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ABSTRACT

Despite recent advancements in diffusion-based audio generation, precisely editing
content in a specific area of a recording remains challenging. In this paper, we
introduce AudioMorphix, a training-free audio editor that manipulates a target
area of a recording using another recording as a reference. Specifically, we concep-
tualize audio editing as part of a morphing cycle, in which different sounds can be
combined into a cohesive audio mixture through morphing, whereas the mixture
can be disentangled into individual components via demorphing. Leveraging the
concept of audio morphing cycle, we optimize the noised latent conditioned on
raw input together with reference audio and devise a series of energy functions to
refine the guided diffusion process. Additionally, we manipulate the features within
self-attention layers to preserve detailed characteristics from the original recordings.
To accommodate a broad range of audio editing techniques, we collected a new
evaluation dataset, providing editing instructions, reference audio and captions, and
the duration of the edited area as guidance. Extensive experiments demonstrate that
the AudioMorphix yields promising performance on various audio editing tasks,
including addition, removal, and style transferring. Demo and code is available at
this url.
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Figure 1: Audio editing tasks of which our AudioMorphix is capable with no training cost. We use
green to highlight the editing region on the source audio while blue and red indicates the regions for
addition and removal, respectively. The arrows represent the direction of the editing process, showing
the flow from the reference audio to the source audio.

1 INTRODUCTION

Generative modelling has witnessed rapid breakthrough in the recent years, particularly in the domain
of denoising diffusion models (Ho et al., 2020; Song et al., 2022). Despite progress was primarily seen
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in the image synthesis, applications of audio generation have been attracting increasing interests (Liu
et al., 2023; Ghosal et al., 2023; Majumder et al., 2024). While audio diffusion methods (Liu et al.,
2023; Huang et al., 2023) are capable of generating diverse, high-fidelity audio, designing plausible
guidance signals to create content consistent with user preference remains challenging.

Recent works have explored manipulating the audio content to align with user preference better.
Wang et al. (2023) trained an end-to-end latent diffusion model to edit the audio content using text
instructions. Manor & Michaeli (2024) and Liu et al. (2023) achieved editing by inverting raw audio
into noisy latent and re-sample sounds from the obtained latent with new instructions. However,
these audio editing methods heavily rely on textual instructions or description of the audio content
and thus cannot precisely change the audio content within a specific region, limiting their ability to
fully meet user preference. In the image domain, a local-editing approach was proposed by Shi et al.
(2023) to alter the user-specified region in an image using a specified mask and a reference image.
Nevertheless, such strategies cannot be directly applied to the audio domain: compared to images,
where pixels can be simply added, audio mixtures often involves different sounds entangled in the
same time-frequency (T-F) patches on the spectrogram. This naturally rises the question: Can we edit
sound in a controllable manner by guiding the diffusion process in the latent space?

In this paper, we introduce AudioMorphix, a novel training-free sound editor that manipulates raw
audio recordings conditioned on reference audio and a binary spectrogram mask. In particular, we
cast audio editing as part of a morphing cycle performed on the latent space manifold (He et al., 2023;
Yang et al., 2024): a sound mixture is created by morphing different recordings, while individual
tracks are separated by demorphing the mixtures. Consequently, common audio editing tasks like
addition and removal can be specified as latent morphing traversal on the manifold. By leveraging
audio morphing cycle, we devise a gradient-based optimization method to iteratively search an
appropriate noisy latent of the current diffusion process. We further design various energy function to
guide the sampling process of latent diffusion models (Liu et al., 2023; Ghosal et al., 2023; Majumder
et al., 2024). Additionally, we preserve the details of raw audio by substituting key, value components
of self-attention layers in the current diffusion process with those from the reference audio, following
empirical findings in the image domain. To evaluate a broader range of audio editing methods, as
shown in Figure 1, we propose a new audio editing dataset that enables manipulation of raw audio
content using various prompts, such as paired text description, task instruction, and reference audio.

Experiment results show that the proposed AudioMorphix outperforms state-of-the-art audio editing
models on audio addition, removal, replacement and style transferring tasks. We also examine the
impact of various system factors by ablation study of in our proposed components.

