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Abstract
Recently, compositional optimization (CO) has
gained popularity because of its applications in
distributionally robust optimization (DRO) and
many other machine learning problems. Often
(non-smooth) regularization terms are added to
an objective to impose some structure and/or
improve the generalization performance of the
learned model. However, when it comes to CO,
there is a lack of efficient algorithms that can
solve regularized CO problems. Moreover, cur-
rent state-of-the-art methods to solve such prob-
lems rely on the computation of large batch gra-
dients (depending on the solution accuracy) not
feasible for most practical settings. To address
these challenges, in this work, we consider a regu-
larized version of the CO problem that often arises
in DRO formulations and develop a proximal al-
gorithm for solving the problem. We perform
a Moreau envelope-based analysis and establish
that without the need to compute large batch gra-
dients Prox-DRO achieves O(ϵ−2) sample com-
plexity, that matches the vanilla SGD guarantees
for solving non-CO problems. We corroborate
our theoretical findings with empirical studies on
large-scale DRO problems.

1. Introduction
Composite optimization (CO) problems deal with the mini-
mization of the composition of functions. A standard CO
problem takes the form

minx∈Rd f(g(x)) with g(x) := Eζ∼Dg
[g(x; ζ)], (1)

where x ∈ Rd is the optimization variable, the mappings
f : Rdg → R and g : Rd → Rdg are smooth functions,
and ζ ∼ Dg represents a stochastic sample of g(·) from
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distribution Dg. The problems of the form (1) find appli-
cations in a broad range of machine learning applications,
including but not limited to distributionally robust optimiza-
tion (DRO) (Qi et al., 2022), meta-learning (Finn et al.,
2017), phase retrieval (Duchi & Ruan, 2019), portfolio opti-
mization (Shapiro et al., 2021), and reinforcement learning
(Wang et al., 2017).

Regularization terms are often added to the training objec-
tives to impose some structure to the obtained solutions
(Hoerl & Kennard, 1970; Tibshirani, 1996; Bennett & Man-
gasarian, 1992; Zou & Hastie, 2005). For example, a non-
smooth ℓ1-norm penalty is usually added to the optimiza-
tion objective to enforce sparsity in the solutions (Beck &
Teboulle, 2009). Proximal methods present a popular ap-
proach to tackle (non-smooth) regularization terms with
the optimization objective for non-compositional problems
(Ghadimi & Lan, 2012; Lewis & Wright, 2016). However,
there is a lack of efficient algorithms for solving potentially
non-smooth regularized CO problems. To fill this gap in
the literature, in this work, we focus on a more challenging
version of the CO problem in (1) that often arises in the
DRO formulation. Specifically, the problems that jointly
minimize the summation of a (non-smooth) regularization,
a compositional, and a non-compositional objective.

DRO has recently garnered significant attention from the
research community because of its capability of handling
noisy labels (Chen et al., 2022), training fair machine learn-
ing models (Haddadpour et al., 2022), imbalanced (Qi et al.,
2020a) and adversarial data (Chen & Paschalidis, 2018). A
standard approach to solve DRO is to utilize primal-dual
algorithms (Nemirovski et al., 2009) that are inherently slow
because of a large number of stochastic constraints. The CO
formulation enables the development of faster (dual-free)
primal-only DRO algorithms (Haddadpour et al., 2022). A
major drawback of current approaches to tackle CO prob-
lems is that they either rely on complicated, double-loop
algorithms with very large gradient (and function) evalu-
ations (Haddadpour et al., 2022) or are incapable of han-
dling non-smooth regularization terms (Wang et al., 2017;
Ghadimi et al., 2020; Chen et al., 2022). In this work, we ad-
dress these challenges and develop, Prox-DRO, a proximal
algorithm to solve typical versions of regularized CO prob-
lems that are often observed in DRO formulations. Major
contributions of our work are listed below:
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– We develop, Prox-DRO, a Proximal-SGD-type algo-
rithm to solve potentially non-smooth CO problems.
The proposed algorithm utilizes a hybrid momentum-
based estimator to learn the compositional embedding,
g(·), and combine it with the proximal stochastic gra-
dient (SG) updates. This construction allows us to cir-
cumvent the need to compute large accuracy-dependent
batch sizes for computing the gradients and the com-
positional function evaluations.

– The regularized CO problem may be potentially non-
smooth, therefore, the standard notion of stationarity is
not sufficient to characterize the quality of the obtained
solutions. To address this, we adopt a Moreau envelope-
based analysis. We show that to reach an ϵ-stationary
point of the Moreau envelope of the non-smooth ob-
jective, Prox-DRO requires O(ϵ−2) samples while
computing the batch gradients that are independent of
the solution accuracy. To the best of our knowledge,
this is the first analysis to establish such a guarantee
for solving general DRO problems.

– We conduct experiments on large-scale DRO prob-
lems to corroborate our theoretical findings. Our
experiments establish the superior performance of
Prox-DRO compared to state-of-the-art methods.

Notations: The expected value of a random variable (r.v)
X is denoted by E[X]. Conditioned on an event F the
expectation of X is denoted by E[X|F ]. We denote by R
(resp. Rd) the real line (resp. the d dimensional Euclidean
space). The notation ∥ · ∥ defines a standard ℓ2-norm. For
a set B, |B| denotes the cardinality of B. We use ξ ∼ Dh

and ζ ∼ Dg to denote the stochastic samples of h(·) and
g(·) from distributions Dh and Dg, respectively. A batch
of samples of h(·) (resp. g(·)) is denoted by bh (resp. bg).
Joint samples of h(·) and g(·) is denoted by ξ̄ = {bh, bg}.

