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1 SOCIETY IMPACT AND LIMITATIONS

In our work, a new dataset targeting at the AMGE is collected based
on YouTube videos, termed as MuscleMap135. We build up Mus-
cleMap benchmark for the AMGE by using statistic baselines and
existing video-based approaches including both video-based and
skeleton-based methods, while the three aforementioned datasets are
all considered. Through the experiments we find that the general-
izability targeting AMGE on new activities is not satisfied for the
existing activity recognition approaches. In order to tackle this issue,
we propose a new cross modality knowledge distillation approach
named as TRANSM?E while using MViTv2-S [6] as its basic back-
bone. The proposed approach alleviates the generalization problem
in a certain degree, however there is still large space for further
improvement and future research. The AMGE performance gap be-
tween the known activities and new activities illustrates that our
model has potential to give offensive predictions, misclassifications
and biased content which may cause false prediction resulting in
the negative social impact. The dataset and code will be released
publicly.

Limitations. The annotations of MuscleMap135 are created for
each video clip instead of being created for each frame and the label
is binary without giving the different levels of muscle activations.
In addition, there is still a clear gap between the performance of
known and new categories. While our method has enhanced the
generalization capacity, there remains room for future improvement.
Additional clarification of the submission. We notice that the title
in the system is slightly different from the title in the submission
(where video-based is removed in our submission). We will make
changes in the system on the final version if it is accepted.

2 MORE DETAILS OF THE DATASET

The muscle regions where the number of sources are bigger than
the threshold are chosen as activated muscle region. We can see
that no obvious deviation could be found in AMGE annotation.
We annotate the commonly leveraged human body muscles in the
daily life into 20 muscle regions according to the suggestion of the
experts, i.e., neck and head region, chest region, shoulder region,
biceps region, triceps region, forearms region, upper back region,
latissimus region, obliques region, upper abdominis region, lower
abdominis region, lower back region, hamstring region, quadriceps
region, calves region, inner thigh region, outer thigh region, glu-
teus region, feet ankles region, and wrists region. We rearrange
occipitofrontalis, temporoparientalis, levator labii superioris, mas-
ticatorii, sternocleidomastoideus as neck and head muscle region;
pectoralis major as chest region; deltoideus as shoulder region; bi-
ceps brachii as biceps region; triceps brachii as triceps region; flexor
carpi radialis, palmaris longus, abductor pollicis longus as forearm
region; trapezius as upper back region; latissimus dorsi as latissimus
region; external oblique, serratus anterior as obliques region; rec-
tus abdominis, quadratus lumborum as upper abdominis region;

transversus abdominis, pyramidalis as lower abdominis region; erec-
tor spinae as lower back region; biceps femoris, semimembranosus,
semitendinosus as hamstring region; rectus femoris, vastus medialis
as quadriceps region; gastrocnemius, soleus as calves region; adduc-
tor longus, sartorius, gracilis as inner thigh region; iliotibial tract
as outer thigh region; gluteus maximus as gluteus region; peroneus
longus and brevis, extensor digitorum longus, flexor hallucis longus,
flexor digitorum longus, peroneus tertius, tibialis posterior as feet
ankles region; extensor pollicis, 1st dorsal interosseous, pronator
quadratus as wrists region.

3 FURTHER IMPLEMENTATION DETAILS

For our TRANSM?3E, we use 16 MViT-S blocks and choose the
number of heads as 1. The feature dimension of the patch embedding
net is 96 while using 3D CNN and choosing the patch kernel as
{3,7,7}, patch stride kernel as {2, 4,4} and patch padding as {1, 3, 3}.
The MLP ratio for the feature extraction block is 4.0, QKV bias
is chosen as True and the path dropout rate is chosen as 0.2. The
dimensions of the tokens and number of heads are multiplied by 2
after the 1-st, 3-th, and 14-th blocks. The pooling kernel of QKV is
chosen as {3, 3, 3}, the adaptive pooling stride of KV is chosen as
{1, 8,8} while the stride for the pooling on Q is chosen as {1, 2, 2}
for the 1-st, 3-th, and 14-th block. For the rest of the blocks among
0~15-th blocks, the stride for the pooling on Q is chosen as {1, 1, 1}.
Regarding the MCTF, we choose the head number as 1, the QK scale
number as 0.8, the dropout for attention as 0.0, and the dropout rate
of the path as 0.2. The input embeddings of the MCTF have 768
channels while the intermediate embeddings of the MCTF structure
have the same number of channels as the input of MCTE. All the
hyperparameters are chosen according to the performance measured
on the validation set.