In summary, the contributions of this paper are as follows:

• We introduce a training-free framework that edits the specific region of raw audio by using
pretrained audio diffusion models. To address the audio transparency, we cast editing tasks onto
audio morphing cycle - a sound mixture is obtained by morphing two different sound while
individual sounds are produced by demorphing a mixture.

• We proposed latent optimization method to estimate the targeted T-F patches of noisy latent via
gradient-based optimization.

• We devise energy functions to guide audio generation along the trajectory of diffusion process. We
also manipulate the features in self-attention layers by substituting the key and value components
of the generation with those from the reference sounds.

• We create a new dataset to compare a broad range of audio editing methods by assessing the
generated audio on particular T-F area. We show AudioMorphix outperforms current state-of-the-
art methods on various tasks, including addition, removal, replacement, and style transferring.

2 PRELIMINARIES

2.1 DENOISING DIFFUSION MODELS

Denoising diffusion models. Diffusion models, or score-matching networks, have achieved great
process in high-quality generation across various domains, such as image (Dhariwal & Nichol,
2021; Zhang et al., 2023), video (Xie et al., 2024), symbolic music (Zhang et al., 2024a) and audio
generation (Liu et al., 2023). Let x ∈ X ⊂ Rd be a d-dimentional sample in the finite set of X ,
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drawn from the “true but unknown” distribution P , and y ∈ Y be the provided condition, such as text
description. Diffusion models generate a new sample by a sequence of invocation of time-dependent
score function ∇xt

log pt(xt) for noisy data xt. During training, a noise variable ϵ is sampled
from Gaussian distribution ϵ ∼ N (0, I). The noisy data xt is obtained as a linear combination
of the noise variable ϵ and the clean data x ∼ P (x) at the step t, as xt =

√
αtx0 +

√
1− αtϵ

where αt > 0 is a scaling parameter. This conditional probability distribution can be defined by
q(xt|x) := N (xt;

√
αtx0, (1− αt)I). A diffusion model learns a denoiser ϵθ(xt, t) to parameterize

the score function with the loss function

Ex0,t,ϵt∼N (0,1)

[
∥ϵt − ϵθ(xt, t)∥22

]
, (1)

where θ is a set of learnable parameters of the denoiser. In the sampling process, we apply the
denoiser ϵθ to estimate the noise variable ϵt−1 and substitute it from noisy data xt iteratively to get
the clean data x0.

Denoising diffusion implict models (DDIM). DDIM was proposed to improve the inference speed
by using deterministic generative process (Ho et al., 2020). During inference, DDIM obtains noisy
data xt−1 at the step t with the following update rule:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√

1− ᾱt−1 − σ2
t ϵθ(xt, t) + σtϵt, (2)

where on the right side the first term is an prediction of the clean data x using the noisy data xt

and the denoiser ϵθ, the second term represents the estimated dirction pointing to xt, and the last
term denotes a random noise. σt is a scaling factor controlling the stochasticity in the sampling
process: with σt =

√
(1− ᾱt−1)/(1− ᾱt)

√
1− ᾱt/ᾱt−1. DDIM is implemented as DDPM while

σt = 0 is interpreted as a deterministic sampling process. It is noteworthy that some works (Song
et al., 2022; Lu et al., 2023) considered the deterministic sampling process as the discretization of a
continuous-time probability flow ODE. This ODE-update rule can be reversed to give a deterministic
connection between x0 and its latent state xT (Ho et al., 2020), given by

xt+1√
βt+1

− xt√
βt

=

(√
1− βt+1

βt+1
−

√
1− βt

βt

)
ϵ
(t)
θ (xt). (3)

For inference effiency, Salimans & Ho (2022) defined velocity v as the combination of a clean sample
x0 and noise component ϵ:

vϕ = cos(ϕ)ϵ− sin(ϕ)x0, (4)
where ϕt = arctan (σt/αt). Therefore, the DDIM sampling process can be re-wroten by:

zϕt = cos(ϕt)x0ϵ(zϕt) + sin(ϕt)ϵ̂(zϕt), (5)

where ϵ̂(zϕ) = (zϕ − cos(ϕ)x̂θ(zϕ)) sin(ϕ). By applying the trigonometric identities, the update
step can be written as

zϕt−δ = cos(δ)zϕt
− sin(δ)vϕ(zϕt

). (6)

