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A EXPERIMENTAL SETUP IN DETAIL

Our framework is an adaption of the poisoning benchmark from the prior work (Schwarzschild et al.,
2021). Most recent work on clean-label poisoning attacks uses this benchmark for showcasing their
attack success. We implemented our framework in PyTorch v1.135 and Python v3.76. We use the
exact attack configurations and training hyper-parameters that the original study uses.

We only made two differences. We first increase the perturbations bounded to ||✏||1 = 16 as the
8-pixel bound attacks do not result in a high attack success rate. Defeating 8-pixel bounded attacks
is trivial for any poisoning defenses. Second, we do not use their fine-tuning subset, which only
contains 2500 training samples and 25–50 poisons. It (as shown in the next subsections) leads to
60–70% accuracy on the clean CIFAR10 test-set, significantly lower than 80–90%, which can be
trivially obtained with any models and training configurations. If a model trained on the contami-
nated training data misclassifies a target, it could be a mistake caused by a poorly performing model.

Running each attack on 100 different poisoning samples is computationally demanding. We ex-
amine 7 attacks; for each, we run 100 times of crafting and training/fine-tuning a model. We also
examine 5 different denoising factor �. In total, we 3500 poisoning attacks. To accommodate this
computational overhead, we use four machines, each is equipped with 8 Nvidia GPUs.

B ADDITIONAL EXPERIMENTAL RESULTS

Here, we include the results from our detailed experiments, e.g., the sensitivity of our defense against
a weaker adversary whose perturbation is bounded to ||�||1 = 8. We first craft 25 poisoning samples
on a ResNet18 pre-trained on CIFAR-100. We then fine-tune the model on a subset of the CIFAR-10
training data. The subset contains the first 250 images per class (totaling 2500 training samples).

Our denoising defense at � (%)
Poisoning attacks Scenario †0.0 0.5 1.0 1.5 2.0

Poison Frog! (Shafahi et al., 2018)

W
hi

te
-b

ox

(69.8)13.0 (55.9)8.0 (43.1)4.0 (34.7)9.0 (26.9)11.0
Convex Polytope (Zhu et al., 2019) (69.8)24.0 (53.8)5.0 (42.6)9.0 (35.0)8.0 (27.7)6.0
Bullseye Polytope (Aghakhani et al., 2021) (69.4)100.0 (55.8)10.0 (42.8)8.0 (35.0)9.0 (27.4)9.0
Label-consistent Backdoor (Turner et al., 2019) (69.8)2.0 (55.9)3.0 (42.7)5.0 (34.9)8.0 (27.4)12.0
Hidden Trigger Backdoor (Saha et al., 2020) (69.8)5.0 (55.9)3.0 (42.7)10.0 (35.2)9.0 (27.3)9.0

Poison Frog! (Shafahi et al., 2018)

B
la

ck
-b

ox

(67.9)7.0 (53.8)6.0 (43.3)2.5 (35.3)8.0 (28.8)6.5
Convex Polytope (Zhu et al., 2019) (67.9)4.0 (53.7)3.0 (43.3)3.5 (35.2)3.0 (28.8)8.0
Bullseye Polytope (Aghakhani et al., 2021) (67.7)8.0 (53.8)17.5 (43.2)16.5 (35.3)7.5 (28.6)8.5
Label-consistent Backdoor (Turner et al., 2019) (67.9)3.5 (53.8)2.0 (43.5)4.5 (35.2)2.5 (29.0)8.0
Hidden Trigger Backdoor (Saha et al., 2020) (67.9)7.5 (53.7)2.0 (43.3)7.0 (35.2)10.5 (28.7)8.5

Table 6: Diffusion denoising against clean-label poisoning. We remove the l1-norm of 8 per-
turbations added by five poisoning attacks by running a single-step stable diffusion on the entire
training set. In each cell, we show the average attack success over 100 runs and the average accu-
racy of models trained on the denoised data in the parenthesis. († indicates the no-defense scenario.)

Table 6 summarizes our results against clean-label poisoning attacks with l1-norm of 8, respec-
tively. We consider five poisoning attacks in the white-box and black-box scenarios. In the white-box
setting, we fine-tune the ResNet18 model (that we use for crafting poisons) on the poisoned training
set. In the black-box setting, we fine-tune different models (VGG16 and MobileNetV2 models pre-
trained on CIFAR-100) on the same poisoned training set. We use � in {0.5, 1.0, 1.5, 2.0} for our
single-step diffusion denoiser. �=0.0 is the baseline without the defense.

Diffusion denoising significantly reduces poisoning attack success. We first show that denoising
the poisoned training set can significantly reduce the poisoning attack success. The most successful
attack in the white-box setting, Bullseye Polytope, achieves the attack success of 100% and 95%
in l1-norm of 8 pixels, but denoising with � of 0.5 can reduce those to 10% and 5%. Denoising
reduces the attack success of Poison Frog! and Convex Polytope from 13-34% to 2-8% at � = 0.5.
5https://pytorch.org
6https://www.python.org/
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The two backdoor attacks (Label-consistent and Hidden trigger) exploiting clean-label poisoning are
not successful in the benchmark setup (their success rate ranges from 2-7.5%). We therefore could
not quantify our defense’s effectiveness against them. We re-configure the benchmark setups for
them to increase their success rate and show the effectiveness of diffusion denoising against them.

Strong denoising reduces a model’s utility. We also observe that the increased � (strong denoising)
can significantly reduce the utility of a model trained on the denoised training data. As we increase
the � from 0.5 to 2.0, the fine-tuned model’s accuracy leads to 56% to 27%. However, we show
that with the small �, our diffusion denoising can reduce the attack success significantly. We also
show in our evaluation section that we achieve a high model’s utility while keeping the same �.
We attribute the increased utility to recent model architectures, such as VisionTransformers, or to
pre-training a model on a larger data corpus. We leave further investigation for future work.

Misclassification vs. poisoning attack success. Moreover, in a few cases, the poisoning success
increases from 2–7% to 10–13% as we increase �. We attribute this increase not to the attack being
successful with a high � but to the poor performance of a model. For example, the accuracy of a
model with � = 2.0 is ⇠27%, meaning that four out of five targets in a class can be misclassified.

C (DENOISED) POISONING SAMPLES

FC CP BP HTBD CLBD WB �

0.0

0.1

0.25

0.5

1.0

Table 7: Visualize poisoning samples. We, for the CIFAR10 training data, display the poisoning
samples crafted by different clean-label poisoning attacks. We also show how the perturbations are
denoised with difference � values in {0.1, 0.25, 0.5, 1.0}. �=1.0 yields to ineffective poisons.
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