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Dual-head Genre-instance Transformer Network for Arbitrary
Style Transfer
Anonymous Authors

ABSTRACT
Arbitrary style transfer aims to render artistic features from a style
reference onto an image while retaining its original content. Pre-
vious methods either focus on learning the holistic style from a
specific artist or extracting instance features from a single artwork.
However, they often fail to apply style elements uniformly across
the entire image and lack adaptation to the style of different art-
works. To solve these issues, our key insight is that the art genre has
better generality and adaptability than the overall features of the
artist. To this end, we propose a Dual-head Genre-instance Trans-
former (DGiT) framework to simultaneously capture the genre and
instance features for arbitrary style transfer. To the best of our
knowledge, this is the first work to integrate the genre features and
instance features to generate a high-quality stylized image. More-
over, we design two contrastive losses to enhance the capability of
the network to capture two style features. Our approach ensures
the uniform distribution of the overall style across the stylized
image while enhancing the details of textures and strokes in local
regions. Qualitative and quantitative evaluations demonstrate that
our approach exhibits its superior performance in terms of visual
qualitative and efficiency.

CCS CONCEPTS
• Applied computing→ Fine arts; • Computing methodolo-
gies → Appearance and texture representations.

KEYWORDS
Arbitrary style transfer, dual-head style learning, contrastive learn-
ing

1 INTRODUCTION
If great artworks tell a complete story, the artistic style acts as its
essence, unveiling the thematic core and unique creative perspective
of the composition. The objective of Arbitrary Style Transfer (AST)
is to transfer the style of a reference image to any given image
while preserving its content [9]. Given its great potential in various
practical applications, AST has emerged as a prominent research
area in computer vision, garnering considerable attention to driving
continuous endeavors in both quality and efficiency.
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Figure 1: Learn style representation from different perspec-
tives. (a) Style learning froma specific artist. (b) Style learning
from a single artwork. (c) Style learning from certain artists
and artworks. (d) Our style learning from genres and art-
works.

The primary challenge of AST lies in effectively representing
style and then realistically mapping an image into an artistic ren-
dition. Most existing methods learn style representation using the
following two approaches. The first one is to learn the holistic style
from a specific artist such as Van Gogh. Prior works [14, 18, 21, 41]
have successfully produced high-quality stylized images by treating
each artist’s style as a domain. However, a common limitation ex-
ists: these methods tend to generate only a single type of stylization,
making them less adaptable to different artwork styles, as illustrated
in Fig. 1 (a). The alternative approach is to abstract the style repre-
sentation from a single artwork [3, 6, 25, 26, 37, 38]. Such methods
focus on extracting instance features such as specific brushstrokes
and textures, enabling controllable generation of images. However,
they often struggle to maintain uniform style elements across the
entire image due to limited utilization of comprehensive style in-
formation present in art collections. As mentioned in [18], relying
on a single artwork may not adequately represent the entirety of
an artistic style. This can lead to issues such as local content leaks
and inconsistencies in holistic style, as illustrated in Fig. 1 (b).

Recently, some studies [4, 28, 32] attempt to combine the above
two approaches to achieve a more comprehensive style representa-
tion. Chen et al. propose DualAST [4] to learn the instance features
using a pre-trained VGG-19 [19] and artist’s style features through
GAN-based constraints. Xu et al. introduce DRB-GAN [32], leverag-
ing Dynamic ResBlocks to integrate both artist’s style and instance
features. Wu et al. utilize a DSTM [28] to decouple the artist’s style
and instance style from a single style image and swap them with
those from other images to achieve AST. However, these methods
are constrained by the scope of their training data, with DualAST

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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[4] trained on just six artists and DRB-GAN [32] on eleven collected
from WikiArt, limiting their capability for arbitrary style transfer.
As illustrated in Fig. 1 (c), when presented with an unseen artistic
style, the resulting stylized image may exhibit local distortions,
compromising the content structure.