Classifier-free guidance (CFG). CFG is apllied to guidance the sampling process of diffusion models
with an extra condition, such as text description. With CFG, a conditional and an unconditional
diffusion model are jointly trained. At inference stage, the noise prediction can be obtained from
conditional and unconditional estimates by

ϵθ(xt, t, y) = wϵθ(xt, t, y) + (1− w)ϵθ(xt, t,∅), (7)

where w is guidance scale controlling the strength of condition signal on the generated output, and ∅
denotes the null token.

2.2 TRAINING-FREE GUIDANCE DIFFUSION

Recently training-free guidance diffusion methods are introduced to control the generated output
by interfering the sampling process of diffusion models. In the community of images, DDIM
inversion was proposed to manipulate an image by inverting it with the corresponding prompt and
re-generate a new one conditioned on a reference prompt (Mokady et al., 2023). Prompt-to-prompt
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framework (Hertz et al., 2022) was introduced to edit images by adjusting text description and
attention map in cross-attention layers. Mokady et al. (2023) and Huberman-Spiegelglas et al. (2023)
preserved in the diffusion process of source images the noise variable which is then used to adjust the
noise variable of current images. Mou et al. (2024) and He et al. (2023) designed energy functions as
an extra guidance on the top of noise estimation to control the sampling process of current images.
In addition, some works (Mou et al., 2024; Chung et al., 2024) attempted to preserve the detailed
information in source images by substituting the key, value vectors of the current sampling process
with those of the source diffusion process. Despite the leap made in the image domain, there remains
a non-trivial issue underlying in the community of audio: sounds are transparent and always overlaps
with each other. In this work, we are studying on manipulating a sound track from sound mixtures
while maintaining the rest of sound tracks in the audio.

2.3 EXISTING WORKS ON AUDIO EDITING

A straightforward approach for audio editing is to train a controllable audio generative model capable
of taking extra condition as guidance. AudioBox (Team et al.), a flow-matching models conditioned
on both text and audio prompt, was proposed to create the audio content by masking and audio
infilling. Wang et al. (2023) and Han et al. (2023) trained dedicated diffusion model for various audio
editing tasks, such addition, removal, replacement, and remixing. While these methods can be used
for audio editing, large-scale training is required for a satisfying result, which could be impractical in
some scenarios.

Some recent works focused on fine-tuning off-the-shelf models for audio editing (Wang et al., 2023).
Lin et al. (2024) finetuned MusicGen (Copet et al., 2023) on multiple music editing task by introducing
extra signals as guidance. Plitsis et al. (2023) investigated several image editing methods, such as
DreamBooth (Ruiz et al., 2023) and Textual inversion (Gal et al., 2022), for audio personalization.
Despite the training cost is minimum, they still need to tuning the model on task-specific datasets.

Zero-shot audio editing tasks were introduced by inversing diffusion process. Liu et al. (2023) firstly
demonstrated the potential of text-to-audio diffusion models for editing tasks using DDIM inversion.
More recently, Manor & Michaeli (2024) applied an edit-friendly DDPM latent space to edit the audio
content by word swapping. However, such methods require precise text decription for transcription,
limiting themselves from some editing use case.

3 AUDIO LATENT MANIPULATION IN THE MORPHING CYCLE

3.1 OBJECTIVE

In this work, we will focus on denoising diffusion models where the sampling process will be
manipulated with reference audio. The proposed AudioMorhix features: (1) Tuning-free: The
AudioMorphix is a zero-shot editing method that does not require extra training to fit task-specific
data; (2) Audio-referenced: Instead of text instruction (Wang et al., 2023) which could be ambiguous
in some use cases, the AudioMorphix takes an extra audio as reference for editing; (3) Versatile:
the AudioMorphix is an universal framework capabable of diverse editing tasks, including addition,
removal, replacement, and style transferring; and (4) Region-specific: The AudioMorphix enables to
edit a particular region of audio spectrogram while keeping the rest unchanged during editing.

