
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UTSD: UNIFIED TIME SERIES DIFFUSION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based architectures have achieved unprecedented success in time se-
ries analysis. However, facing the challenge of across-domain modeling, existing
studies utilize statistical prior as prompt engineering fails under the huge distribu-
tion shift among various domains. In this paper, a Unified Time Series Diffusion
(UTSD) model is established for the first time to model the multi-domain proba-
bility distribution, utilizing the powerful probability distribution modeling ability
of Diffusion. Unlike the autoregressive models that capture the conditional prob-
abilities of the prediction horizon to the historical sequence, we use a diffusion
denoising process to model the mixture distribution of the cross-domain data and
generate the prediction sequence for the target domain directly utilizing condi-
tional sampling. The proposed UTSD contains three pivotal designs: (1) The
condition network captures the multi-scale fluctuation patterns from the observa-
tion sequence, which are utilized as context representations to guide the denoising
network to generate the prediction sequence; (2) Adapter-based fine-tuning strat-
egy, the multi-domain universal representation learned in the pretraining stage is
utilized for downstream tasks in target domains; (3) The diffusion and denois-
ing process on the actual sequence space, combined with the improved classifier
free guidance as the conditional generation strategy, greatly improves the stabil-
ity and accuracy of the downstream task. We conduct extensive experiments on
mainstream benchmarks, and the pre-trained UTSD outperforms existing founda-
tion models on all data domains, exhibiting superior zero-shot generalization abil-
ity. After training from scratch, UTSD achieves comparable performance against
domain-specific proprietary models. In particular, UTSD shows stable and reliable
time series generation, and the empirical results validate the potential of UTSD as
a time series foundational model. The source codes of UTSD are publicly avail-
able on https://anonymous.4open.science/r/UTSD-1BFF.

1 INTRODUCTION

Time Series (TS) data widely exist in many real-world fields (Bengio et al., 2015; Sezer et al.,
2019; Fan et al., 2023), such as power (Wang et al., 2022), weather (Schultz et al., 2021), trans-
portation (Thissen et al., 2003), finance (Chi & Chi, 2022), etc. The wide application of time series
analysis makes it of vital research significance to many practical fields. Empirical practice illustrates
that time series data from different domains perform shifted statistical properties (Wang et al., 2023;
Yuan & Qiao, 2024), such as period, frequency, data distribution, number of features, and fluctua-
tion patterns, which poses a critical challenge to the generalizability and robustness of time series
analysis.

With the continuous development of deep learning, models based on DNN (Zeng et al., 2023; Yi
et al., 2023), RNN (Shi et al., 2015), CNN (Wu et al., 2023; Wang et al., 2023) and Transformer (Wu
et al., 2021; Nie et al., 2023), have made remarkable achievements in many tasks of time series anal-
ysis. With the success of generative pre-trained diffusion models in the vision domain (Esser &
Kulal, 2024; Peebles & Xie, 2022; Liu et al., 2024b), diffusion-based time series forecasting has
also shown promising results. Early efforts like TimeGrad (Rasul et al., 2021) employed RNNs to
capture temporal patterns, thereby predicting future series in an autoregressive fashion. Furthermore,
CSDI (Tashiro et al., 2021) and TimeDiff (Shen & Kwok, 2023) predict all time points simultane-
ously to mitigate the issue of error accumulation in long-term series forecasting. However, current
methods often focus on training domain-specific models tailored to individual datasets, limiting their
ability to generalize well to a variety of new, unseen time series domains.
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Figure 1: Illustration of the proposed UTSD architecture. (a) In the diffusion process, the input
original sequence X0 is progressively noised until degenerating into the gaussian noise XT . (b) In the context
learning phase, the mixed different domain sequences are utilized as input to the UTSD . The condition net
captures cross-domain temporal fluctuation patterns as conditional variables to guide the generation process.
(c) In the denoising phase, the model accepts representations from multiple domains to reconstruct the fusion
distribution from gaussian distribution. Forecasting the actual sequence by iterative denoising process.