In this paper, we propose a novel insight that the art genre of-
fers greater generality and adaptability compared to the overall
features of individual artists. The genre encompasses distinctive
visual elements, techniques, and methods, often corresponding to
an art movement or school, such as Baroque, Expressionism, or Im-
pressionism. We recognize that an artist’s style in the genre evolves
significantly over time. For example, Van Gogh’s early artwork
"Papa Tanguy" shows Ukiyo-e influences, whereas "Starry Night"
embodies Post-Impressionism. These genre differences highlight
that even the artworks by the same artist can vary significantly in
painting technique and style. To this end, we propose the dual-head
genre-instance transformer (DGiT) framework to enable highly
effective AST. Specifically, DGiT consists of a content encoder,
a dual-head style encoder, and a style transformer decoder. The
dual-head style encoder has two heads, a genre-wise head and an
instance-wise head, to simultaneously capture the genre features
and instance features. The genre-wise head is designed to capture
the common features of the art genre such as the overall feeling,
while the instance-wise head is utilized to capture the unique fea-
tures like colors, texture, and brushstrokes of the artwork. We de-
sign an effective style transformer decoder to progressively migrate
them to obtain the final style representation. Different from [6, 35]
based on ViT, our method not only learns two style representations
but also accelerates convergence by the designed style transformer
decoder. As shown in Fig. 1 (d), our approach can ensure the style
elements are uniformly and coherently applied across the entire
image while successfully preserving the overall outline and texture
details of the content image.

Furthermore, we introduced two special contrastive losses, namely
genre contrastive loss and instance contrastive loss, to enhance the
effectiveness of our model. Specifically, the genre contrastive loss
treats artworks from the same genre as positive examples and those
from different genres as negative, thereby facilitating the learning
of holistic genre styles within the same genre. On the other hand,
the instance contrastive loss randomly selects positive-negative
patch pairs within a single style image and other distinct style
images. Unlike existing methods [17, 26, 38, 39] that process the
entire image as an anchor to identify overall differences between
various artworks, our instance contrastive loss focuses on the tex-
ture details and brushstrokes at any spatial location within the
style image. Unlike the patch-methods [17, 23, 33] which considers
the relationship between the stylized image and the source im-
age, we consider the relationship between a single artwork and
other artworks. This contrastive strategy enables the instance-wise
head to identify the unique style variations in each image. Our
contributions are summarized as follows:

• We propose a dual-head genre-instance transformer (DGiT)
framework to simultaneously capture the genre and instance
features for achieving arbitrary style transfer. To the best of
our knowledge, this is the first work in AST to propose the

combination of the genre-wise and instance-wise features
to generate high-quality stylized images.

• Two contrastive losses are introduced to encourage DGiT to
capture two style representations, which can strengthen the
model’s ability of preserving more texture details and the
holistic style of the artwork.

• Experimental results show that our approach can achieve the
best style performance regarding visual quality. The model
allows the style elements to be uniformly and coherently
applied across the stylized image, improving the robustness
of content-style inputs.

2 RELATEDWORK
2.1 Arbitrary Style Transfer
Since the introduction of adaptive instance normalization for achiev-
ing AST in [9], there have been numerous advancements in this
area. Some methods [14, 18, 21, 41] focus on learning the holistic
style from a specific artist such as Van Gogh. For instance, Svoboda
et al. proposed a two-stage model [21] for stylized imaging with
enhanced content geometry flexibility, while Zhang et al. created
ArtBank [41] to learn artists’ style type by guiding pre-trained large-
scale models. Nevertheless, these methods only learn the style type
of a limited number of artists and are unable to achieve AST. To ad-
dress this issue, most existing methods [1, 3, 6, 13, 26, 31, 34, 37, 38]
adopt the other perspective to learn the style representation from
a single artwork. For example, StyTr2 [6], as a transformer-based
approach, mitigates biased content representation in style transfer
by accounting for the long-range dependencies in input images.
A novel dynamic style kernel [31] performs learning spatial adap-
tation capabilities to achieve per-pixel stylization. Recently, some
advanced methods [15, 37] studies on diffusion models to improve
the quality of the stylized image. InST [37] learns the artistic style
directly based on the inversion method and DiffuseIT [15] employes
a pre-trained ViT model to guide the generation process of DDPM
models [8]. Despite these progresses, they fail to apply style el-
ements uniformly due to the limited use of comprehensive style
information from art collections. Several studies [4, 28, 32] attempt
to merge the two perspectives to achieve a more effective style rep-
resentation. DualAST [4] utilizes a fixed pre-trained VGG-19 [19] to
learn instance features and incorporates multiple artist’s style fea-
tures via GAN constraints. DRB-GAN [32] integrates both artist’s
style and instance features using Dynamic ResBlocks. However, the
limited artist style type constrains the flexibility and generalization
of arbitrary style transfer.

Unlike the above methods, we focus on the art genre features
which have better generality and adaptability than the holistic
features of the artist. Our method can learn simultaneously the
holistic genre features and specific artworks’ instance features, to
achieve high quality and flexible stylized results in AST.

