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A PROOF FOR PROPOSITION 1

Proposition 4. Consider the gradient inversion problem on the 1-layer neural network and a
mini-batch data of N samples. Eq (2) and (3) obtain a zero loss when the generated images
x̂ = [x̂1, x̂2, · · · , x̂N ] satisfy:

N · ∇W = x̂ · P̂ , (5)

where P̂ refers to a matrix defined by the prediction probabilities {p̂i,j} and the one-hot encoding
for the labels y∗.

Proof: Consider a 1-layer neural network of weight W = [w1, w2, · · · , wC ] ∈ RD×C .

If only one sample x̂ ∈ RD×1 is generated, the linear layer outputs â = wT x̂ =
[wT1 x̂, w

T
2 x̂, · · · , wTC x̂]T ∈ RC×1 and the softmax probability is computed as

p̂k =
eâk∑
eâj

.

Compute gradient w.r.t. each wk:

1. If k 6= y, then

∂`

∂wk
=

∂`

∂p̂y
· ∂p̂y
∂âk
· ∂âk
∂wk

=
1

p̂y
· eây

(
∑
eâj )

2 · e
âk · x̂

=
eâk∑
eâj
· x̂

= p̂k · x̂

2. If k = y, then

∂`

∂wy
=

∂`

∂p̂y
· ∂p̂y
∂ây
· ∂ây
∂wy

= − 1

p̂y
· e

ây ·
∑
eâj − eâyeây

(
∑
eâj )

2 · x̂

= −
∑
eâj − eây∑
eâj

· x̂

= (ây − 1) · x̂

Consider one-hot encoding for y∗ = [y1, y2, · · · , yC ], then the above two cases can be unified into
∂`
∂wk

= (p̂k − yk) · x̂.

For a mini-batch of N samples x̂ = [x̂1, x̂2, · · · , x̂N ], note

∇wi :=
1

N

N∑
j=1

∂`j
∂wi

=
1

N

N∑
j=1

(p̂j,i − yj,i) · x̂j

Rearranging the gradient leads us to

N · ∇W = [N∇w1 N∇w2 · · · N∇wC ]

= [x̂1 x̂2 · · · x̂N ] ·

 p̂1,1 − y1,1 p̂1,2 − y1,2 · · · , p̂1,C − y1,C

p̂2,1 − y2,1 p̂2,2 − y2,2 · · · , p̂2,C − y2,C

· · · · · · · · · , · · ·
p̂N,1 − yN,1 p̂N,2 − yN,2 · · · , p̂N,C − yN,C


= x̂ · P̂

This concludes the proof. �
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B DETAILS OF CI-NET

We present details of CI-Net in this part, including how we tailor the original network and gradient
inversion algorithm with CI-Net.

B.1 TAILORING PROGRESSIVE MODEL

We illustrate our motivations to tailor the original model in ProGAN Karras et al. (2017) as fol-
lows. This generative model is designed to generate high-fidelity figures, but we observe the a few
drawbacks when applying it directly to the gradient inversion problem. Figure 8 provides a sim-
ple example when applying the linear interpolation (blue line) in the original paper to the gradient
inversion problem, when compared with the proposed nearest interpolation method in this paper.
Moreover, we occasionally observe such a linear-interpolation could lead algorithm to failure in cer-
tain scenarios, especially when the parameters are not sufficiently large for CI-Net. As such, the
original model should be tailored to better fit the gradient inversion problem itself.
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Figure 8: Image reconstruction with different interpolation methods.

Specifically, we make the following changes:

1. The original pixel-norm is shown to hurt the performance, and we replace it with the spec-
tral normalization Miyato et al. (2018).

2. The original linear-interpolation could lead experiments to failure in certain scenarios. We
replace it with nearest-interpolation to boost pixel similarities.

3. The two To-RGB layers are now replaced with a direct output layer, for simplicity. Simi-
larly, Resnet-block is also no-longer used in our network.

4. We set the channel number to be a hyper-parameter, in order to allow over-parameterization.

5. ReLU layer is now replaced with LeakyReLU as the latter shows better performance.

B.2 ARCHITECTURES OF CI-NET

After tailoring, the architecture of our CI-Net is now plotted in Figure 9. In general, we first generate
a random latent vector z0 as the input for our convolutional network. Similar to most GAN works,
the choice of z0 is rather arbitrary and we do not need to choose a specific vector. Such a linear
latent vector then goes through the “Linear to Conv” layer, followed by a series of convolutional
blocks.
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Figure 9: Architecture of CI-Net

B.3 ALGORITHM

The complete algorithm is depicted in Alg 1. Note the keys steps are: 1) we require the system to
compute P (F ) in order to require over-parameterization in the later step; 2) A gradient descent is
replaced with a signed counterpart, since we observe the gradient matching loss is relatively small
in most cases.