Let Enc(·) be the transformation function mapping an input signal x to latent state z in the diffusion
process. While previous methods (Zhang et al., 2024b; Chung et al., 2024) directly control the
trajectory of generation process, empirically we found:

Assumption (Latent Spatial Consistency). The spatial information of x can be inferred from the latent
representation z, such that:

Sim(zi, zj) = sim(Enc(xi), Enc(xj)) ∝ Sim(xi, xj) (8)

This Assumption is in line with the finding in Yang et al. (2024). However, in contrast to visual
modalities, manipulating the latent of a sound or a spectrogram is even harder: Sound tracks are
always entangled with each other in a mixture, resulting in one pixel in a T-F spectrogram-like
representation is correlated to more than one sound tracks.
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(a) DDIM inversion

(b) Energy-guided methods
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Figure 2: A schematic overview of our AudioMorphix in comparison with DDIM inversion (Mokady
et al., 2023) and energy-guided methods (Mou et al., 2024). We omit the process of encoding input
audio x into latent zy0 for simplicity. AudioMorphix refines the sampling processing by updating
the noisy latent zyT and performing the energy guidance at each time step t. After obtaining the
noisy latent zyT with clean latent zy0 and the original text description y, AudioMorphix updates the
noisy latent estimation ẑy

′

T , where y′ is the reference text description, in the morphing cycle (in
Section 3.2). Throughout the sampling process, AudioMorphix estimates the latent zy

′

t−1 via a trained
latent diffusion model, guided by energy-based functions (in Section 4.2).

3.2 MANIPULATE LATENT IN THE MORPHING CYCLE

Let reference audio xr be the interested sound and context audio xc be the rest of sounds in the
mixture. The mixture xm is the combination of reference sound xr and context xc, such that
xm = xr + xc. According to our observation, the latent of the mixture zm also correlates with the
latent of foreground and background sounds, zr and zc, by: zm ∝ zr + zc.

Inspired by image morphing, we consider a mixture be an interpolation of the reference and context
sound in the morphing path and reformat three basic audio editing operations from the perspective of
the morphing cycle:

Audio addition: Provided an raw audio xc and a reference audio xr, audio addition is to obtain
the interpolation of the two sounds. He et al. (2023) and Yang et al. (2024) argued that latent
states are distributed on a manifold, suggesting the infeasibility of linearly combining two latent
states. Therefore, we interpolate between the latent state zc and zr

1 via spherical linear interpolation
(SLERP) to obtain a “meaningful” intermediate latent state:

zm =
sin((1− α)ω)

sinω
zc +

sin(αω)

sinω
zr, (9)

where ω is defined by ω = arccos (zc · zr/∥zc∥∥zr∥). The denoised result zm is then updated via
the DDIM sampling by using the conditional distribution pθ(x|yc).
Audio removal: Audio removal is to separate a sound track xr from a mixture xm using audio x̃r

as reference. Since the orthogonal directions of reference audio x̃r are not unique in a manifold,
removing one sound with the reference audio only could result in satisfying editing result. To this end,
we resort another sound track x̃c to regularize the sampling process of diffusion models. Algorithm
3.2 demonstrates how to optimize with gradient descent a latent state for the task of audio removal.

Instead of optimizing latent state z̃c and z̃r directly, the algorithm looks for the optimum direction
pointing to zc and zr. Because zc and zr are distributed on a sphere, we use SLERP and geodesic

1latent states hereby are referred to the noise latent at step T in the diffusion process. We ignoire the
subscription for simplicity.
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Algorithm 1 Latent optimization for the removal task
Require: z̃c, z̃r zm, t, lr, niter, use penalty, use tangent
Ensure: Optimized neighborhood points ẑc and ẑr

1: Initialize ϵc ← 0, ϵr ← 0 with gradients
2: optimizer ← SGD([ϵc, ϵr], lr)
3: for i = 1 to niter do
4: optimizer.zero grad()
5: ẑc ← z̃c + ϵc
6: ẑr ← z̃r + ϵr
7: ẑm ← SLERP(t, ẑc, ẑr)
8: loss← GEODESIC DISTANCE(zm, ẑm)
9: if use penalty then