2.2 Contrastive Learning for Style Transfer
With the rise of contrastive learning, many studies [2, 23, 26, 29,
33, 38, 40] have investigated contrastive learning in style trans-
fer tasks. Inspired by CUT [17], IEST [17] calculates the feature
statistics (mean and standard deviation) as style priors, and con-
fines the calculation of contrastive loss to the generated outputs.
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Figure 2: Overview pipeline of our DGiT framework. We split the content image 𝐼𝑐 and style image 𝐼𝑠 into patches, and obtained
the responding features 𝐹𝑐 and 𝐹𝑠 by transformer encoders. A dual-head style encoder simultaneously extract the genre feature
𝐹𝑔𝑒𝑛 and instance feature 𝐹𝑖𝑛𝑠 from the style features 𝐹𝑠 . A style transformer decoder then progressively fuse the content
sequence according to two style representations 𝐹𝑔𝑒𝑛 and 𝐹𝑖𝑛𝑠 . The genre contrastive loss L𝑔𝑒𝑛 and instance contrastive loss
L𝑖𝑛𝑠 are utilized to guide the dual-head style encoder to learn the related style features.
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Figure 3: Style transformer decoder includes AdaIN, multi-
head attention, feed-forward network, and layer normaliza-
tion. We first fuse the content feature 𝐹𝑐 with the instance
feature 𝐹𝑖𝑛𝑠 and then fuse it with the genre features 𝐹𝑔𝑒𝑛 .

CLAST [23] employs a similar form to quantify the color and style
differences between the generated results and the style reference
image. ZeCon [33] effectively preserves the content information
in a zero-shot manner by leveraging the patch-wise contrastive
loss [17]. Unlike the above patch-based methods, CAST [38] uses
extracted holistic style features by the pre-trained VGG-19 layers
to compute contrastive loss between images. UCAST [39] further
uses an adaptive temperature mechanism to control the proportion
of penalties between the positive and negative samples. CCPL [29]

introduces contrastive learning for video style transfer by consider-
ing the frame-wise patch differences. MicroAST [26] constructs the
stylized image with other style images as positive/negative pairs
to enhance the capability of the style encoder. CSACT [40] adopts
the Gram matrix as a style representation in contrastive learning
to capture more style information.

In this paper, we adopt supervised contrastive learning [11] to
learn the common features of the art genre. An instance contrastive
loss is designed to capture the instance features of the style image.
Compared with [26, 27, 38] which uses the full image as the sample,
our instance contrastive loss focuses on the texture details and
brushstrokes at any spatial location within the same artwork.

3 METHOD
In this section, we will introduce our Dual-head Genre-instance
Transformer (DGiT) framework for arbitrary style transfer. We first
present the overall pipeline of our DGiT framework, followed by the
dual-head style encoder, style transformer decoder, and contrastive
learning strategy in detail.

3.1 Overall Framework
Given a content image 𝐼𝑐 and a style image 𝐼𝑠 , we aim to synthesize
an image 𝐼𝑔 that has the style pattern of 𝐼𝑠 while maintaining the
content structure of 𝐼𝑐 . We propose a dual-head genre-instance
transformer (DGiT) which can simultaneously learn the genre and
instance features from the style image and then migrate the content
and style representations into the stylized image. Compared with
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[4, 28, 32] which capture the artist-style and artwork-style represen-
tations, our method ensures that style features are consistently and
coherently distributed across the image, effectively maintaining the
content image’s main outline and texture specifics.

The overall framework is illustrated in Fig. 2. Our DGiT consists
of three key components: content encoder, dual-head style encoder,
and style transformer decoder. We first extract the content features
𝐹𝑐 and style feature 𝐹𝑠 via the transformer encoder, followed by the
genre-wise head and instance-wise head to extract the genre fea-
tures 𝐹𝑔𝑒𝑛 and instance features 𝐹𝑖𝑛𝑠 . Then, we employ a designed
style transformer decoder to stylize the content feature according
to two style representations. Finally, we obtain the final stylized
image 𝐼𝑔 by using an upsampling decoder. To encourage the model
to extract the style features effectively, we design two contrastive
losses, genre contrastive loss and instance contrastive loss, to guide
the dual-head encoder to obtain discriminative genre features and
unique instance features. During the training process, the genre
labels are provided to the genre-wise head to supervise the learning
process. In the test, we can generate the stylized image using the
trained model without the genre label.