The success of unified Large Language Models (LLMs) (Touvron et al., 2023) has inspired the devel-
opment of a unified time series model. Trained on time series data from various domains, the unified
model aims to achieve strong generalization capabilities and robustness to deliver satisfactory zero-
shot inference performance on previously unseen domains. Previous attempts to develop unified
time series models can be divided into two main categories: the LLM-based approach and the multi-
domain generalization approach. The LLM-based approach leverages the alignment of time series
modalities with natural language processing (NLP), utilizing a pretrained LLM, potentially with fur-
ther fine-tuning, to enhance generalization capabilities. OneFitsAll (Zhou et al., 2023) fine-tunes a
subset of the weights from pre-trained LLMs on specific time series dataset and customizes distinct
output layers for various downstream tasks. To mitigate the cross-modality challenges encountered
during fine-tuning, TimeLLM (Jin et al., 2023) employs mathematical and statistical information
as part of its prompt engineering strategy to refine the LLM. However, the LLM-based approach
requires fine-tuning model weights for each individual time series domain, and the inherent dif-
ferences between NLP and time series modalities can result in concept drift and misalignment of
representation dimensions (Yang et al., 2024). On the other hand, the multi-domain generalization
approaches (Woo et al., 2024; Goswami et al., 2024) aim to train a broadly applicable model from
scratch using data from multiple time series domains. UniTime (Liu et al., 2024a), Timer (Liu et al.,
2024c), and Moirai (Woo et al., 2024) have focused on designing a generic architecture and train-
ing from scratch on comprehensive datasets with several temporal domain characteristics. Existing
multi-domain generalization methods (e.g., Timer, etc.) rely on autoregressive mechanisms to estab-
lish connections between observed and predicted sequences. However, these methods are prone to
error accumulation in long-sequence predictions and often face challenges with domain confusion.
In contrast, models such as UniTime and Moirai attempt to directly learn the projection from the
historical horizon to the future. Nevertheless, different domains exhibit varying data characteris-
tics, making it nearly impossible to design a shared encoder capable of effectively handling time
series from domains with distinct semantics. This limitation significantly restricts the zero-shot and
cross-domain generalization capabilities of such models.

This paper establishes the unified time series diffusion model for the first time. Taking advantage of
the diffusion model’s excellent capability to model probability distributions, our approach directly
produces diverse and high-quality forecasts by modelling a fusion probability distributions over mul-
tiple time series domains without establishing any inter-series projections. Further, the contextual
information embedded in the observation sequence is captured as a conditional variable that guides
the process of reconstructing the forecast results from gaussian noise, enhancing the stability and
accuracy. Due to the excellent cross-domain generalisation capability and robustness of the diffusion
approach, without any fine-tuning strategy, the pre-trained model exhibits better performance than
the existing LLM-based methodologies on the all benchmarks. Besides, taking advantage of the ex-
cellent probability distribution modelling capability of the diffusion approach, this paper models the
multidomain fusion distribution directly from the integrated data domain and generates diversified
high-quality forecast results directly, thus avoiding the inferior of the autoregressive paradigm with
respect to the cumulative error and predictive coherence.

Figure 1 shows the architecture of UTSD , which contains three pivotal novel designs: the innovative
condition-denoising architecture, the execution of the reverse noise reduction process in the actual
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sequence space, and the conditional generation strategy based on the classifier-free guidance. First,
the condition-denoising architecture is designed, which contains both Condition Net and Denoising
Net components. (a) In the context learning stage, observation sequences from different domains are
fused together as inputs, from which the condition net captures a multi-scale representation of fluctu-
ation patterns as context to guide the conditional generation at different levels. For example, shallow
conditional variables will guide the trend part of the generated sequence, and deep representations
will guide the multi-periodic patterns of the generated sequence. This ensures that the conditional
information of the input data can be fully utilized to generate high-quality sequence samples. (b) In
the denoising stage, the contextual information embedded in the observation sequence is captured
as a conditional variable that guides the process of reconstructing the forecast results from gaussian
noise, enhancing stability and accuracy. Another novel design is that, UTSD models in the actual
sequence space instead of the latent space. Since the inverse denoising process often goes through
a large number of iterative denoising (Li et al., 2024), each iteration of the denoising stage causes
an accumulation of errors in the latent space, which are further amplified during the alignment of
the latent space to the actual sequence space. Therefore, this paper proposes to perform the dif-
fusion and denoising processes in the actual sequence space. While ensuring low time overhead,
iterative denoising directly in the original sequence space can alleviate the dithering problem and
improve the prediction accuracy. Furthermore, we propose the improved classifier free guidance as
the conditional generation strategy, which ensures that UTSD has sufficiently strong generalization
ability. Finally, we also design the efficient fine-tuning module Transfer-Adapter, which can gen-
erate high-quality sequence samples in a specific domain by fine-tuning only 5% of the parameters
while retaining the fluctuation information learned by pre-training.

The key contributions of our work are as follows.

• We propose a novel condition-denoising architecture, an actual-space diffusion and de-
noising procedure, and a classifier-free guidance conditional generation strategy, which
improvements greatly improve the prediction accuracy of the diffusion model.

• This paper establishes the time series foundation model based on a diffusion model for the
first time. Due to the excellent cross-domain generalization capability, the model shows the
potential to become an entirely new paradigm in time series.