10: penalty ← (
∑

ẑc · ẑr)2
11: loss← loss+ penalty
12: end if
13: loss.backward()
14: if use tangent then
15: ϵc.grad← TAGENT PROJ(ϵc.grad, ẑc)
16: ϵr.grad← TAGENT PROJ(ϵr.grad, ẑr)
17: end if
18: GRADIENT CLIP([ϵc, ϵr])
19: optimizer.step()
20: end for
21: return z̃c + ϵc, z̃r + ϵr

distance to calculate the interpolation and similarity, respectively. Assuming zc and zr are independent
with each other, we use the similarity between them as a penalty score to regularize the optimization
process. We also attempt to project the optimization direction upon the sphere to ensure the updated
latent states are “meaningful” following previous works (He et al., 2023). We empirically set number
of iterations n iters = 100, learning rate lr = 1e−4 and enable the use of penalty function and
tangent space projection.

Audio replacement: Audio replacement is to replace a sound track xrs from a mixture xm with
another audio xrt. We decompose the task of audio replacement by separating audio xrs and adding
audio xrt upon the mixture xm. We used the same setting as audio addition and audio removal,
respectively.

4 STEPWISE GUIDANCE IN SAMPLING PROCEDURE

4.1 OVERVIEW

This section introduces a stepwise guidance to control the generation procesdure using the updated
audio latent in Section 3. Motivated by previous methods (Mou et al., 2024; He et al., 2023), our
goal is to decompose a conditional score function∇xt

log p(xt|c, xr) into a text-to-audio conditional
score function and a differentiable term: ∇xt

log p(xt|c, xr) = ∇xt
log p(xt|c) + ∇xt

Lt(xt;x
r).

While there are some works devising energy functions for visual editing, we further improve them by
considering latent in the diffusion procedure as T-F representation.

4.2 GUIDE AUDIO EDITING WITH ENERGY FUNCTION

In the AudioMorphix, various energy functions are devised as an extra guidance to control the audio
generation procedure, mainly focusing on content consistency and contrast between generated audio
and reference audio.

The first derivative of a energy function is added to the score obtained from the conditional U-Net
ϵθ for latent update in the sampling process. Suppose F c

t , F r
t are the intermediate features obtained

from the conditional U-Net ϵθ at step t corresponding to the input audio and the reference audio,
respectively. Empirically, we collate the intermediate features F c

t,l, F
r
t,l from the l-th self-attention
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layers of the U-Net decoder Let mc and mr be the binary masks upon the spectrogram of input audio
and reference audio, respectively. The binary masks mc and mr can constrain the audio editing
operating on particular T-F patches. We can measure the consistency between input and reference
audio by calculating their cosine similarity over the interested area:

sim(F c
t,l,mc, F

r
t,l,mr) = 0.5 · cos

(
F c
t,l[mc], sg(F

r
t,l[mr])

)
+ 0.5, (10)

where sg(·) is the gradient clipping function. Intuitively, we scale the similarity score sim(·) ∈ [0, 1]
to align with human perception where 0 means the closest distance between two audio. The guidance
of consistency term is then defined by:

Sconsist(F
c
t ,mc, F

r
t ,mr) =

∑
l∈L

1

1 + 4 · 1
HW

∑
h∈H

∑
w∈W sim(F c

t ,mc, F r
t ,mr)

, (11)

While the contrast concept between two audio can be defined as the reciprocal of the cosine similarity,
we argue that in the audio removal use case, the sound track in the reference audio is similarly but
not the same as that of the input audio. Therefore, the contrast between input and reference audio is
measured with the global representation of the input and the reference:

Scontrast(F
c
t ,mc, F

r
t ,mr) =

1

HW

∑
h∈H

∑
w∈W

sim(F c
t ,mc, F

r
t ,mr), (12)

Notably, the proposed energy functions is capable of generalizing to various prediction objectives,
including DDIM and v-prediction, by directly modifying the probability density distribution to rectify
the sampling trajectory. In experiments, we set L = 2, 3 be the selected self-attention layers of the
U-Net decoder.