3.2 Dual-head Style Encoder
The dual-head style encoder consists of a genre-wise head and an
instance-wise head. The genre-wise head is designed to capture the
common features of the art genre such as the overall feeling, while
the instance-wise head is utilized to capture the unique features
like colors, texture, and brushstrokes of the artwork.

Specifically, we split a style image 𝐼𝑠 ∈ R𝐻×𝑊 ×3 into patches
and map these input patches by using trainable linear projection
to obtain a sequence of patch embeddings in the shape of 𝐿 × 𝐶 .
Here, 𝐿 = 𝐻×𝑊

𝑚×𝑚 represents the sequence length, 𝐶 and𝑚 denote
the embedding dimension and the patch size, respectively. Similarly
to Str2 [6], these feature sequences are fed into the transformer
encoder [7] to capture more refined feature sequences 𝐹𝑠 . Finally,
𝐹𝑠 is fed into the genre-wise head and instance-wise head to further
capture the genre and instance features. Two heads have the same
structure but independent parameters. Each head consists of a
multi-head self-attention module and a feed-forward network. The
multi-head self-attention module can be formulated as:

MHA(𝑄,𝐾,𝑉 ) = [head1, . . . , headℎ]𝑊𝑂 ,

head𝑖 = Att(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ),

Att(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

𝑉

)
,

𝑊
𝑄

𝑖
,𝑊𝐾

𝑖
, and𝑊𝑉

𝑖
are the learnable projection matrices.𝑊𝑂 is

the output projection matrix. 𝑑𝑘 is the dimension of the key. The
genre-wise head is described as follows:

𝐹 ′𝑔𝑒𝑛 = MHA(𝐹𝑠 , 𝐹𝑠 , 𝐹𝑠 ) + 𝐹𝑠
𝐹𝑔𝑒𝑛 = FFN(𝐹 ′𝑔𝑒𝑛) + 𝐹 ′𝑔𝑒𝑛,

We apply the layer normalized after the attention block. Similarly,
the style sequence 𝐹𝑠 follows the same calculation after being fed
into the instance-wise head. In Section 3.4, we optimize themodel by
minimizing genre contrastive loss and instance contrastive loss to
guide the dual-head encoder to learn genres and instance features.

3.3 Style Transformer Decoder
Some existing methods [6, 34, 35] utilize ViT model, which exhibits
slow convergence in training procedure due to a large number of
parameters [22]. In contrast, we adopt AdaIN [9] combined with
multi-head self-attention to alleviate computational cost and ac-
celerate convergence. The more detailed of the style transformer
decoder is shown in Fig. 3.

Specifically, we input the content sequence 𝐹𝑐 and the instance-
specific sequence 𝐹𝑖𝑛𝑠 into AdaIN [9] layer. This process can be
formulated as follows:

𝐴′ = AdaIN(𝐹𝑐 , 𝐹𝑖𝑛𝑠 ) = 𝜎 (𝐹𝑖𝑛𝑠 )
(
𝐹𝑐 − 𝜇 (𝐹𝑖𝑛𝑠 )

𝜎 (𝐹𝑐 )

)
+ 𝜇 (𝐹𝑖𝑛𝑠 ), (1)

where 𝜇 (·) and 𝜎 (·) denote the mean and standard deviation of
the input tensor, respectively. The obtained 𝐴′ is then fed into a
multi-head self-attention module to obtain the intermediate repre-
sentation as follows:

𝑓 ′𝑖𝑛𝑠 = MHA(𝐴′, 𝐴′, 𝐴′) + 𝐹𝑐 ,
𝑓𝑖𝑛𝑠 = FFN(𝐴𝑑𝑎𝐼𝑁 (𝑓 ′𝑖𝑛𝑠 , 𝐹𝑖𝑛𝑠 )) + 𝑓

′
𝑖𝑛𝑠 . (2)

Subsequently, we merge the genre features 𝐹𝑔𝑒𝑛 with the ob-
tained intermediate representation across 𝑁 layers to generate the
final output 𝐹𝑐𝑠 via the similar processes in (2). Finally, the output
feature sequence 𝐹𝑐𝑠 is fed into three layers CNN decoder to obtain
the stylized image 𝐼𝑔 . Each layer includes two 3 × 3 convolutional
layers, a ReLU layer, and an upsample layer.

Analysis: As we have two style heads, an immediate challenge
is encountered for the decoder design, that is, how to reasonably
integrate content and style features to obtain the final stylized
image. A reasonable approach is to first merge instance features
with content features to preserve texture details in the stylized
image. Then, applying genre characteristics ensures uniform and
coherent application of style elements across the entire image. We
also analyze different fusion strategies in detail in Section 4.3.

