A SUPPLEMENTARY TO WEIGHTING FUNCTION

We give intuition for our choice of weighting function (main text, Eq. (6)). Since we approximate
the integrals w.r.t. g(s¢—1 | X<;) (main text, Egs. (4) and (7)) with samples from §(s¢—1 | xX<¢)
instead of samples from ¢(s;—1 | X< ), importance sampling tells us that the weigths should be
qse-1 [ x<e)  q(xelsi1) (se-1 [x<e) gt [s1-1)
q(se—1 | x<t) q(xt [ x<t) G(se—1 | x<t) q(xt | x<t)
This is consistent with out earlier definition of ¢(s;—1 | X<;) = w(si—1,%¢)G(st—1 | x<¢). The
weights are proportional to the likelihood of the variational model ¢(x; | s;—1). We choose to
parametrize it using the likelihood of the generative model p(x; | s;—1) and get

wt(i) = w(sgijl,xt)/k = 1(i = argmax p(x; | ng,)l)) ()

J

With this choice of the weighting function, only the mixture component with the highest likelihood
is selected to be in charge of modeling the current observation x;. As a result, other mixture compo-
nents have the capacity to focus on different modes. This helps avoid the effect of mode-averaging.

An alternative weight function is given in Appendix [G]
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B SUPPLEMENTARY TO LOWER BOUND

Claim. The ELBO (main text, Eq. (8)) is a lower bound on the log evidence log p(x; | x<t),
log p(x; | X<t) > LeLBO(X<¢, @) - 3)

Proof. We write the data evidence as the double integral over the latent variables z;, and z ;.

log p(x¢ | x<;) = log //p(xt | Z<t, X<t)D(2t | Z<ty Xct)D(Z<t | Xcp)dzpdZ oy €]

We multiply the posterior at the previous time step p(z<; | X<¢) with the ratio ;E:’E;, where f is

any suitable function of two variables a and b. The following equality holds, since the ratio equals
to one.

b
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We move the integral over z., out of the log operation and apply the Jensen’s inequality.
log p(x; | X<t) > Ef(a,b)p(z<t|x<t) [log/p(xt | thaX<t)p(Zt | Z<t7x<t)dzt:| (6)

~ Ef@b)p(acix<) [log f(a,b)]
We introduce the variational posterior ¢(z; | z<¢, X< ), and apply Jensen’s inequality to replace the
intractable integral log [ p(x; | z<¢, X<¢)p(2¢ | Z<t, X<1)dz, with its lower bound.

P(x¢ | Z<t, X<t)P(2t | Zt, X<t)
1 > E ‘(a Zz x E Zt|Z x 1 —
ng(xt | X<t) = Bf(a,b)p(z<t|x<t) |: q(zt|z<t,x<t) |:Og Q(Zt ‘ Z<t7X§t)

—Ef(ab)p(ze|x<,) [log f(a,b)] . (7

We plug in our generative and inference model described in the main text and use the recurrent

state s;_1 to summarize the previous latent variables z.;. The previous posterior p(z<; | X<¢) is

approximated by ¢(s;—1 | Xx<¢). We introduce the weighting function w(s;_1,x;) as the function

f(a,b). The expectation with respect to f(a, b)p(z<: | X<¢) can be approximated with samples

coming from ¢(s;_; | X<¢) and then being weighted by w(s;_1, X¢).
k
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'"The ~ just helps to visually distinguish the two distributions that appear in the main text.



C SUPPLEMENTARY TO STOCHASTIC CUBATURE APPROXIMATION

Cubature approximation. The cubature approximation is widely used in the engineering com-
munity as a deterministic method to numerically integrate a nonlinear function f(-) of Gaussian
random variable z ~ N (1., o21), with z € R?%. The method proceeds by constructing 2d + 1 sigma
points z(") = p1, +0,£). The cubature approximation is simply a weighted sum of the sigma points
propagated through the nonlinear function f(-),

2d+1
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Simple analytic formulas determine the computation of weights (*) and the locations of £(*).

@ m i=1,..,2n , Vn + ke; vi=1,...,n
! a niﬁ 7220 §(1): 7\/n+’£ei—n 7i:n+13"'a2n
0 ,0=0,

(10)

where « is a hyperparameter controlling the spread of the sigma points in the n-dimensional sphere.
Further e; represents a basis in the n-dimensional space, which is choosen to be a unit vector in
cartesian space, e.g. e; = [1,0,...,0].

Stochastic cubature approximation. In stochastic cubature approximation (SCA), we adopt the
computation of £(?) in Eq. , and infuse the sigma points with standard Gaussian noise € ~
N(0,T) to obtain stochastic sigma variables s = i, + 0,(£€%) + €). We choose x = 0.5 to set the
weights (%) equally.

D SUPPLEMENTARY TO ABLATION STUDY OF REGULARIZATION TERMS

We investigate the effect of the regularization terms using the synthetic data (main text, Fig. 3).
We can see in Table VDM(k = 9) can be trained successfully with Lg1,5o only, and both regu-
larization terms improve the performance (negative log-likelihood of multi-steps ahead prediction),
while VDM(k = 1) doesn’t work whatever the regularization terms. Additionally, we tried to train
the model only with the regularization terms (each separate or together) but these options diverged
during training.

