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1 IMPLEMENTATION DETAILS
1.1 Datasets
We utilize MS-COCO dataset [5] as the content andWikiArt dataset
[3] as the style in our training process. The COCO dataset is a
well-established benchmark in the computer vision, providing a
wealth of content information. The WikiArt dataset comprises
81,444 artworks from diverse artists sourced from WikiArt.org,
each annotated with genre labels such as Impressionism, Ukiyo-
e, Pro-Impressionism, Realism, etc. During the test, we utilize the
Pikip dataset [7] as our test data. Please note that there is no overlap
between this dataset and our training set, and the test images remain
unlabeled.

1.2 Network Information
Each transformer encoder includes amulti-head self-attentionmech-
anism, LayerNorm, and a multi-layer perceptron (MLP) to ensure
robust feature encoding. The Transformer decoder has four style de-
coder layers. Two of these layers are dedicated to merging instance-
wise features with content, while the remaining two layers are re-
sponsible for refining the fusion feature. Followed by [1], each layer
of the Transformer is equipped with multi-head attention mecha-
nisms, where the feature representations are 512-dimensional, and
the model utilizes 8 attention heads. The obtained the sequence 𝐹𝑐𝑠
from the transformer takes the form of 𝐻

16 × 𝑊
16 × 𝐶 . We employ

a three-layer CNN decoder to generate the transformer decoder’s
outputs. Each layer’s scale is expanded through a sequence of oper-
ations that includes two 3×3 Conv, ReLU, and an Upsample process.
The final output achieves a resolution of 3 × 𝐻 ×𝑊 .

2 EXPERIMENTS
2.1 Additionally User Study
To comprehensively evaluate the effectiveness of our approach, we
conducted additional user studies to compare it with existing state-
of-the-art methods. Inspired by the user study in [2, 7], we have
arranged comparison experiments to evaluate which method can
generate the most favored results by humans. Our study involved a
diverse group of participants, including 25 males and 25 females,
ranging in age from 16 to 60. Each participant was presented with
two groups of stylized results generated by our proposed method
and one of the existing methods, respectively. Participants were
expected to choose the image which best captured the style features
from the style images while preserving the content details from the
original content images. Finally, we collected 2,500 votes from 50
participants. The percentage of votes for each method is reported
in Fig. 1. It demonstrated the superiority of our approach, as it
consistently garnered higher preferences from the participants
compared to other methods.

Figure 1: User study on the stylized results which exhibit
the best performance between our method and one of the
existing methods.

2.2 Comparision with Diffusion Models
In this section, we provide additional comparative results generated
by the other diffusion-based method, namely, InST [6]. For your
convenience, we herewith present more stylized results generated
by our method, InST [6], DiffuseIT [4], and ArtBank [8] in Fig. 2.
InST [6] proposes a textual inversion model to learn a single style
image and transfer its style to the content image with a simple
text prompt. ArtBank [8] presents an Implicit Style Prompt Bank
to learn and store knowledge from the collection of artworks. In
contrast, DiffuseIT [4] is an image-to-image translation approach
that utilizes a pre-trained ViTmodel to guide the generation process
of DDPM models in terms of preserving content structure. All the
results in Fig. 2 are generated by the open-source codes provided
by these authors.

Specifically, InST [6] needs to train different models for various
topics, and requires users to provide texts to describe the style
instead of directly using style images during the test. As depicted
in Fig. 2 (d), the outcomes by InST [6] do not explicitly match the
color distribution of the reference style images (e.g. the 1st, 2nd,
and 4th rows), and there is a noticeable content change in the 3rd
row. ArtBank [8] focuses on learning a range of artists and stores
their features, which inherently limits the range of styles that users
can choose from. When ArtBank [8] confronts an unseen artist’s
style during the test, the generated results towards the style of the
artist that has been trained on (e.g. the 2nd, and 3rd rows). This
behavior limits the model’s generalization capability in arbitrary
style transfer. DiffuseIT [4] is an image-to-image diffusion model,
yet it still struggles with certain issues. As observed in Fig. 2 (f),
DiffuseIT exhibits difficulties in retaining fine details, often leading
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Figure 2: Qualitative comparisons. From the left to right: content, style, Ours, DiffuseIT [4], InST [6], and ArtBank [8].

Table 1: Quantitative comparison. Red indicates the best
score.

Methods Ours InST [6] ArtBank [8] DiffuseIT [4]

SSIM ↑ 0.5849 0.2022 0.3261 0.2487
LPIPS ↓ 0.4946 1.3234 1.2076 1.9687

Style Loss ↓ 0.5714 3.7631 3.8581 3.0719
Content Loss ↓ 0.9731 2.4232 2.6591 3.0312
Inference Time 1.78 8.31 8.53 583.59

to blurriness (e.g. the 3rd row), and sometimes modifies the original
features of the content (e.g. the 2nd and 4th rows).

Compared to these diffusion-based methods, our results can
maintain higher fidelity color palettes and brushstrokes of the ref-
erence style image. As shown in Fig. 2 (c), our approach can ensure
that the style elements are uniformly and coherently applied across
the entire image while successfully preserving the overall outline
and texture details of the content image. Moreover, we do not need
users to provide text style descriptions, which allows arbitrary
style transfer by directly utilizing style images, thereby offering

a more user-friendly and intuitive experience. The quantitative
comparisons are shown in Table 1. Our method achieves the best
performance in terms of SSIM, LPIPS, Style Loss, and Content Loss,
demonstrating our superiority over the other methods. For infer-
ence, we measure the time for each method to process a single
content-style pair using an NVIDIA A5000. Our method is faster
than the other methods, especially surpassing the DiffuseIT [4]
method.

2.3 More Results on Our Method
As illustrated in Figure 3, we present a series of additional results
produced by our method, showcasing its adaptability across di-
verse styles. Even when presented with an artwork of an unknown
genre, our method can still capture the artistic style of the piece
and achieve arbitrary style transfer. These results emphasize our
ability to preserve the structure and details of the content images
while capturing the distinctive features of each style. Moreover, our
method can still generate natural and coherent images even when
faced with complex stylistic elements. This consistency is crucial
for maintaining the visual integrity of the style transfer.
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Figure 3: Our results on various styles. The reference style image is displayed in the lower right corner of the image.
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