2. Problem
In general, a DRO problem aims to solve

minx∈Rd

{
Ψ(x) := maxξ∼Q EQ[ℓ(x; ξ)]

}
(2)

where ξ ∼ Q represents a sample from distribution Q,
ℓ(x; ξ) is the loss function and Q belongs to an uncertainty
set Um (Duchi & Ruan, 2019). It has been established in the
past that particular reformulation of the DRO (see Section
2.1) problem in (2) can be equivalently stated as regularized
CO that we tackle in this work (Haddadpour et al., 2022).
Specifically, we consider the following CO problem

minx∈Rd

{
Ψ(x) := r(x) + h(x) + f(g(x))︸ ︷︷ ︸

Φ(x)

}
(3)

where h : Rd → R and g : Rd → R are h(x) :=
Eξ∼Dh

[h(x; ξ)] and g(x) := Eζ∼Dg [g(x; ζ)], respectively.
The mapping r : Rd → R is possibly a non-smooth closed
and convex proximable function (see Definition 3.5) while
f(·) is the same as in (1). Also, ξ ∼ Dh (resp. ζ ∼ Dg)
represents a sample of h(·) (resp. g(·)) from distribution
Dh (resp. Dg).

We note that in contrast to the standard CO problem in
(1), the formulation in (3) represents a hybrid objective,
Φ(·), which is a combination of compositional and non-
compositional objectives and is regularized by a potentially
non-smooth regularizer r(·). Note that the joint functionΨ(·)
in (3) may be non-smooth. Therefore, the standard notion of
smoothness is not applicable to this problem. In this work,
we develop a proximal algorithm for solving (3) and utilize
a Moreau envelope-based notion of stationarity to evaluate
the algorithm’s performance (Davis & Drusvyatskiy, 2019).
Next, we discuss various DRO formulations where problems
of the form (3) often arise

2.1. Examples: Regularized CO to solve DRO Problems

In this section, we discuss different DRO formulations that
can be efficiently solved using CO. A standard reformulation
of (2) with a set of m training samples {ζi}mi=1 is

min
x∈X

max
{p∈Pm:D∗(p,1/m)≤ρ}

m∑
i=1

piℓ(x; ζi)− λ0D∗(p,1/m)

(4)

where x ∈ Rd is the model parameter and X ⊂ Rd is a
closed convex set, Pm := {p ∈ Rm :

∑m
i=1 pi = 1, pi ≥

0} denotes a m-dimensional simplex, D∗(p,1/m) denotes
a divergence metric that measures the distance between
p and uniform probability 1/m ∈ Rm, ℓ(x, ζi) denotes
the loss function on sample ζi, ρ is a constraint parameter,
and λ0 is a hyperparameter. Next, we discuss two popular
equivalent reformulations of (4) in the form of CO problems.

DRO with KL-Divergence. Problem (4) is referred to as a
KL-regularized DRO when the distance metric D∗(p,1/m)
utilized to measure the distance between p and 1/m is
the KL-Divergence, i.e. when we have D∗(p,1/m) =
DKL(p,1/m) with DKL(p,1/m) :=

∑m
i=1 pi log(pim).

For this case, an equivalent reformulation of problem (4) is
(Qi et al., 2022)

min
x∈X

min
λ≥λ0

λ log
( 1

m

m∑
i=1

exp
(ℓ(x; ζi)

λ

))
+ (λ− λ0)ρ,

a CO problem with joint parameter [x⊤, λ]⊤ ∈ Rd+1, g(·)
defined as g(x, λ) =

[
λ, 1/m

∑m
i=1 exp(ℓ(x; ζi)/λ)

]
∈

R2 , f(g(x)) = g1 log(g2)+g1(ρ) and h(x) = 0. Note here
that function r(x, λ) takes the form of indicator function
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Table 1. Comparison of Prox-DRO with the existing works. Here, CO + Proj (resp. Prox) refers to the compositional optimization +
projection (resp. proximal) updates. CO + Non-CO + Prox refers to compositional, non-compositional, and proximal objectives.
SGD refers to stochastic gradient descent update for the model parameters. A-SGD (resp. M-SGD) refers to SGD update with acceleration
(resp. momentum). M (resp. MVR) refers to the momentum (resp. momentum-based variance reduction) update for inner-function
estimation. VR refers to variance reduction. (I) and (O) refers to the inner and outer loop, respectively.
∗ Theoretical guarantees for GCIVR exist only for the finite sample setting with m total samples.

ALGORITHM SETTING UPDATE BATCH-SIZES CONVERGENCE
SCGD (Wang et al., 2017) CO + Proj SGD + M O(1) O(ϵ−4)

ASC-GD (Wang et al., 2016) CO + Prox A-SGD + M O(1) O(ϵ−2.25)
NASA(Ghadimi et al., 2020) CO + Proj M-SGD + M O(1) O(ϵ−2)

SCSC (Chen et al., 2021) CO SGD + MVR O(1) O(ϵ−2)
GCIVR∗ (Haddadpour et al., 2022) CO + Non-CO + Prox VR

√
m (I),m (O) O(min{

√
mϵ−1, ϵ−1.5})

Prox-DRO (Ours) CO + Non-CO + Prox SGD + MVR O(1) O(ϵ−2)

on the set {[x⊤, λ]⊤ ∈ Rd+1 : x ∈ X , λ ≥ λ0} which is a
non-smooth function.

DRO with χ2-Divergence Similar to KL-regularized
DRO, (4) is referred to as a χ2-regularized DRO when
D∗(p,1/m) utilized to measure the distance between p and
1/m is χ2-Divergence, i.e., when we have D∗(p,1/m) =
Dχ2(p,1/m) with Dχ2(p,1/m) := m/2

∑m
i=1(pi −

1/m)2. For this case, an equivalent reformulation of prob-
lem (4) for ρ = ∞ is (Haddadpour et al., 2022)

minx∈X
1

2λ0m

∑m
i=1

(
ℓ(x; ζi)

)2
+ 1

2λ0

(
1
m

∑m
i=1 ℓ(x; ζi)

)2

a CO problem with g(x) = 1/m
∑m

i=1 ℓ(x; ζi), f(g) =

g2/2λ0, h(x) = − 1
2λ0m

∑m
i=1

(
ℓ(x; ζi)

)2
and r(x) being

the indicator function of set X .