Algorithm 1 Gradient Inversion with CI-Net

Input: Differential machine learing model F and uploaded gradient∇W , learning rate η
1: Set P (F ) = P (∇W ) . Obtain parameter number
2: Load CI-Net G(θ) and select a channel number so that P (G) > P (F )
3: Obtain y∗ from ∇W
4: θ0 ← N (0, 1) . Set initial values for CI-Net
5: for t← 0 to T − 1 do
6: Generate images x̂t = G(z0, θt) . Generate fake images
7: Obtain gradient ∇WL(x̂t, y

∗)

8: Compute Lgrad (x̂,W,∇W ) = ‖∇WL(x̂t, y
∗)−∇WL(x∗, y∗)‖2

9: Compute ∇θLgrad
10: ∇θt = sign(∇θLgrad) . Replace gradient with signed gradient
11: Update parameters θt+1 = θt − η∇θt . Update parameters
12: end for
Output: Generated Images x̂ = G(z0, θT )
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C CIFAR-10 ADDITIONAL EXPERIMENT

C.1 BATCH SIZE=64

For validation purposes, we also numerically test the performance of GIAS and the proposed method
by setting batch size to 64. Table 4 reports the experimental results by showing four similarity
metrics. Unlike the case of bs=128, here the GIAS obtains satisfactory performance by obtaining
a mean SSIM value of 0.87 and a mean LPIPS value of 0.04. These values reveal the fact that this
pioneering work can partially reveal the groundtruth when the batch size is not too large. But yet,
the proposed method in this paper still shows advantages by obtaining better performance in all four
metrics. Specifically, it reaches 1.00 SSIM value, indicating the reconstructed images are almost
identical to the groundtruth.

Algorithm SSIM↑ FSIM↑ PSNR↑ LPIPS (VGG)↓
GIAS Jeon et al. (2021) 0.87± 0.01 0.94± 0.01 16.06± 0.38 0.04± 0.01

Ours 1.00± 0.00 1.00± 0.00 33.72± 0.05 0.01± 0.00

Table 4: Algorithm performance of gradient inversion on 64 CIFAR-10 images.

True 
Images

Obtained
Images

Figure 10: 128 Groundtruth images and the obtained results by CI-Net. Bounding boxes for the first 4 images
are plotted for better visualization.
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C.2 BATCH SIZE=128

In Figure 6, we sample 12 figures from the 128 obtained images in CI-Net for better visualization.
For completeness, all images are plotted in Figure 10, with bounding boxes provided for the first
4 images. In general, these obtained images are highly similar to the groundtruth, hence could be
utilized to reveal the hidden true data.

C.3 BATCH SIZE=256

We also numerically test the case when the batch size equals to 256, and this is the maximum batch
size our GPU can support. Conventional methods already fail when bs=128, hence here we shall
only report the performance of CI-Net after training it for 150k rounds.

Results in Figure 11 indicate that even for a larger size batch size, the proposed method can still
reconstruct the true images with high fidelities. Note local training in FL would not use such a big
batch size for training, but the server may aggregate local gradients into an averaged value, which
acts as a proxy for a very large batch of images. These results address the concerns that a third-party
may still be able to reconstruct the images from this averaged gradient from the server. Using a large
batch-size may not provide a safety guarantee in federated learning.

Figure 11: The first 64 reconstructed images from CI-Net, when batch size equals 256.

Algorithm SSIM↑ FSIM↑ PSNR↑ LPIPS (VGG)↓
Ours 0.98± 0.01 0.99± 0.01 34.11± 0.13 0.02± 0.01

Table 5: Algorithm performance of gradient inversion on 256 CIFAR-10 images.
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D IMAGENET ADDITIONAL EXPERIMENT

D.1 BATCH SIZE=24

For completeness, we plot the complete 24 reconstructed images in Figure 12, when using CI-Net
on ImageNet. The groundtruth images are plotted on the left for visual comparison.

True Images Reconstructed Images

Figure 12: The groundtruth images and reconstructed images from CI-Net. Batch size=24.

D.2 BATCH SIZE=32

We further extend our experiment to the case of 32 images on ImageNet. Note such a large batch
size and an over-parameterized network consumes 39.6 GB memories, reaching the limit of our
hardware device (NVIDIA-A100, 40GB).

Results are consistent with our previous demonstrations when bs equals 24. Potential attackers can
find out the groundtruth from these reconstructed images, also some of them may be slightly blurred
when compared with the groundtruth.

Figure 13: Gradient inversion with CI-Net on ImageNet. Batch size=32.

D.3 DISCUSSIONS ON THE PROPOSED METHOD

During these experiments, we also notice the additional convolutional model G requests extra mem-
ory costs, especially with the new over-parameterized requirement. This can be a potential drawback
of our method.
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