4 BASELINE METHODS

Video classification approaches, e.g., I3D [1], SlowFast [4], and
MVITV2 [6], skeleton approaches, i.e., ST-GCN [8], CTR-GCN [2],
and HD-GCN [5], and statistic calculations, e.g., randomly guess
(Random), are selected as baselines to formulate our MuscleMap
benchmark on the proposed new dataset to achieve AMGE in-the-
wild. Statistic calculation-based approaches serve for performance
verification considering the question regarding whether the predic-
tion of the model is random or not. Skeleton-based approaches are
selected since they directly take the geometric relationship of the
human body into consideration without disrupting information from
the background. Considering video-based approaches, transformer-
based models, i.e., MViTv2 and VideoSwin, and Convolutional
Neural Network (CNN) based models, i.e., C2D, 13D, Slow, and
SlowFast, are leveraged. Transformers are expected to have better
performance compared with CNNs due to their excellent long-term
reasoning ability [7], which is also verified in the experiments con-
ducted on the MuscleMap benchmark.
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Table 1: Results for different modalities on the MuscleMap
benchmark.

new mean new mean

Modality val val test  test

Optical Flow 72.7 59.8 663  69.7 57.7 63.7
RGB Difference  96.8 603 786 975 59.8 78.7
RGB 98.5 62.1 803 98.6 60.7 79.7

5 MORE DETAILS OF THE MCTKD

Since we introduced the ablation regarding MCTKD in our main
paper with experimental results, only more details regarding the
KD format and position will be introduced in this section. In or-
der to make it clearer for understanding, we illustrate more details
regarding the KD/MCTKD position in Figure 1 to give a detailed
clarification. For the MCTKD related approaches, we use the MC-
TKD as depicted by (d), where the KD is executed between the
knowledge receiver MCTs of the main modality and the sender
MCTs of the auxiliary modality. For all the other basic KD-based
approaches, we use the format as depicted by (c), where the KD is
executed between the MCTs of the main modality and the MCTs of
the auxiliary modality, regarded as conventional KD. All the experi-
ments are executed with MCTs while without MCTF aggregation.
We simply average the MCTs for all the experiments in this ablation.
Regarding the sparse format as depicted in (a), the knowledge of
the auxiliary modality is only transferred after the size reduction
of the pooling layer denoted as DownSampling (DS) in Figure 1
and after the final layer. Only SparseMCTKD and DenseMCTKD
are depicted since the SparseKD and DenseKD use the same posi-
tion settings. SparseKD/MCTKD aims at reducing the KD/MCTKD
calculation by selecting the most important intermediate layers to
transfer the knowledge. After each pooling layer which has size
reduction, the informative cues will be highlighted, which makes the
corresponding changes of the tokens from auxiliary modality neces-
sary to be integrated through KD/MCTKD. We choose the position
after the pooling with size reduction to do the KD/MCTKD on the
intermediate layer. DenseKD/MCTKD is designed to transfer the
knowledge directly after each transformer block in order to leverage
the knowledge from the other modality thoroughly. We make use
of both KD positions to conduct comparison and select the most
appropriate method to build the MCTKD in our final model.

6 ANALYSIS OF DIFFERENT MODALITIES

We systematically search for the best-performing primary modality
considering the video data and present the results in Table 1. We de-
liver the experimental results on MViTv2-S architecture with MCT
pre-trained with ImageNet1K [3] for Optical Flow, RGB Difference,
and RGB modalities. We observe that the RGB modality outperforms
the other modalities due to its informative temporal-spatial appear-
ance cues which contributes to good AMGE results. We thereby
choose the RGB modality as the primary modality to conduct the
research and hope that the provided other modalities can enable
future research for the multi-modal AMGE.
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Figure 1: An overview of the details regarding our ablation
study for the MCTKD position and format, where (a) we exe-
cute MCTKD after the downsampling of the pooling layer and
after the final transformer block to formulate sparse MCTKD,
named as SP-MCTKD, (b) we leverage the MCTKD after each
transformer block (TR Block) to formulate the dense MCTKD,
named as DE-MCTKD, (c) indicates the conventional knowledge
distillation (w/0 knowledge distillation MCT), and (d) indicates
the MCTKD we leveraged.
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