4.3 ENERGY GUIDANCE FOR EACH TASK

Exploiting the consistency measurement Sconsist and contrast measurement Scontrast, we devise a
variety of energy-based function:

Audio addition. The goal of audio addition is to mix the context audio xc with the reference audio
xr. mc and mr are the binary masks of context and reference audio, respectively. Since sound tracks
are “transparent”, the original sounds in the context audio cannot be replaced with those of reference
audio. Therefore, the devised energy function should consider not only the consistency between
reference and generated audio, but also the consistency before and after edition. The energy-based
guidance can be expressed in the follow:

ϵadd = wcontent · Sconsist(Ft,mc, F
c
t ,mc) + wedit · Sconsist(Ft,mc, F

r
t ,mr). (13)

Audio removal. Audio removal is to separate a sound track from the input mixture while preserving
the rest of sounds. In addition to push the generated audio away from the reference audio in the latent
space, we should keep the similarly of global representation unchanged such that:

ϵremove = wcontent · Sconsist(Ft,mc, F
c
t ,mc) + wedit · Scontrast(Ft,mc, F

r
t ,mr). (14)

Audio replacement. We deem the replacement task as a chain of basic operations. Particularly, we
exert removal and addition tasks separately to replace a sound track in the mixture with another one.

4.4 DIFFUSION PROCEDURE WITH MEMORY BANK

The combination of latent morphing and energy guidance build a good posterior in the diffusion
sampling process. However, as some works indicates, the gap between generated and reference audio
still exist. Following Mou et al. (2024), we modify the self-attention mechanism in the conditional
U-Net. As shown in Figure 4.4, the key, value of self-attention layers in the decoder are substitute by
the original ones obtained from the inversion process. In experiments, we replace the key, value of
the second and the third layers with those of the inverted trajectory.

7



se
lf
at
tn
.

𝑧!" 𝑧!#$"

𝑧!% 𝑧!#$%

𝑧!% 𝑧!#$%

M
at
M
ul

Sc
al
e

So
ftm
ax

M
at
M
ul

self attn.

M
at
M
ul

Sc
al
e

So
ftm
ax

M
at
M
ul

𝑄"
𝐾"
𝑉"

self attn.

M
at
M
ul

Sc
al
e

So
ftm
ax

M
at
M
ul

𝑄%
𝐾%
𝑉%

self attn.

𝑄%
𝐾%
𝑉%

(a) General usage of self-attention layer in diffusion models

(b) Our implementation of substituting key and value in self-attention layer
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Figure 3: Illustration of adapting self-attention layers to preserve detailed information in the reference
latent ztr. We cache the key, value of reference latent ztr and substitute those of latent ztc during
forward process.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. To evaluate diverse editing methods, we curated a new dataset AudioSet-E based upon the
temporally-strong labelled part of AudioSet (Gemmeke et al., 2017) for three audio editing tasks,
including addition, removal, and replacement. AudioSet-E contains multiple options, including
instruction, audio, pairs of text description, as reference for audio editing. Particularly, AudioSet-E
contains 1442 samples for audio addition, 1426 samples for audio removal, and 1870 samples for
audio replacement. See more about data curation in the Appendix A. In addition to AudioSet-E, we
also evaluated the proposed AudioMorphix on style transferring. We applied MusicDelta, following
the previous work (Manor & Michaeli, 2024).

Comparison methods. For addition, removal, replacement tasks, we compared our AudioMorphix
against DDIM inversion (Liu et al., 2023), DDPM inversion (Manor & Michaeli, 2024), and AU-
DIT (Wang et al., 2023) on the AudioSet-E. We didn’t implement DreamBooth and text inversion
methods from Plitsis et al. (2023) because they are targeted at audio personalization rather than
manipulation. Following Manor & Michaeli (2024), we also implemented AudioMorphix together
with DDIM and DDPM inversion on style transferring. In addition to orginal audio, DDIM and
DDPM inversion take a pair of original and target text descriptions as input while for AUDIT an
editing instruction are required.

Metrics. We applied Frechet audio distance (FAD), kullback–leibler divergence (KL), Inception
Score (ISc), CLAP score and LPAPS. to evaluate all audio editing model. FAD measures the fidelity
between generated samples and target samples. KL measures the correlation between generated
samples and target samples. ISc measures the diversity of generated audio. CLAP score measures the
correlation between generated samples and target text descriptions. LPAPS calculates the perception
distance between two audio using deep neural network. We release our evaluation kit 2 to facilitate a
fair comparison in the future work.