• The proposed UTSD achieves SOTA results. Extensive experiments validate the effective-
ness of UTSD, with overall performance improvements of 19.6% and 21.2% compared to
existing foundation and proprietary baselines.

2 PRELIMINARIES

In the long-term forecasting task, X0
−L+1:0 ∈ Rd×L and X0

1:H ∈ Rd×H are utilized to represent the
observed series and the future series, respectively, where d denotes the number of channels of the
multivariate time series, L and H denote the lookback window and forecast horizon.

2.1 DIFFUSION MODEL

The Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) consists of two processes,
the forward diffusion and the reverse denoising processes, see appendix for details.

Forward Process. In the forward process, A set of real time series samples X0
1:H ∼ q(X) are

gradually noised until they degenerate into gaussian distribution XT
1:H ∼ N(0, I). The complete diffusion

process is regarded as the Markov chain, and the diffusion process at time step t ∈ [1, T ] is represented as
q
(
Xt

1:H | Xt−1
1:H

)
= N

(
Xt

1:H ;
√
1− βtX

t−1
1:H , βtI

)
, where βt ∈ (0, 1) is the diffusion coefficient and T is the

length of the Markov chain. The diffusion result Xt
1:H corresponding to any number of steps t can be directly

computed from X0
1:H via the formula Xt

1:H =
√∏t

i=1 (1− βi)·X0
1:H+

√
1−

∏t
i=1 (1− βi)·ε, ε ∼ N(0, I).

Reverse Process. In the reverse process, the deep model is utilized to progressively denoise from gaussian
distribution. The denoising process at time step t is represented as pθ

(
Xt−1

1:H | Xt
1:H , c

)
, where c repre-

sents the condition variable calculated from the observation sequence, µθ(X
t
1:H , t) represents the denoising

model established at the diffusion timestep t, θ represents the model parameters, and σt serves as a hyper-
parameter. Following the design in DDPMs, we calculate the mean squared error between the µθ(X

t
1:H , t)

and the mean µ
(
Xt

1:H , X0
1:H

)
of the posterior distribution q

(
Xt−1

1:H | X0
1:H , Xt

1:H

)
as the loss function

L
(
X0

1:H

)
=
∑T

t=1 Eq(Xt
1:H

|X0
1:H) ∥ µ

(
Xt

1:H , X0
1:H

)
− µθ

(
Xt

1:H , t
)
∥2.
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2.2 CLASSIFIER-FREE GUIDANCE FOR CONDITION TIME SERIES GENERATION

To improve the capability of diffusion models for forecasting based on the conditional context of observed
sequences, a potential classifer-free guidance mechanism is introduced to establish guided diffusion models.
The context representation captured by the condition net from the observation sequence is denoted as the
condition variable c, so that the goal of the reverse denoising process can be described as pθ

(
X0:T

1:H | c
)
=

pθ
(
XT

1:H

)
ΠT

t=1pθ
(
Xt−1

1:H | Xt
1:H , c

)
, Where XT

1:H ∼ N(0, I) represents the initial state obtained by sampling
from gaussian distribution. Furthermore, according to the Bayesian formula (Ho, 2022), we have:

pθ
(
Xt−1

1:H | Xt
1:H , c

)
· pθ
(
c | Xt

1:H

)
= pθ

(
Xt−1

1:H | Xt
1:H

)
· pθ
(
c | Xt−1

1:H , Xt
1:H

)
. (1)

To obtain the probability score function to control the condition generation process, we run gradient update on
Xt−1

1:H and the score function as follows:

∇
Xt−1

1:H
log pθ

(
Xt−1

1:H | Xt
1:H , c

)
= ∇

Xt−1
1:H

log pθ
(
Xt−1

1:H | Xt
1:H

)
+∇

Xt−1
1:H

log pθ
(
c | Xt−1

1:H , Xt
1:H

)
. (2)

Where ∇
Xt−1

1:H
log pθ

(
Xt−1

1:H | Xt
1:H

)
and ∇

Xt−1
1:H

log pθ
(
c | Xt−1

1:H , Xt
1:H

)
represent the gradients of the

pretrained denoising model and classifier, respectively, which are used to approximate the sampling result
log pθ

(
Xt−1

1:H | Xt
1:H , c

)
expressing the posterior distribution. This strategy of intervening based on a classifier

to make the generated results more consistent with the user’s intention is called classifier guidance. The classi-
fication guidance mechanism is widely used to achieve conditional generation in existing time series research.
However, there are some inherent drawbacks. Firstly, the classifier may ignore many important details in the
input sequence, thus providing incomplete conditional signals. Second, the gradient calculated by the classifier
for Xt−1

1:H may point in any direction, which leads to instability in conditional generation.