Table 1: Ablation study of the regularization terms for synthetic data (main text, Fig. 3)

LELBO LeLBo&Lprea  LELBO&Lady Lyvpm
VDM(k =9) | 2.439+0.005 2.37940.008 2.381+0.006  2.363+0.004
VDM(k =1) | 3.756+0.003 3.960+0.008 3.743+0.005  3.8784+0.007

E SUPPLEMENTARY TO EXPERIMENTS SETUP

E.1 STOCHASTIC LORENZ ATTRACTOR SETUP

Lorenz attractor is a system of three ordinary differential equations:

d d d

S =oly-x. T=x(p-z) -y, T =xy-pz, (1n
where o, p, and 3 are system parameters. We set ¢ = 10, p = 28 and 8 = 8/3 to make the system
chaotic. We simulate the trajectories by RK4 with a step size of 0.01. To make it stochastic, we add



process noise to the transition, which is a mixture of two Gaussians 0.5\ (mg, P) + 0.5N (mgz, P),

where
0 0
my = [1] s m = ll
0 0

Besides, we add a Gaussian noise with zero mean and diagonal standard deviation [0.6, 0.4, 0.8]
as the observation noise. Totally, we simulate 5000 sequences as training set, 200 sequences as
validation set, and 800 sequences as test set. For evaluation of Wasserstein distance, we simulate 10
groups of sequences additionally. Each group has 100 sequences with similar initial observations.

P=0.03 0.03 0.03

0.01 0.03 0.05

12)

)

0.06 0.03 0.01]

E.2 TAXI TRAJECTORIES SETUP

The full dataset is very large and the length of trajectories varies. We select the trajectories inside
the Porto city area with length in the range of 30 and 45, and only extract the first 30 coordinates
of each trajectory. Thus we obtain a dataset with a fixed sequence length of 30. We split it into the
training set of size 86386, the validation set of size 200, and the test set of size 10000.

E.3 U.S. POLLUTION DATA SETUP

The U.S. pollution dataset consists of four pollutants (NO2, O3, SO2 and O3). Each of them has 3
major values (mean, max value, and air quality index). It is collected from counties in different states
for every day from 2000 to 2016. Since the daily measurements are too noisy, we firstly compute
the monthly average values of each measurement, and then extract non-overlapped segments with
the length of 24 from the dataset. Totally we extract 1639 sequences as training set, 25 sequences as
validation set, and 300 sequences as test set.

F IMPLEMENTATION DETAILS

Here, we provide implementation details of variational dynamic mixtures (VDM) models used
across the three datasets in the main paper. [VDM]consists of

e encoder: embed the first observation x to the latent space as the initial latent state z.

e transition network: propagate the latent states z;.

decoder: map the latent states z; and the recurrent states h, to observations x;.

e inference network: update the latent states z, given observations X;.

o latent GRU: summarize the historic latent states z<, in the recurrent states hy.

e discriminator: be used for adversarial training.
The optimizer is Adam with the learning rate of 1le — 3. In all experiments, the networks have the
same architectures but different sizes. The model size depends on observation dimension dy, latent
state dimension d,, and recurrent state dimension dj,. The number of samples used at each time
step in the training is 2d, + 1. If the model output is variance, we use the exponential of it to ensure
its non-negative.

e Encoder: input size is dy; 3 linear layers of size 32, 32 and 2d,, with 2 ReL.Us.

e Transition network: input size is dy; 3 linear layers of size 64, 64, and 2d,, with 3 ReLUs.

e Decoder: input size is dy, + dy; 3 linear layers of size 32, 32 and 2dy, with 2 ReLUs.

e Inference network: input size is dj, + dx; 3 linear layers of size 64, 64, and 2d,, with 3
ReLUs.

e Latent GRU: one layer GRU of input size d, and hidden size dj,

e Discriminator: one layer GRU of input size dx and hidden size dy, to summarize the pre-
vious observations as the condition, and a stack of 3 linear layers of size 32, 32 and 1, with
2 ReLUs and one sigmoid as the output activation, whose input size is dy, + dy.



Stochastic Lorenz attractor. Observation dimension dy is 3, latent state dimension d is 6, and
recurrent state dimension dy, is 32.

Taxi trajectories. Observation dimension dy is 2, latent state dimension d, is 6, and recurrent
state dimension dy, is 32.

U.S. pollution dataﬂ Observation dimension dy is 12, latent state dimension d, is 8, and recurrent
state dimension dy, is 48.

Here, we give the number of parameters for each model in different experiments in Table

Table 2: Number of parameters for each model in three experiments. auto-encoding sequen-
tial Monte Carlo (AESMC), variational recurrent neural network (VRNN), and recurrent Kalman
network (RKN) have comparable number of parameters. conditional flow variational autoencoder
(CF-VAE) has much more parameters.