5.2 COMPARISONS

Table 1 compares various audio editing methdos on the AudioSet-E evaluation dataset. Our Au-
dioMorphix outperforms the comparison methods across all tasks, particularly excelling in terms of
FAD and KL metrics, which indicates better fidelity and distribution matching of the edited images.

2https://anonymous.4open.science/r/TAGE-F1A8
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Table 1: Comparison of various audio editing methods on the AudioSet-E evaluation set.
Addition Removal Replacement

FAD ↓ ISc ↑ KL ↓ FAD ↓ ISc ↑ KL ↓ FAD ↓ ISc ↑ KL ↓
DDIM inversion 5.61 6.39 1.72 6.24 6.56 1.86 8.29 5.52 2.05
DDPM inversion 19.18 4.03 2.27 19.14 4.61 2.30 21.25 3.85 2.30
AUDIT 5.81 4.27 3.17 3.47 3.63 3.48 5.68 4.16 2.81
Our method
(w/ AudioLDM) 5.58 4.43 0.83 2.83 4.19 1.29 2.67 5.05 2.28
Our method
(w/ Tango) 6.62 5.26 0.57 6.29 5.11 0.77 7.27 4.28 0.62

This suggests that AudioMorphix provides more accurate and realistic image edits compared to DDIM
inversion, DDPM inversion, and AUDIT methods. The results are especially notable in the Addition
and Removal tasks, where it shows significant improvements in the KL divergence, indicating a more
precise alignment with the target distribution.

Table 2: Comparison of various audio editing
methods on the MusicDelta evaluation set.

CLAP ↑ LPAPS ↓
DDIM inversion 0.32 6.80
DDPM inversion 0.29 7.17
Our method 0.31 6.75

Table 2 shows the experiment results of the proposed
AudioMorphix and two inversion methods on a style
transferring dataset (Manor & Michaeli, 2024). Our
AudioMorphix yielded a better score than DDPM in-
version. Compared to DDIM inversion, the proposed
methods yielded a comparable CLAP score of 0.32
and a lower LPAPS score of 6.75. This observation
aligns with our expectation: our AudioMorphix pre-
serves the details of raw sounds while less aligned
with text instruction as a trade-off.

5.3 ABLATION STUDY

Table 3: Ablation study on the choices of tangent space projection and text description.
w/ Text Tan. proj. Addition Removal Replacement

FAD ↓ ISc ↑ KL ↓ FAD ↓ ISc ↑ KL ↓ FAD ↓ ISc ↑ KL ↓
6.46 4.10 0.84 2.46 4.69 1.03 6.06 3.12 1.00

✓ 5.58 4.43 0.83 2.83 4.19 1.29 2.67 5.05 2.28
✓ 8.49 1.73 3.08 3.08 5.40 1.63 8.09 3.00 1.06

✓ ✓ 6.10 4.70 1.50 3.38 5.08 1.03 5.91 4.10 1.70

We evaluated the components of AudioMorphix by ablating text description and tangent space
projection in the Table 3. It can be observed that text description only significantly enhance the
performance of the proposed method, achieving a FAD score of 5.58 and KL score of 0.83 on the
addition task and a FAD score of 2.67 and an ISc score of 5.05 on the replacement task. Conversely,
introducing tangent space projection led to performance degradation, especially on the addition and
replacement tasks. This is likely because tangent space projection requires more steps for update
compared to direct guidance.