3.4 Style Contrastive Learning
3.4.1 Genre Contrastive Loss. To encourage the genre-wise head to
capture the common features of the art genre, we propose a genre
contrastive loss as an implicit measurement to capture the genre-
wise features effectively. It is well known that artworks in the same
art genre share notable similarities in their use of color, line styles,
and compositional techniques, while those from different genres
exhibit significant differences. Hence, we classify style images from
identical genres as positive examples and those from varying gen-
res as negative examples, and design a genre contrastive loss for
capturing the holistic discriminative genre style features.

Specifically, for a set of 𝑁 randomly sampled sample/lable pairs
{𝑥𝑖 , 𝑦𝑖 }, where 𝑖 ∈ 𝐼 = {1, . . . 𝑁 } be the index of the sample within
the batch. Let 𝐴(𝑖) = 𝐼\{𝑖} be the index set of all samples except
𝑖 . We define 𝑓𝑔𝑒𝑛 = {𝑧𝑖 }𝑁𝑖=1 ∈ R𝑁×𝑑×𝐶 as the output of the genre-
wise head. We randomly choose 𝑧𝑖 as the anchor, 𝑃 (𝑖) = {𝑝 ∈
𝐴( 𝑗) : 𝑦𝑖 = 𝑦𝑝 } as the index set of all positive samples, and |𝑃 (𝑖) |
is its cardinality. We take 𝐴(𝑖)\𝑃 ( 𝑗) as the index set of all negative
samples. The L𝑔𝑒𝑛 is designed to maximize the similarity between
the anchor and positive samples while minimizing the similarity
between the anchor and negative samples. The genre contrastive
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Figure 4: Illustration of contrastive loss designs in AST methods: (a) CAST [38] distinguishes between images by different
artworks in general; (b) MicroAST [26] focuses solely on the relationship between the stylized image and its corresponding
style image; (c) Our proposed instance contrastive loss exploit the texture details and brushstrokes across the arbitrary spatial
locations of the style image.

loss is formulated as:

L𝑔𝑒𝑛 = − 1
𝑁

∑︁
𝑖∈𝐼

1
|𝑃 (𝑖) |

∑︁
𝑝∈𝑃 (𝑖 )

log
exp(𝑧𝑖 · 𝑧𝑝/𝜏)∑

𝑎∈𝐴(𝑖 ) exp(𝑧𝑖 · 𝑧𝑎/𝜏)
, (3)

where 𝑧 = 𝑓1 (𝑧) is the nomalized output from the genre-wise head,
· symbol denotes the innder product and 𝜏 ∈ R+ is a temperature
parameter. The function 𝑓1 (·) is a multi-layer projection that con-
sists of two fully connected layers, to project the features into a
𝑙2-normalized space.

3.4.2 Instance Contrastive Loss. To assist the instance-wise head in
extracting the instance features, we design an instance contrastive
loss to focus on the texture details and brushstrokes of the artwork.
Some existing methods [26, 38, 39] leverage contrastive learning
to enhance the network’s proficiency in extracting style represen-
tations. As shown in Fig. 4, CAST [38] employs the style image
𝐼𝑠 and its augmented version 𝐼+𝑠 as positive samples, with other N
style images serving as negative samples. MicroAST [26] selects
the stylized image 𝐼𝑐𝑠1 as the anchor, assigning its associated style
image 𝐼𝑠1 as a positive sample, and regarding other style images
as negative samples. These methods process the entire image as
an anchor to identify overall differences between various artworks.
In contrastive, our instance contrastive loss focuses on the local
textures and unique features at any spatial location within the style
image. Different from patch-methods [17, 23] which considers the
relationship between the stylized image and the source image, our
loss can better assist the instance-wise head to extract the instance
features by considering the relationship between a single artwork
and other artworks.

We randomly select patches from the same style image as positive
samples and patches from other style images as negative samples.
This contrastive strategy enables the instance-wise head to focus
on the distinct style variations in each artwork. In particular, we
defined a set of 𝐹𝑖𝑛𝑠 = {𝑣𝑖 }𝑁𝑖=1 ∈ R𝑁×𝑑×𝐶 as the output feature of
the instance-specific head. We randomly sample a pair of patches,
�̂�𝑖 ∈ R𝑛×𝑐 and �̂�+

𝑖
∈ R𝑛×𝑐 on 𝑣𝑖 as positive sample while negative

samples {𝑚−
𝑗
} 𝑗∈𝐴( 𝑗 ) are sampled from the remaining 𝑁 −1 images,

maintaining the same shape as �̂�𝑖 . Here, 𝑛 denotes the number of

the patch pixels.