We note that DRO with Wasserstein distance can also be
reformulated in the form (3). Please see Section 2 of (Had-
dadpour et al., 2022) for more details. It is also worth
mentioning that in general one may include additional reg-
ularization terms (e.g., ℓ1-penalty) with the objective to
impose additional structure to the obtained solutions (Beck
& Teboulle, 2009). Moreover, we would like to point out
that the regularized CO is not limited to DRO formulations
and can be utilized to solve problems in multiple domains
(see Section 1).

2.2. Related Work

The first non-asymptotic analysis of stochastic CO problems
was performed in (Wang et al., 2017) where the authors pro-
posed Stochastic Compositional Gradient Descent (SCGD)
a two-timescale algorithm for solving problem (1). The
convergence of SCGD was improved in (Wang et al., 2016)
where the authors considered a regularized CO problem and
proposed Accelerated Stochastic Compositional Proximal
Gradient (ASC-PG) an accelerated variant of SCGD. Both
SCGD and ASC-PG achieved convergence rates strictly
worse than SGD for solving non-compositional problems.

Recently, (Ghadimi et al., 2020) and (Chen et al., 2021)
developed single time-scale algorithms, Nested Averaged
Stochastic Approximation (NASA) and Stochastically Cor-
rected Stochastic Compositional gradient method (SCSC),
respectively. Both NASA and SCSC matched the guarantees
of SGD for solving non-CO problems without requiring the
need to compute large batch gradients (or function evalu-
ations). Variance-reduced algorithms for solving the CO
problems have also been considered in the literature, how-
ever, a major drawback of such approaches is a double-loop
structure and the reliance of batch size on the desired solu-
tion accuracy (Lian et al., 2017; Zhang & Xiao, 2019; Hu
et al., 2019). Recently, (Haddadpour et al., 2022) devel-
oped Generalized Composite Incremental Variance Reduc-
tion (GCIVR) a variance-reduced double loop algorithm for
solving problems of the form (3) in the finite sum setting.
However, a major drawback of the GCIVR is its reliance on
large batch gradients and the double-loop structure which
is often less preferred compared to single-loop algorithms.
Please see Table 1 for a summary of the discussion. Also,
refer to Appendix A for a detailed literature review of DRO.

In summary, there is a lack of efficient CO algorithms to
solve problems of the form (3). Key issues with the current
approaches are

– Inability to handle potentially non-smooth (but prox-
imable) regularization terms (Chen et al., 2021;
Ghadimi et al., 2020; Wang et al., 2017).

– Worse performance of proximal CO algorithms com-
pared to vanilla SGD implementations to solve non-
compositional problems (Wang et al., 2016) or reliance
on the computation of large accuracy-dependent batch
sizes (Haddadpour et al., 2022).

In our work, we address these challenges and develop
Prox-DRO, a proximal framework to solve hybrid opti-
mization problems of the form (3).
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3. Preliminaries
In this section, we introduce the assumptions, defini-
tions, and preliminary lemmas utilized in the analysis of
Prox-DRO.

Definition 3.1 (Lipschitzness). For all x1, x2 ∈ Rd, a func-
tion Φ : Rd → R is referred to as:

1. Lipschitz smooth if it is differentiable and ∥∇Φ(x1)−
∇Φ(x2)∥ ≤ LΦ∥x1 − x2∥ for some LΦ > 0.

2. Lipschitz if ∥Φ(x1) − Φ(x2)∥ ≤ BΦ∥x1 − x2∥ for
some BΦ > 0.

3. Mean-Squared Lipschitz if Eξ̄∥Φ(x1; ξ) −
Φ(x2; ξ)∥2 ≤ B2

Φ∥x1 − x2∥2 for some BΦ > 0 and
where ξ̄ ∼ DΦ represents a stochastic sample of Φ.

Next, we make the following assumptions.

Assumption 3.2 (Lipschitzness). The following holds

1. The functions f(·), h(·), g(·) for all k ∈ [K] are
differentiable and Lipschitz-smooth with constants
Lf , Lh, Lg > 0, respectively.

2. The function f(·) is Lipschitz with constant Bf > 0.

3. The functions h(·) and g(·) are mean-squared Lipschitz
with constants Bh > 0 and Bg > 0, respectively.

Next, we introduce the unbiased and variance assumptions
on the gradients and function evaluations.

Assumption 3.3 (Unbiased Gradient and Bounded Vari-
ance). The stochastic gradients and function evaluations
of the local functions at each client are unbiased and have
bounded variance. Specifically, we have

Eξ[∇h(x; ξ)] = ∇h(x), Eζ [∇g(x; ζ)] = ∇g(x),

Eζ [g(x; ζk)] = g(x),

Eζ [∇g(x; ζ)∇f(y)] = ∇g(x)∇f(y)

and

Eξ∥∇h(x; ξ)−∇h(x)∥2 ≤ σ2
h

Eζ∥∇g(x; ζ)−∇g(x)∥2 ≤ σ2
g

Eζ∥g(x; ζ)− g(x)∥2 ≤ σ2
g ,

for some σh, σg > 0.

A few comments regarding the assumptions are in order. We
note that the above assumptions are commonplace in the
context of CO problems. Specifically, Assumption 3.2 is
required to establish Lipschitz smoothness of the composite
objective Φ(·) (please see Lemma 3.4) and is standard in

the analyses of CO problems (Wang et al., 2017; Chen et al.,
2021). Assumption 3.3 captures the effect of stochasticity
in the data gradient and function evaluations. We note that
these assumptions are standard and have been utilized in the
past for solving many non-CO problems as well (Ghadimi
& Lan, 2013; 2012). Next, we state a preliminary lemma
and the performance metrics for analyzing the CO problems
of the form (3).
Lemma 3.4 (Lipschitzness of Φ). Under Assumption 3.2 the
composite function, Φ(·), defined in (3) is Lipschitz smooth
with constant: LΦ := Lh +BfLg +B2

gLf > 0.