RKN| [VRNN| [CF-VAE [AESM{ VDM
Lorenz | 23170 22506 7497468 22218 22218
Taxi 23118 22248 7491123 22056 22056
Pollution | 35774 33192 8162850 31464 31464

G ADDITIONAL EVALUATION RESULTS

We evaluate more variants of in the chosen experiments to investigate the different choices of
sampling methods (Monte Carlo method, and [SCA) and weighting functions (Eqs. (T3) and (14)).
In addition to Eq. described in the main text, we define one other choice in Eq. (14).
wgi) = w(s§?17xt)/k = 1(i = arg max p(x | ng,)l)) (13)
J

o.)gi) = w(s£?17xt)/k = 1(i = j ~ Cat(- | wl, ... ,o.)k))7 W’ x p(x¢ | ng,)l), (14)

We define the weighting function as an indicator function, in Eq. we set the non-zero component
by selecting the sample that achieves the highest likelihood, and in Eq. (I4) the non-zero index
is sampled from a categorical distribution with probabilities proportional to the likelihood. The
first choice (Eq. (I3)) is named with d-function, and the second choice (Eq. (I4)) is named with
categorical distribution. Besides, in VDM-Net, we evaluate the performance of replacing the closed-

Table 3: Definition of variants

VDM(k =1) VDM-MC+J VDM-SCA+Cat VDM-SCA+6
Sampling method Monte-Carlo  Monte-Carlo SCA SCA|
Weighting function n.a. d-function  Categorical distribution d-function

form inference of the weighting function with an additional inference network. In Table[3] we show
the choices in different variants. All models are trained with Lrrso&Lpred-

G.1 STOCHASTIC LORENZ ATTRACTOR
G.2 TAXI TRAJECTORIES

G.3 U.S. POLLUTION DATA

“https://www.kaggle.com/sogun3/uspollution



Table 4: Ablation study of s variants on stochastic Lorenz attractor for three distance metrics
(see main text). The variants are defined in Table@ All variants give comparable quantitative results.

VDM(k=1) VDM-Net VDM-MC+) VDM-SCA+Cat VDM-SCA+d
Multi-steps | 25.03+0.28  26.65+0.15 24.67+0.16 24.69+0.16 24.4940.16
One-step -1.81 -1.71 -1.84 -1.83 -1.81
We-distance | 7.31£0.002  7.68+0.002  7.31£0.005 7.301+0.009 7.294+0.003

Table 5: Ablation study of s variants on taxi trajectories for three distance metrics (see main
text). The variants are defined in Table 3] VDM-SCA+4 outperforms other variants and approaches
our default (trained with L4, additionally).

VDM(k =1) VDM-Net VDM-MC+6 VDM-SCA+Cat VDM-SCA+d
Multi-steps | 3.26£0.001 3.68£0.002  3.1740.001 3.094+0.001 2.88+0.002
One-step -2.99 -2.74 -3.21 -3.24 -3.68
W-distance | 0.6940.0005 0.7940.0003  0.70£0.0008 0.64£0.0005 0.59+0.0008

Table 6: Ablation study of s variants on U.S. pollution data for two distance metrics (see main
text). The variants are defined in Table@ VDM-SCA+6 outperforms other variants.

VDM(k=1) VDM-Net VDM-MC+) VDM-SCA+Cat VDM-SCA+d
Multi-steps | 42.33+0.11  52.444+0.04  40.334+0.03 39.58+0.09 37.64£0.07
One-step 7.97 10.70 8.12 7.82 6.91

(2) VDM-SCA+§  (b) VDM-SCA+Cat  (c) VDM-MC+6 (d) VDM-Net (e) VDM(k =1)

Figure 1: Generated trajectories of stochastic Lorenz attractor from variants. The first ten
observations (red) are obtained from models given the first 10 true observations. The rest 990 ob-
servations (blue) are predicted. We can see, all variants give very good qualitative results. Since
the fundamental dynamics is govern by ordinary differential equations, the transition at each time

step is not highly multi-modal. Once the model is equipped with a stochastic transition, it is able to
model this dynamics.
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Figure 2: Generated 50 taxi trajectories in 3 different areas from @ and the baselines. All

models are required to predict the future continuations (red), based

the beginning of a trajectory

(blue). generates more plausible trajectories compared with the baselines. While the gener-

ated trajectories from follow the street map, the generated traj
physically impossible.
from capturing the multi-modality at each time step.

ectories from all baselines are

and [CF-VAE] can capture the general evolving direction, but suffer
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(2) VDM-SCA+§  (b) VDM-SCA+Cat  (c) VDM-MC+§ (d) VDM-Net

o )\

Figure 3: Generated 50 taxi trajectories from variants. All models are required to predict the
future continuations (red), based the beginning of a trajectory (blue). VDM-SCA+¢ achieves the
best qualitative results among all variants. VDM-SCA+J can generate plausible trajectories, even
it is trained without the adversarial term L,4,. We can see, for the weighting function, Eq. @) is
better than Eq. (T4), and for the sampling method, [SCAJis better than Monte-Carlo method.
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