while the performance of the framework
heavily depends on these discriminative models.

Cross attention initialization. Most works employ the attention between text and image as a
segmentation prior to the diffusion model, such as DatsetDiffusion (Nguyen et al., 2024) and
DiffSegmentor (Wang et al., 2023b). The most significant difference between our work and others is
that the attention mechanism we used is EMI as injecting the coarse mask prior to the generation
pipeline. The EMI part could be substituted without attention with another more advanced mask-
injecting module.

L G4SEG IMPLEMENTED WITH DIFFERENT DIFFUSION VERSION

We have compared the results with SD1.5, SD2.1, SDXL and LCM. SD1.5, SD2.1, LCM, and SDXL
share largely similar U-Net backbone architectures, incorporating cross-attention and self-attention
layers. Consequently, the EMI step is executed in a nearly identical manner across these models.
Then after the generation, the SCA step remains the same.

Diffusion Version mIoU

SD1.5 71.8
SD2.1 72.0
SDXL 72.0
LCM 72.1

M COMPARISON WITH TRAINING-FREE DIFFUSION SEGMENTATION METHODS

As the table shows, the DiffSegmentor only relies on the attention mechanism in the diffusion
backbone as the clue to the target mask, which does not fully excavate the generation prior to the
diffusion model. The OVDiff and Freeda utilize many generated images with a specific class and
obtaining the discriminative prototype of the class, where the prototype is retrieved based on the region
of interest from cross/Self-attention aggregation. Due to the strong external discriminative assistance,
it is challenging to determine whether the generative capacity of the diffusion model contributes to
the performance. Our method aims to fully exploit the generative prior for a discriminative task,
specifically inexact segmentation, by adopting a GPT-like approach to solve the discriminative task
in a generative manner without any extra assistance.
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Training-free Methods Generative Content Gen->Seg discriminative assitance

OVDiff[1] Class conidtioned images Cross/Self attention discriminative feature prototype
Freeda[2] Class conidtioned images Cross/Self attention discriminative feature prototype

DiffSegmentor[3] None Cross/Self attention None
G4Seg Mask conidtioned images Semantic correspondence updating None

N MORE RESULTS ON COMPARISON WITH OTHER MASK REFINEMENT
METHODS

We have also conducted a comparison between other mask refinement methods on VOC and Context
datasets with SCLIP and MaskCLIP.

Methods SCLIP VOC SCLIP Context MaskCLIP VOC MaskCLIP Context

Baseline 59.1 30.4 38.8 23.6
+G4Seg 59.8(+0.7) 31.3(+0.9) 39.4(+0.6) 24.1(+0.5)

+SegRefiner 59.3(+0.2) 30.7(+0.3) 39.1(+0.3) 23.9(+0.3)
+CascadePSP 59.5(+0.4) 30.9(+0.5) 39.2(+0.4) 23.8(+0.2)

+Densecrf 60.9(+1.8) 31.2(+0.8) 39.9(+1.1) 24.2(+0.6)
+G4Seg + CascadePSP 60.1(+1.0) 31.6(+1.2) 39.5(+0.7) 24.3(+0.7)

+G4Seg+Densecrf 62.1(+3.0) 32.0(+1.6) 40.1(+1.3) 24.6(+1.0)

O MORE VISUALIZED RESULTS

O.1 DATASET DETAILS

Datasets. In Section 4, we evaluate our G4Seg on 3 prevalent benchmarks, which are PASCAL
VOC12 2012 Everingham et al. (2015), COCO Lin et al. (2014), PASCAL Context Mottaghi et al.
(2014). Here is the detailed introduction of these five datasets as follows:

• PASCAL VOC2012 Everingham et al. (2015): The PASCAL VOC12 dataset consists of a diverse
collection of images spanning 21 different object categories (including one background class), such
as a person, car, dog, and chair. The dataset provides annotations for both training and validation
sets, with around 1,464 images in the training set and 1,449 images in the validation set. We use
the validation set for the downstream evaluation.

• COCO Lin et al. (2014): The COCO Object dataset covers a wide range of 80 object categories,
such as cars, bicycles, people, animals, and household items. For semantic segmentation, it has
118,287 training images and 5,000 images for validation.

• Context Mottaghi et al. (2014): The dataset contains a diverse set of images taken from various
scenes, including indoor and outdoor environments. It covers 59 common object classes, such as a
person, car, bicycle, and tree, as well as 60 additional stuff classes, including sky, road, grass, and
water. It has 118,287 training images and 5,000 images for validation. Here we merely consider
the object dataset part and use the validation set.
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O.2 VOC RESULTS

Figure 10 presents more results of our G4Seg in VOC12. It is found that our G4Seg shows powerful
grouping capability when segmenting the object-centric images. Besides, the generated discrepancy
could help segment objects in a compact and dense manner, which means there is less redundancy
and noise in objects.

O.3 COCO RESULTS

Figure 11 presents some visualized results of COCO Object. Clearly, it has been observed that,
compared to GroupViT, our G4Seg is able to perform fine-grained segmentation in the multi-object
case. However, G4Seg is unable to provide full areas of object segmentation, revealing the bottleneck
of our method.

O.4 CONTEXT RESULTS

Figure 12 shows several visualized results of Context. A similar improvement could be observed.
Besides, G4Seg could enhance the discriminative regions to a large extent in some cases, indicating
its effectiveness in multi-object learning.
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Input
Image

Generated
Image

SegMap GT

Figure 10: Qualitative results on PASCAL VOC12.
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Image GroupViT G4Seg GT

Figure 11: Qualitative results on COCO Object.
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Image GroupViT G4Seg GT

Figure 12: Qualitative results on Context.
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