Lemma 3.4 establishes Lipschitz smoothness (Definition
3.1) of the compositional function Φ(·). Moreover, the func-
tion Ψ(·) is a non-convex function in general, and therefore,
we cannot expect to globally solve (3). We instead rely
on finding approximate stationary points of Ψ(·). However,
note that problem (3) is a regularized CO problem with map-
ping r(·) being potentially non-smooth. This implies that
the standard notion of stationarity might not be sufficient to
characterize the solutions of the regularized CO problem in
(3). For this purpose, we utilize a Moreau envelope-based
definition of stationarity discussed next (Davis & Drusvy-
atskiy, 2019).
Definition 3.5 (Moreau Envelope). We define the Moreau
envelope of Ψ(·) for any λ > 0 as

Ψλ(x) := argminz∈Rd

{
Ψ(z)+ 1

2λ∥z−x∥2
}

for x ∈ Rd,

while the proximal operator is defined as
proxλ

Ψ(x) :=argminz∈Rd

{
Ψ(z)+ 1

2λ∥z−x∥2
}

for x∈ Rd.

An important property of the Moreau envelope is that as
long as λ < 1/LΦ the mapping Ψλ(x) is continuously
differentiable. This smoothing of Ψ allows the development
of an alternate notion of stationarity defined next.
Definition 3.6 (ϵ-stationary point - Reguralized CO Prob-
lem). A point x generated by a stochastic algorithm is an
ϵ-stationary point of possibly non-smooth function Ψ(·) (see
(3)) if E∥∇Ψλ(x)∥2 ≤ ϵ for some λ < 1/LΦ.

Note that the condition E∥∇Ψλ(x)∥2 ≤ ϵ ensures the sub-
gradient of Ψ(·) in a neighboring point of x will also be
small (Davis & Drusvyatskiy, 2019). Please see Appendix
B for further details.

4. Proximal CO: Prox-DRO
In this section, we develop Prox-DRO, an algorithm to
solve the regularized CO problem (3). For Prox-DRO, we
assume that r(·) is convex and proximable mapping. We
utilize the proximal operator of the mapping r(·), proxλ

r (x)
(see Definition 3.5), for updating the model parameters.

The detailed steps of Prox-DRO are listed in Algorithm
1. Specifically, for Prox-DRO we compute the stochastic



Proximal Compositional Optimization for Distributionally Robust Learning

Algorithm 1 Algorithm: Prox-DRO

1: Input: Parameters: {βt}T−1
t=0 , {ηt}T−1

t=0 ,
2: Initialize: x0, y0

3: for t = 0 to T − 1 do
4: Sample ξ̄t = {btg, bth} uniformly randomly from Dg

and Dh, respectively

5: Update:


yt using (6)
Compute ∇Φ(xt; ξ̄t) using (5)
xt+1 = proxη

t

r (xt − ηt∇Φ(xt; ξ̄t))

6: end for
7: Return: xa(T ) where a(T ) ∼ U{1, ..., T}.

gradient of Φ(xt) denoted as ∇Φ(xt; ξ̄t) in each iteration
t ∈ {0, 1, . . . , T − 1} in Step 5 using the chain rule of
differentiation as

∇Φ(xt; ξ̄t) = 1
|bth|

∑
i∈bth

∇h(xt; ξti)

+ 1
|btg|

∑
j∈btg

∇g(xt; ζtj)∇f(yt),
(5)

where ξ̄t = {bth, btg} represents the stochasticity of the gra-

dient estimate with bth = {ξti}
|bth|
i=1 (resp. btg = {ζti}

|btg|
i=1)

as the batch of stochastic samples of h(·) (resp. g(·)) uti-
lized to compute the stochastic gradient estimate. Here, the
variable yt is an estimate of the function g(xt) for each
t ∈ {0, 1, . . . , T − 1} and is updated using the momentum-
based estimator proposed in (Chen et al., 2021) as

yt = (1− βt)
(
yt−1 − 1

|bgt |
∑

i∈bgt
g(xt−1; ζti )

)
+ 1

|btg|
∑

i∈btg
g(xt; ζ

t
i ),

(6)

where βt ∈ (0, 1) is a momentum parameter. Finally, the
model parameter xt for all t ∈ [T ] is updated in Step 5 first
by taking an SGD update and then evaluating the proximal
operator of r(·) on the updated step.

Next, we characterize the convergence of Prox-DRO.

5. Main Result: Convergence of Prox-DRO
In this section, we present the convergence guarantees for
Prox-DRO. In the following, we characterize the behavior
of the gradient of the Moreau envelope of Ψ(·).
Theorem 5.1 (Convergence of Prox-DRO). For Algorithm
1, choosing the step-size ηt such that

ηt ≤ max

{
1

L̄
,
2L̄Φ,γ

L2
Φ

,
1

4

(
1 +

1

γ

)}
,

where L̄Φ,γ := max{LΦ, 1 + γ} with constant γ > 0 and
L̄ ∈ (8L̄Φ,γ , 16L̄Φ,γ ]. Moreover, choosing the momentum
parameter βt as

βt = 2
(
1 +

1

γ

)
B2

gL
2
f L̄ · ηt.