Lins =−
𝑁∑︁
𝑖=1

log

(
exp(�̂�𝑖 · �̂�+

𝑖
)/𝜏

exp(�̂�𝑖 · �̂�+
𝑖
)/𝜏 + ∑

𝑗∈𝐴( 𝑗 ) exp(�̂�𝑖 · �̂�−
𝑗
)/𝜏

)
. (4)

where �̂� = 𝑓2 (𝑚) is the nomalized output from the genre-wise
head and 𝑓2 (·) is a multi-layer projection layer following the same
structure of 𝑓1 (·).

3.5 Network Training
To preserve the original content structures and reference style
patterns, we employ content perceptual loss to quantify differences
between the generated image 𝐼𝑔 and the content image 𝐼𝑐 , and style
perceptual loss to measure the difference from the style reference
𝐼𝑠 to the generated image 𝐼𝑔 .

We use feature maps extracted by a pre-trained VGG-19 [20] to
calculate two losses. The content loss can be described as follows

L𝑐 =
1
𝑁𝑙

𝑁𝑙∑︁
𝑖=0

∥𝜙𝑖 (𝐼𝑔) − 𝜙𝑖 (𝐼𝑐 )∥2, (5)

where 𝜙𝑖 (·) indicates the features map which is captured from the
i-𝑡ℎ layer of the VGG-19. 𝑁𝑙 denotes the number of layers. The style
perceptual loss L𝑠 can be described as follows

L𝑠 =
1
𝑁𝑙

𝑁𝑙∑︁
𝑙=0

∥𝜇 (𝜙𝑖 (𝐼𝑔)) − 𝜇 (𝜙𝑖 (𝐼𝑠 ))∥2

+ ∥𝜎 (𝜙𝑖 (𝐼𝑔)) − 𝜎 (𝜙𝑖 (𝐼𝑠 ))∥2,
(6)

We also adopt our two contrastive objectives to learn genre-wise
and instance-specific features from the style image. Hence, the total
training objective function is formulated as

L = 𝜆𝑐L𝑐 + 𝜆𝑠L𝑠 + 𝜆𝑔𝑒𝑛L𝑔𝑒𝑛 + 𝜆𝑖𝑛𝑠L𝑖𝑛𝑠 , (7)

where the hyperparameters 𝜆𝑐 , 𝜆𝑠 , 𝜆𝑔𝑒𝑛 , and 𝜆𝑖𝑛𝑠 are utilized to
fine-tune the loss balance during the training.

4 EXPERIMENTS
4.1 Experiment settitngs
We utilize MS-COCO [16] and WikiArt [10] datasets as content
and style images for the training process, where WikiArt dataset
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Figure 5: Qualitative comparisons. From the left to right: DiffuseIT [5], Str2 [6], MicroAST [26], CAST [38], Svoboda et al. [21],
ArtBank [41], DualAST [4]. The scores are content/style losses. Red indicates the best score, blue is the second best.

Table 1: Quantitative comparison. Red indicates the best score, blue is the second one.

Methods Ours DiffuseIT [5] Str2 [6] MicroAST [26] CAST [38] Svoboda et al. [21] ArtBank [41] DualAST [4]

SSIM ↑ 0.5849 0.2487 0.5547 0.5420 0.2143 0.2652 0.3261 0.4783
LPIPS ↓ 0.4946 1.9687 0.5321 0.5232 0.6847 0.5839 1.2076 0.6672

Style Loss ↓ 0.5714 3.0719 0.6845 1.2302 1.1829 2.0416 3.8581 1.3476
Content Loss ↓ 0.9731 3.0312 1.1218 1.0986 1.0609 2.3811 2.6591 1.6407
Style Pref.(%) ↑ 27.44 2.52 23.64 14.08 13.8 5.2 1.56 11.76

Content Pref.(%) ↑ 26.48 2.72 15.72 17.56 17.12 4.4 3.88 12.12
Overall Pref.(%) ↑ 28.56 2.04 23.12 13.4 14.36 3.52 1.04 13.96

encompasses 28 artistic genres such as Impressionism, Ukiyo-e,
Abstraction, etc. We utilize the Pikip dataset [38] as our testing
dataset. Note that there is no overlap between this dataset and our

training set, and the test images remain unlabeled. The training
image is first resized to the dimension of 512 × 512 before being
randomly cropped to 256 × 256 as inputs. The overall framework is
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Figure 6: Ablation results. (d)-(f) illustrate the different model configurations, respectively. (g) and (h) shows the results for
different fusion strategies.