6 CONCLUSION

In this paper, we proposed AudioMorphix, a training-free sound editor to manipulate raw audio
conditioned on reference audio and binary masks. By casting audio editing as part of a morphing cycle
performed on the latent space manifold, out approach promises high-fidelity audio editing within a
controlable window, while without introducing training cost, paving the way for more controllable
audio editing. This approach leverages the gradient-based optimization to iteratively search the
appropriate noisy latent of the current diffusion process. The proposed method incorporates various
energy functions that rectify the trajectory of the sampling process. Furthermore, AudioMorphix
adopts key-value substitution within self-attention layers, preserving the details of raw audio during
editing. The experiments on various audio editing tasks show the effectiveness and promise of
AudioMorphix compared to previous audio editing methods.
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APPENDIX

A DATASET CURATION

We curated a new dataset to evaluate various audio editing tasks, including addition, removal, and
replacement, based on the temporally-strong subset of the AudioSet dataset (AudioSet-SL) (Gemmeke
et al., 2017). Utilizing the timestamps of sound events in AudioSet-SL, we mixed 2-3 audio tracks
together with or without the selected sound events. A separate dataset was created for each task as
described below:

Audio Addition. We randomly selected a sound event from two audio samples in the database and
created two mixtures: one with and one without the selected sound event. The mixture without the
selected sound event was used as the raw audio, and the mixture with the event was used as the target
audio. Additionally, we used the isolated sound event as the reference audio. For text descriptions,
we used a bag of sound event categories from AudioSet-SL, filling predefined templates with the
selected sound event’s name as the instruction.

Audio Removal. The curation of the audio removal dataset follows a similar process to the audio
addition task. However, the mixture with the selected sound events in the audio removal was used
as the raw audio, and the mixture without those events served as the target audio. To increase the
difficulty of the audio-driven editing task, we randomly sampled 1-second clips from the selected
events and discarded the remaining portions during preprocessing.

Audio Replacement. We randomly selected three audio recordings, labeled A, B, and C, from
AudioSet-SL. We ensured that A and B contained overlapping sound events from different categories.
For the raw audio, we mixed audio C and the overlapped region from audio A, and for the target
audio, we blended audio C and the same region from audio B. Recordings from A and B were used as
the reference audio. For text descriptions, we used combinations of sound events from the two tracks
(A and B), filling predefined templates with the relevant sound events as the editing instruction.

The resulting dataset, AudioSet-E, contains 1,442 samples for audio addition, 1,426 samples for audio
removal, and 1,870 samples for audio replacement. Compared to previous audio editing datasets (Gui
et al., 2024; Liang et al., 2024), AudioSet-E provides a more diverse platform to evaluate the quality
of generated audio across multiple editing tasks.

B IMPLEMENT DETAILS

We used a single NVIDIA A100 for evaluation. For a fair comparison, our AudioMorphix was
provided with no masking information same as the other editing methods. We set guidance scale 1
for AudioLDM and 1.2 for Tango. For our AudioMorphix and ddim inversion, we set the number of
inference steps as 50 while implementing DDPM inversion 200 steps.
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C QUALITATIVE EVALUATION
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Figure 4: Qualitative evaluation between our AudioMorphix and other audio editing methods.

Figure 4 compares our proposed methods against other audio editing methods, including DDIM,
DDPM, and AUDIT, over audio addition, removal, and replacement tasks. It can be observed that our
AudioMorphix follows the instructions best. Additionally, the AudioMorphix remains the details of
non-targeted region in the raw audio, indicating its capacity of high-fidelity audio editing.

D QUALITATIVE EVALUATION

R=0 R=0.2 R=0.4 R=0.6 R=0.8 R=1

Figure 5: Ablation study on the impact of SLERP in the audio addition task.

Figure 5 indicates the output of the AudioMophix w.r.t. the increase of source-to-reference ratio, the
ratio of source audio to the entire mixture. The goal of this experiment is to assess the impact of
SLERP operations on the audio addition task. It can be observed that the generated sound smoothly
morphed from the source audio to the reference audio. This supports our motivation that a sound
mixture can be obtained by morphing between two different sound tracks.

14


	Introduction
	Preliminaries
	Denoising Diffusion Models
	Training-Free Guidance Diffusion
	Existing Works on Audio Editing

	Audio Latent Manipulation in the Morphing Cycle
	Objective
	Manipulate latent in the morphing cycle

	Stepwise Guidance in Sampling Procedure
	Overview
	Guide Audio Editing with Energy Function
	Energy guidance for Each Task
	Diffusion procedure with Memory Bank

	Experiments
	Experiment setup
	Comparisons
	Ablation Study

	Conclusion
	Dataset curation
	Implement details
	Qualitative evaluation
	Qualitative evaluation