Then for the selection of batch-sizes |bth| = |btg| = |b| for all
t ∈ {0, 1, . . . , T − 1} under Assumptions 3.2 and 3.3, the
iterates generated by Algorithm 1 satisfy

T−1∑
t=0

ηtE∥∇Ψ1/L̄(x
t)∥2

≤
(

2L̄

L̄− 8L̄Φ,γ

)[(
Ψ1/L̄(x

0)−Ψ∗
1/L̄

)
+ ∥y0 − g(x0)∥2 + CΨ

|b|

T−1∑
t=0

(ηt)2
]
,

where ∇Ψ1/L̄(x
t) is the Moreau envelope of Ψ(·) defined in

Definition 3.5, Ψ∗
1/L̄

= minx Ψ1/L̄(x) and CΨ is a constant
defined in Appendix B.

The detailed proof of Theorem 5.1 is given in Appendix B.
Compared to a standard non-compositional problem (Davis
& Drusvyatskiy, 2019), where one can directly establish de-
scent in the Moreau envelope of Ψ(·), our analysis utilizes
a potential function-based analysis to prove Theorem 5.1.
Specifically, the designed potential function depends on the
Moreau envelope of Ψ(·) as well as on the bias in the com-
puted stochastic gradients for the CO problem. Our analysis
generalizes the results of (Davis & Drusvyatskiy, 2019) to
CO problems via utilizing a momentum update (see (6)) that
helps mitigate the gradient bias asymptotically. Next, we
characterize the sample complexity of Prox-DRO.
Corollary 5.2 (Sample Complexity of Prox-DRO). Under

the same setting as Theorem 5.1, choosing ηt = η = κ
√

|b|
T

for all t ∈ {0, 1, . . . , T − 1} for some κ > 0 such that

κ ≤

√
T

|b|
·max

{
1

L̄
,
2L̄Φ,γ

L2
Φ

,
1

4

(
1 +

1

γ

)}
.

Then for the choice L̄ = 16L̄Φ,γ , the iterate xa(T ) chosen
according to Algorithm 1 satisfies

E∥∇Ψ1/L̄(x
a(T ))∥2

≤ 4 ·
[(Ψ1/L̄(x

0)−Ψ∗
1/L̄

)
+ ∥y0 − g(x0)∥2 + CΨ

κ
√

|b|T

]
,

Moreover, this implies that the sample complexity of
Prox-DRO is O(ϵ−2).

A key consequence of Corollary 5.2 is that
Prox-DRO achieves a sample complexity of O(ϵ−2)
without requiring large batch sizes of stochastic gradient
(or function) evaluations. This is in key contrast to
(Haddadpour et al., 2022) where the batch sizes depend on
the total sample size. In addition, our analysis improves
the guarantees in (Wang et al., 2016) and establishes that
the regularized CO problems can be solved with the same
sample complexity as the standard non-compositional SGD
(Ghadimi & Lan, 2013).
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6. Experiments
In this section, we evaluate the performance of
Prox-DRO with popular baselines to solve DRO problems.
The models are trained on an NVIDIA GeForce RTX 3090
GPU with 24 GB memory. All experiments are conducted
using Python 3.9.16 and PyTorch 1.8. To evaluate the perfor-
mance of Prox-DRO, we focus on two tasks: classification
with an imbalanced dataset and learning with fairness con-
straints. The goal of the experiments is twofold, first, we
establish superior performance of Prox-DRO in terms of
training/testing accuracy. Second, we establish the fast con-
vergence of Prox-DRO compared to competing baselines.

Classification with Imbalanced Dataset. For the image
classification task, we utilize CIFAR10-ST and CIFAR100-
ST datasets (Qi et al., 2020b) (imbalanced versions of CI-
FAR10 and CIFAR100 (Krizhevsky, 2009)), and evaluate
the performance via training and testing accuracy achieved
by different algorithms with ResNet20. The baselines
adopted for comparison are a popular DRO method, Fast-
DRO (Levy et al., 2020), a primal-dual SGD approach to
solve constrained problems with many constraints, PDSGD
(Xu, 2020), and a popular baseline minibatch SGD, MB-
SGD, customized for CO (Ghadimi & Lan, 2013). For each
algorithm, we used a batch size of 128, and the learning
rates are tuned from the set {0.001, 0.01, 0.05, 0.1}, the
learning rate was dropped to 1/10th after 90 iterations. As
can be observed in Figure 1, Prox-DRO outperforms other
baselines for both CIFAR10-ST and CIFAR100-ST in terms
of guaranteeing higher training and testing accuracies while
achieving faster convergence compared to other baselines.

Classification with Fairness Constraints. For the sec-
ond task, we use the Adult dataset (Dua & Graff, 2017)
for enforcing equality of opportunity (on protected classes)
on tabular data classification (Hardt et al., 2016). We use
GCIVR (Haddadpour et al., 2022) as the baseline model to
compare with Prox-DRO, since like Prox-DRO it is the
only algorithm that can deal with regularization, as well
as compositional and non-compositional objectives at the
same time. We also implement a simple parallel SGD al-
gorithm as a baseline that ignores the fairness constraints,
referred to as unconstrained in the experiments. We utilize a
logistic regression model for the task. We adopt the parame-
ter settings as suggested in (Haddadpour et al., 2022) and
for Prox-DRO we keep the same setting as in the earlier
task. For this setting, the performance is evaluated by train-
ing/testing accuracy, and the constraint violations, which
are measured by the gap between the true positive rate of
the overall data and the protected groups (Haddadpour et al.,
2022). In Figure 2, we compare the training/testing ac-
curacies and the max group violation during the training
and testing phase of Prox-DRO against the baselines on
the Adult dataset. We note that Prox-DRO clearly out-

Figure 1. Training and testing accuracies of different algorithms
on CIFAR10-ST and CIFAR100-ST datasets .

performs GCIVR and the baseline SGD in terms of train-
ing and testing performance. Moreover, we note that the
Prox-DRO matches the constraint violation performance
of GCIVR as the iteration count increases.

Figure 2. Training and testing accuracies and maximum group
violation of different algorithms on the Adult dataset.