implemented by Pytorch. We utilize Adam [12] as the optimization
solver and the learning rate is 5𝑒−4 using the warm-up adjustment
strategy [30]. The network is trained for 160K with a batch size of
6. The loss weights are chosen as 𝜆𝑠 = 10, 𝜆𝑐 = 7, 𝜆𝑔𝑒𝑛 = 5, 𝜆𝑖𝑛𝑠 = 1.
Our model can support any image resolution in the testing phase.
All training experiments are developed on two NVIDIA RTX A5000
GPUs, and the testing data are developed on a single NVIDIA RTX
A5000 GPU. More details are shown in the supplementary.

4.2 Comparing with State-of-the-Art Methods
We conduct comparison experiments with state-of-the-art algo-
rithms on style transfer, including DiffuseIT [5], Str2 [6], MicroAST
[26], CAST [38], Svoboda et al.[21], ArtBank [41], DualAST [4].
Among them, DiffuseIT [5], Str2 [6], MicroAST [26], CAST [38]
learn the style representation from a single image, while Svoboda et
al.[21], ArtBank [41] learn the style feature of the artist. DualAST
[4] considers the both style of the artist and artworks. We evaluate
the performance of these methods in terms of both qualitative and
quantitative aspects. In the evaluation of all methods, we ensure a
fair comparison by employing publicly available code and adhering
to the default configurations provided for testing.

4.2.1 Qualitative Evaluation. To evaluate the superiority of our
method, we compare our results with the seven methods above in
Fig. 5. DiffuseIT [5], Str2 [6], MicroAST [26], CAST [38] learn the
style representation from a single artwork. However, DiffuseIT [5]
is unstable and tends to generate unrelated content structures (e.g.
2nd, 4th, and 5th rows). Str2 [6] and CAST [38] exist the problem of
content leaks when the content image with complex structure (e.g.
4th, 5th, and 6th rows). MicroAST [26] often suffers from blurred
and visual artifacts (e.g. 2nd, 3rd, and 4th rows). Svoboda et al. [21]
and ArtBank [41] only capture the overall style of artists, limiting
their ability to handle unseen artists and maintain style consistency
with reference style images. As shown in (h) and (i), most results
generated by the two methods lose the diversity of the style pattern.
DualAST [4] considers the style of both artists and artworks, but
the generated images often fail to capture the detailed texture and
brushstrokes of the style image (e.g. 1st, 3rd, and 4th rows).

Table 2: Quantitative comparison on ablation study. Red in-
dicates the best score.

Methods SSIM ↑ LPIPS ↓ Style Loss ↓ Content Loss ↓
w/o dual-head 0.4321 0.6174 1.1761 1.3502

w genre-wise head 0.4973 0.5480 0.8154 1.1332
w instance-wise head 0.5301 0.5274 0.6568 1.2412

genre+instance 0.5638 0.5321 0.7363 1.1063
instance&genre in parallel 0.1201 0.7478 5.8871 1.7432

full model 0.5849 0.4946 0.5714 0.9731

Benefiting from dual-head style encoder, compared with Diffu-
seIT [5], Str2 [6], MicroAST [26], and CAST [38], our approach
can capture both vivid local stroke characteristics and the overall
appearance, while maintaining the content’s structural integrity.
Even when the content image contains complex structures, our
method effectively transfers the rich texture of the style image
to the stylized image while preserving its structural integrity. For
example, as shown in the 1st-3rd row of Fig. 5, we can achieve the
highest score in terms of content and style loss. It indicates our
ability to capture a holistic similar style pattern and achieve reason-
able texture mapping with the reference style image. In rows 4 to 6,
our method transfers the color and texture of the style image to the
stylized image while maintaining the structural consistency of the
content image. In contrast to Svoboda et al. [21], ArtBank [41], and
DualAST [4], we generate more diverse and vivid stylized images
across content-style pairs from different artists and artworks.