7. Conclusion
In this work, we proposed Prox-DRO, a proximal algo-
rithm to solve CO problems of the form (3) that often
arise in DRO formulations. Utilizing a Moreau envelope-
based analysis, we established O(ϵ−2) convergence of
Prox-DRO, which matches the convergence of vanilla SGD
for minimizing non-compositional objectives. Importantly,
Prox-DRO achieves this performance without the com-
putation of large accuracy-dependent batch gradients or
function evaluations.
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Appendix

A. Related Work
DRO. DRO has been extensively studied in optimization, machine learning, and statistics literature (Ben-Tal et al., 2013;
Bertsimas et al., 2018; Duchi et al., 2021; Namkoong & Duchi, 2017; Staib & Jegelka, 2019) Broadly, DRO problem
formulation can be divided into two classes, one is a constrained formulation and the other is the regularized formulation (see
(4)) (Levy et al., 2020; Duchi et al., 2021). A popular approach to solve the constrained DRO formulation is via primal-dual
formulation where algorithms developed for min-max problems can directly be applied to solve constrained DRO (Yan
et al., 2019; Namkoong & Duchi, 2017; Song et al., 2021; Alacaoglu et al., 2022; Tran Dinh et al., 2020). Many algorithms
under different settings, e.g., convex, non-convex losses, and stochastic settings have been considered in the past to address
such problems. However, primal-dual algorithms suffer from computational bottlenecks, since they require maintaining and
updating the set of dual variables equal to the size of the dataset which can become particularly challenging, especially for
large-scale machine learning tasks. Recently, (Levy et al., 2020) (Qi et al., 2022) (Haddadpour et al., 2022) have developed
algorithms that are applicable to large-scale stochastic settings. Works (Levy et al., 2020) and (Qi et al., 2022) consider
specific formulations of the DRO problem while (Haddadpour et al., 2022) considers a general formulation, however, as
pointed out earlier the algorithms developed in (Haddadpour et al., 2022) are double loop and require accuracy-dependent
batch sizes to guarantee convergence (see Table 1). In contrast, in this work, we develop algorithms that solve general
instants of CO problems that often arise in DRO formulation. Importantly, the developed algorithm is amenable to large-scale
implementation with algorithmic guarantees independent of accuracy-dependent batch sizes.

B. Proof of Theorem 5.1
Theorem B.1. For Algorithm 1, choosing the step-size ηt such that

ηt ≤ max

{
1

L̄
,
2L̄Φ,γ

L2
Φ

,
1

4

(
1 +

1

γ

)}
where L̄Φ,γ := max{LΦ, 1 + γ} with constant γ > 0 and L̄ ∈ (8L̄Φ,γ , 16L̄Φ,γ ]. Moreover, choosing the momentum
parameter βt as

βt = C(Lf , Bg, γ) · ηt with C(Lf , Bg, γ) := 2

(
1 +

1

γ

)
B2

gL
2
f L̄.

Then for the selection of batch-sizes |bth| = |btg| = |b| for all t ∈ {0, 1, . . . , T − 1}, under Assumptions 3.2 and 3.3, the
iterates generated by Algorithm 1 satisfy

T−1∑
t=0

ηtE∥∇Ψ1/L̄(x
t)∥2 ≤

(
2L̄

L̄− 8L̄Φ,γ

)[(
Ψ1/L̄(x

0)−Ψ∗
1/L̄

)
+ ∥y0 − g(x0)∥2 + CΨ

|b|

T−1∑
t=0

(ηt)2
]
,

where ∇Ψ1/L̄(x
t) is the Moreau envelope of Ψ(·) defined in Definition 3.5, Ψ∗

1/L̄
= minx Ψ1/L̄(x) and CΨ is a constant

defined as

CΨ := 2σ2
hL̄+ 4B2

fσ
2
gL̄+ 2C2(Lf , Bg, γ)σ

2
g + 2B2

gB
2
Φ.

Proof. First, defining the Moreau envelope of Ψ(·) as

Ψλ(x) := min
z

{
Ψ(z) +

1

2λ
∥z − x∥2

}
.

Using the above definition, we have for x̂ := proxλΨ(x) := argminz

{
Ψ(z) + 1

2λ∥z − x∥2
}


∥x̂− x∥ = λ∥∇Ψλ(x)∥
Ψ(x̂) ≤ Ψ(x)

dist(0, ∂Ψ(x̂)) ≤ ∥∇Ψλ(x)∥
(7)
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Recall that Ψ(x) = r(x) +Φ(x) is LΦ-weakly convex. Let us define L̄ > LΦ with x̂t := prox1/L̄
Ψ , this implies that we have

0 ∈ ∂Ψ(x̂t) + L̄(x̂t − x)

L̄(x̂t − x) ∈ ∂r(x̂t) +∇Φ(x̂t)

ηtL̄(xt − x̂t) ∈ ηt∂r(x̂t) + ηt∇Φ(x̂t)

ηL̄xt − ηt∇Φ(x̂t) + (1− ηtL̄)x̂t ∈ x̂t + ηt∂r(x̂t)

x̂t = proxηt

r

(
ηtL̄xt − ηt∇Φ(x̂t) + (1− ηtL̄)x̂t

)
.

Using the above fact, we have

E∥xt+1 − x̂t∥2 = E∥proxη
t

r (xt − ηt∇Φ(xt; ξ̄t))− proxη
t

r

(
ηtL̄xt − ηt∇Φ(x̂t) + (1− ηtL̄)x̂t

)
∥2

≤ E∥(xt − ηt∇Φ(xt; ξ̄t))−
(
ηtL̄xt − ηt∇Φ(x̂t) + (1− ηtL̄)x̂t

)
∥2

= E∥(1− ηtL̄)(xt − x̂t) + ηt
(
∇Φ(x̂t)−∇Φ(xt; ξ̄t)

)
∥2

= (1− ηtL̄)2E∥xt − x̂t∥2 + (ηt)2E∥∇Φ(x̂t)−∇Φ(xt; ξ̄t)∥2︸ ︷︷ ︸
Term I

−2ηt(1− ηtL̄)E
〈
xt − x̂t,∇Φ(xt; ξ̄t)−∇Φ(x̂t)

〉︸ ︷︷ ︸
Term II

Now, considering each term separately, we have

Term II = −2ηt(1− ηtL̄)E
〈
xt − x̂t,∇Φ(xt; ξ̄t)−∇Φ(x̂t)

〉
= −2ηt(1− ηtL̄)E

[〈
xt − x̂t,∇Φ(xt)−∇Φ(x̂t)

〉
+

〈
xt − x̂t,∇Φ(xt; ξ̄t)−∇Φ(xt)

〉]
≤ 2ηtLΦ(1− ηtL̄)E∥xt − x̂t∥2 − 2ηt(1− ηtL̄)E

〈
xt − x̂t,∇Φ(xt; ξ̄t)−∇Φ(xt)

〉
.

Next,

Term I = (ηt)2E∥∇Φ(x̂t)−∇Φ(xt; ξ̄t)∥2

≤ 2(ηt)2E∥∇Φ(xt; ξ̄t)−∇Φ(xt)∥2 + 2(ηt)2E∥∇Φ(xt)−∇Φ(x̂t)∥2

≤ 2(ηt)2E∥∇Φ(xt; ξ̄t)−∇Φ(xt)∥2 + 2(ηt)2L2
ΦE∥xt − x̂t∥2.

Combining the terms, we get

E∥xt+1 − x̂t∥2 ≤
[
(1− ηtL̄)2 + 2ηtLΦ(1− ηtL̄) + 2(ηt)2L2

Φ

]
E∥xt − x̂t∥2

+ 2(ηt)2 E∥∇Φ(xt; ξ̄t)−∇Φ(xt)∥2︸ ︷︷ ︸
Term III

−2ηt(1− ηtL̄)E
〈
xt − x̂t,∇Φ(xt; ξ̄t)−∇Φ(xt)

〉︸ ︷︷ ︸
Term IV

Again considering Terms III and IV separately, we have

Term III = E∥∇Φ(xt; ξ̄t)−∇Φ(xt)∥2

= E
∥∥∥∥[ 1

|bth|
∑
i∈bth

∇h(xt; ξti) +
1

|btg|
∑
i∈btg

∇g(xt; ζti )∇f(yt)

]
−

[
∇h(xt) +∇g(xt)∇f(g(xt))

]∥∥∥∥2

≤ 2σ2
h

|bth|
+ 2E

∥∥∥∥ 1

|btg|
∑
i∈btg

∇g(xt; ζti )∇f(yt)−∇g(xt)∇f(g(xt))

∥∥∥∥2

≤ 2σ2
h

|bth|
+

4B2
fσ

2
g

|btg|
+ 4B2

gL
2
f∥yt − g(xt)∥2.
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Next, we have

Term IV = E
〈
xt − x̂t,∇Φ(xt; ξ̄t)−∇Φ(xt)

〉
= E

〈
xt − x̂t,

1

|btg|
∑
i∈btg

∇g(xt; ζti )∇f(yt)−∇g(xt)∇f(g(xt))
〉

≤ (1 + γ)E∥xt − x̂t∥2 +
(
1 +

1

γ

)
B2

gL
2
f∥yt − g(xt)∥2.

Combining all the terms we finally get

E∥xt+1 − x̂t∥2 ≤
[
(1− ηtL̄)2 + 2ηtLΦ(1− ηtL̄) + 2(ηt)2L2

Φ + 2ηt(1− ηtL̄)(1 + γ)
]
E∥xt − x̂t∥2

+
[
2ηt(1− ηtL̄)

(
1 +

1

γ

)
B2

gL
2
f + 8(ηt)2B2

gL
2
f

]
E∥yt − g(xt)∥2

+
4(ηt)2σ2

h

|bth|
+

8B2
f (η

t)2σ2
g

|btg|
.

Define L̄Φ,γ := max{LΦ, 1 + γ}, choosing ηt such that ηt ≤ max{1/L̄, 2L̄Φ,γ/L
2
Φ, (1/4)(1 + 1/γ)}, and assuming

|bth| = |bh| and |btg| = |bg| for all t ∈ {0, 1, . . . , T − 1}

E∥xt+1 − x̂t∥2 ≤
[
(1− ηt(L̄− 8L̄Φ,γ)

]
E∥xt − x̂t∥2 + 4ηt

(
1 +

1

γ

)
B2

gL
2
f E∥yt − g(xt)∥2︸ ︷︷ ︸

Term V

+
4(ηt)2σ2

h

|bh|
+

8B2
f (η

t)2σ2
g

|bg|
.

Next, considering Term V for t+ 1 , we get

Term V = E∥yt − g(xt)∥2

= E
∥∥∥(1− βt)

(
yt−1 +

1

|bg|
∑
i∈btg

g(xt; ζti )−
1

|bg|
∑
i∈btg

g(xt−1; ζti )
)
+

βt

|bg|
∑
i∈btg

g(xt; ζti )− g(xt)
∥∥∥2

= (1− βt)2 E∥yt−1 − g(xt−1)∥2

+
∥∥∥(1− βt)

[
(g(xt−1)− g(xt))− 1

|bg|
∑
i∈btg

(
g(xt−1; ζti )− g(xt; ζti )

)]
+ βt

(
1

|bg|
∑
i∈btg

g(xt; ζti )− g(xt)

)∥∥∥2
≤ (1− βt)2E∥yt−1 − g(xt−1)∥2 +

2(βt)2σ2
g

|bg|

+ 2(1− βt)2 E
∥∥∥(g(xt−1)− g(xt)

)
− 1

|bg|
∑
i∈btg

(
g(xt−1; ζti )− g(xt; ζti )