4.2.2 Quantitative Evaluation. Table 1 shows the quantitative com-
parison with the above methods. We generated 10,125 stylized
images by randomly selecting 75 content images and 135 style im-
ages. We calculate the SSIM [24] to assess the stylization quality
with respect to content preservation. LPIPS loss [36] is adopted
to measure the content fidelity between the content image and
stylized images. Additionally, we evaluate the generated image’s
consistency in style and content with respect to the style and con-
tent references using style and content loss, respectively. As we can
observe in Table 1, our method obtains better scores in all metrics. It
indicates that our method exhibits superior capability in preserving
both finer details and content affinity.
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Figure 8: Visualization of style interpolation.

4.2.3 User Study. We compare our method with recent state-of-
the-art methods to measure which method can generate reasonable
images that are most accepted by humans. The users in our study
include 25 males and 25 females, spanning the age range from 16
to 60. For each user, we randomly select 50 content-style pairs
and present stylized results by our method and other methods
in a randomized order. We ask users to evaluate results from the
following three aspects: (i) which result exhibits superior style
patterns. (ii) which result preserves the content structures more
effectively, and (iii) which stylization result appears more natural
and reasonable. Finally, we collected 2,500 votes from 50 users. We
report the percentage of votes for each method in Table. 1. Our
method receives significantly higher preferences in terms of content
preservation, natural appearance and style consistency.

4.3 Ablation Study
4.3.1 Analysis effective of dual-head style encoder. We conduct an
ablation study to evaluate the effectiveness of the dual-head encoder.
From Fig. 6 (d) to (f), it illustrates the different model configurations
without the dual-head style encoder, with only the genre-wise
head and only the instance-specific head, respectively. We observe
that the model in (d) generates images with less vivid texture and
brushstrokes, and the style patterns are not fully transferred to the
stylized image. We observe that the model in (d) generates images
with less vivid texture and brushstrokes, and the style patterns are
not fully transferred to the stylized image. In (e), the model might
overlook the holistic style characteristics of artworks, leading to

content leakage and inconsistent local style textures. In (f), the
model concentrates solely on local textural details and disregards
the global style pattern, resulting in less appealing stylization with
noticeable artifacts. The full model in (c) with the dual-head style
encoder preserves the style consistency of the overall image and
maintains the local detailed texture and specific brushstrokes of
the artworks. The quantitative results are shown in Table 2.

4.3.2 Different fusion strategies. We conducted ablation studies
on different fusion strategies in the style transformer decoder. The
genre-wise head is designed to capture common features of the
art genre, including overall feelings such as global compositional
elements and general textural patterns common to the same art
genre. The instance-wise head is utilized to capture the unique
features of the artwork, such as colors, textures, and brushstrokes
of the specific artwork. To enhance the generality of the model, we
first fuse instance features with content features to preserve texture
details for the stylized image, and then apply genre characteristics
to ensure that style elements are uniformly and coherently applied
across the entire image. As shown in Fig. 6 (c), the stylized image of
our model exhibits the nature and vivid texture of the style image
while keeping the content structure. In contrast, if the opposite
fusion strategy is adopted, as shown in Fig. 6 (g), the prominence of
individual style features might be somewhat subdued by the earlier
emphasis on genre features. In addition, we replace the merge with
the fusion strategy such as the parallel and sum operation. The
results are shown in Fig. 6 (h), and the merge strategy is extensively
corrupted, indicating a failure in model optimization.

4.4 Robustness Analysis
4.4.1 Content-Style Trade-off. The content-style trade-off aims to
adjust the stylization intensity by changing the weight parameter
𝛼 . When 𝛼 is increased to 1, we achieve complete stylization. As
illustrated in Fig. 7, we produce a group of images showcasing
gradual changes in style intensity. Our method can generate a wide
range of stylization effects by adjusting 𝛼 parameter, allowing users
to customize the stylization intensity according to their preferences.

4.4.2 Style Interpolation. The style interpolation allows for inter-
polating multiple distinct style patterns into one generated image.
We show the generated results under our method with different
interpolations as exhibited in Fig. 8. Our method flexibly handles
the interpolation between multiple styles. Users can combine vari-
ous styles based on their preferences, resulting in personalized and
diverse outcomes that cater to their individual needs.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a dual-head genre-instance transformer
(DGiT) framework to simultaneously learn the genre and instance
features from the artworks. Moreover, we propose two contrastive
losses to enhance the ability of each head to extract the corre-
sponding style. Our method not only generates detailed texture
and specific brushstrokes but also ensures that style elements are
uniformly and coherently applied across the stylized image. Exten-
sive experiments demonstrate that our method can achieve the best
style performance regarding visual quality. In the future, we will
explore the application to the video-style transfer task.
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