)∥∥∥2
≤ (1− βt)2E∥yt−1 − g(xt−1)∥2 +

2(βt)2σ2
g

|bg|

+
2(1− βt)2

|bg|2
∑
i∈btg

E
∥∥(g(xt−1)− g(xt)

)
−

(
g(xt−1; ζti )− g(xt; ζti )

)∥∥2
≤ (1− βt)2E∥yt−1 − g(xt−1)∥2 +

2(βt)2σ2
g

|bg|
+

2(1− βt)2

|bg|2
∑
i∈btg

E
∥∥g(xt−1; ζti )− g(xt; ζti )

∥∥2
≤ (1− βt)2E∥yt−1 − g(xt−1)∥2 +

2(βt)2σ2
g

|bg|
+

2(1− βt)2B2
g

|bg|
E
∥∥xt − xt−1

∥∥2
≤ (1− βt)2E∥yt−1 − g(xt−1)∥2 +

2(βt)2σ2
g

|bg|
+

2(1− βt)2B2
g(η

t−1)2

|bg|
E
∥∥∇Φ(xt−1; ξ̄t−1)

∥∥2
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≤ (1− βt)2E∥yt−1 − g(xt−1)∥2 +
2(βt)2σ2

g

|bg|
+

2B2
gB

2
Φ(η

t−1)2

|bg|
.

where BΦ is defined as: B2
Φ := 2B2

h + 2B2
gB

2
f . Finally, we have

E[Ψ1/L̄(x
t+1)] ≤ E

[
Ψ(x̂t) +

L̄

2
∥x̂t − xt+1∥2

]
Using the bound on E∥x̂t − xt+1∥2, we get

E[Ψ1/L̄(x
t+1)] ≤ E

[
Ψ(x̂t) +

L̄

2
∥x̂t − xt∥2

]
− L̄

2

[
ηt(L̄− 8L̄Φ,γ)E∥x̂t − xt∥2

+ 4ηt
(
1 +

1

γ

)
B2

gL
2
fE∥yt − g(xt)∥2 + 4(ηt)2σ2

h

|bh|
+

8B2
f (η

t)2σ2
g

|bg|

]
= Ψ1/L̄(x

t) +
L̄

2

[
− ηt(L̄− 8L̄Φ,γ)E∥x̄t − xt∥2 + 4ηt

(
1 +

1

γ

)
B2

gL
2
fE∥yt − g(xt)∥2

+
4(ηt)2σ2

h

|bh|
+

8B2
f (η

t)2σ2
g

|bg|

]
.

Defining the potential function as: P t+1 := E[Ψ1/L̄(x
t+1) + ∥yt+1 − g(xt+1)∥2], we have

P t+1 − P t ≤ −ηtL̄

2
(L̄− 8L̄Φ,γ)E∥x̂t − xt∥2 + 2ηtL̄

(
1 +

1

γ

)
B2

gL
2
fE∥yt − g(xt)∥2

+
2(ηt)2σ2

hL̄

|bh|
+

4B2
f (η

t)2σ2
gL̄

|bg|
− βtE∥yt − g(xt)∥2 +

2(βt)2σ2
g

|bg|
+

2B2
gB

2
Φ(η

t)2

|bg|

Choosing

βt = 2

(
1 +

1

γ

)
B2

gL
2
f L̄︸ ︷︷ ︸

C(Lf ,Bg,γ)

·ηt

we get

P t+1 − P t ≤ −ηtL̄

2
(L̄− 8L̄Φ,γ)E∥x̂t − xt∥2 + 2(ηt)2σ2

hL̄

|bh|
+

4B2
f (η

t)2σ2
gL̄

|bg|
+

2C2(Lf , Bg, γ)(η
t)2σ2

g

|bg|
+

2B2
gB

2
Φ(η

t)2

|bg|
,

Telescoping the sum over t = {0, . . . , T − 1}, we get

PT − P 0 ≤
T−1∑
t=0

−ηtL̄

2
(L̄− 8L̄Φ,γ)E∥x̂t − xt∥2 +

[
2σ2

hL̄

|bh|
+

4B2
fσ

2
gL̄

|bg|
+

2C2(Lf , Bg, γ)σ
2
g

|bg|
+

2B2
gB

2
Φ

|bg|

] T−1∑
t=0

(ηt)2

Choosing |bh| = |bg| = |b|, we get

PT − P 0 ≤
T−1∑
t=0

−ηtL̄

2
(L̄− 8L̄Φ,γ)E∥x̂t − xt∥2 +

[
2σ2

hL̄+ 4B2
fσ

2
gL̄+ 2C2(Lf , Bg, γ)σ

2
g + 2B2

gB
2
Φ

]
︸ ︷︷ ︸

CΨ

1

|b|

T−1∑
t=0

(ηt)2

Rearranging the terms, we get

L̄(L̄− 8L̄Φ,γ)

2

T−1∑
t=0

ηtE∥x̂t − xt∥2 ≤ P 0 − PT +
CΨ

|b|

T−1∑
t=0

(ηt)2
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Using (7) and multiplying both sides by 2L̄
L̄−8L̄Φ,γ

, we get

T−1∑
t=0

ηtE∥∇Ψ1/L̄(x
t)∥2 ≤

(
2L̄

L̄− 8L̄Φ,γ

)(
P 0 − PT +

CΨ

|b|

T−1∑
t=0

(ηt)2
)

Finally, using the definition of the potential function, we get

T−1∑
t=0

ηtE∥∇Ψ1/L̄(x
t)∥2 ≤

(
2L̄

L̄− 8L̄Φ,γ

)((
Ψ1/L̄(x

0)−Ψ∗
1/L̄

)
+ ∥y0 − g(x0)∥2 + CΨ

|b|

T−1∑
t=0

(ηt)2
)

where Ψ∗
1/L̄

= minx Ψ1/L̄(x).