During training and inference, we build a high-quality conditional probabilistic diffusion model based on the
classifier-free guidance strategy. First of all, by the Bayesian formula we have log pθ

(
c | Xt−1

1:H , Xt
1:H

)
=

log pθ
(
Xt−1

1:H | Xt
1:H , c

)
+log pθ

(
c | Xt

1:H

)
− log pθ

(
Xt−1

1:H | Xt
1:H

)
. Then we run gradient update on Xt−1

1:H

and get ∇
Xt−1

1:H
log pθ

(
c | Xt−1

1:H , Xt
1:H

)
= ∇

Xt−1
1:H

log pθ
(
Xt−1

1:H | Xt
1:H , c

)
−∇

Xt−1
1:H

log pθ
(
Xt−1

1:H | Xt
1:H

)
.

Subsequently, this equation is substituted into the equation 2 , classifier-free guidance is formulated as:

∇
Xt−1

1:H
logpθ

(
Xt−1

1:H | Xt
1:H , c

)
= ∇

Xt−1
1:H

log pθ
(
Xt−1

1:H | Xt
1:H

)
+τ
(
∇

Xt−1
1:H

log pθ
(
Xt−1

1:H | Xt
1:H , c

)
−∇

Xt−1
1:H

log pθ
(
Xt−1

1:H | Xt
1:H

))
.

(3)

Where log pθ(X
t−1
1:H | Xt

1:H , c), log pθ(Xt−1
1:H | Xt

1:H) , and log pθ(X
t−1
1:H | Xt

1:H , c) represents the final
output, unconditional output, conditional output of the denoising net, respectively. In the implementation,
condition net first accepts the observation sequence as input and subsequently outputs the captured multi-
scale representation as the observation sequence context. Then, two identical initial samples are sampled from
the Gaussian noise, and two output sequences are generated by denoising net iterative denoising with the
observation sequence context and zero vector as conditional variables, respectively, which are conditional- and
unconditional- output. Finally, we calculate the final output of the model based on the weight specified by user.

3 UTSD ARCHITECTURE

The establishment of unified diffusion model in time series faces the challenge of learning the fusion distribution
from multiple data domains, while the long-term forecasting requires the model to learn the enough temporal
information from the observation series of the specified domain as a condition context to generate forecast
series that comply with the distribution of the domain. Existing condition diffusion models (Tashiro et al.,
2021; Li et al., 2024; Yuan & Qiao, 2024) often use simple neural network layer to capture the conditional
variable on single scale. However, sequences from several domains often have different multi-scale latent
representations (Shabani et al., 2022), such as sampling rate, periodic frequency characteristics, multi-periodic
patterns (Ma et al., 2024), etc. Due to the difficulty for the model to learn enough fluctuation pattern information
from the lookback window and the randomness of the initial state, diffusion model demonstrates low accuracy
in the prediction task (Alcaraz & Strodthoff, 2022). UTSD contains three pivotal novel designs: the innovative
condition-denoising architecture, the execution of the reverse noise reduction process in the actual sequence
space, and the conditional generation strategy based on the classifer-free guidance.

3.1 INPUT OBSERVATION INSTANCE

Based on the channel independent design, the input observation sequence X0
−L+1:0 ∈ RB×d×L is first

processed as X0
−L+1:0

′ ∈ RB·d×L, where B denotes the batch size, and then following the patching in-
stance strategy with no padding and no overlap, each univariate sequence of length L is rerepresented as
X0

−L+1:0
′′ ∈ RB·d×PL×Pd , where Pd is a hyperparameter representing the dimension of tokens, PL is the

number of tokens contained in a single sequence, and the product of Pd and PL is equal to L. Subsequently,
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Figure 2: The overall framework of UTSD . Specifically, the observation sequence X0
−L+1:0 and

the diffusion timestep t are processed by the input instance module to obtain the lookback embedding, trend-
prompt embedding, and time embedding, which serve as inputs to the condition-denoising net and the adapter.
The condition net captures the multi-scale representations ha,b,c,m and the adapter transforms those into the
context variables ha,b,c,m which utilized to guide conditional generation process for the prediction task.

observation tokens Xemb ∈ RB·d×PL×Pd are computed from X0
−L+1:0

′′ ∈ RB·d×PL×Pd by the Embedding
Layer based on 1D convolution.

In addition to the observation sequence, UTSD accepts two input data. Firstly, the trend part of the historical
sequence is considered to be very critical information for the forecasting performance, so this paper proposes to
use the embedding pemb of the trend part obtained by decoupling as prompt vector. Besides, since the reverse
denoising process requires the diffusion timestep t as guidance information. This paper proposes to compute
the embedding of t via a time encoder. See the appendix for details of the embedding layer.

3.2 CONDITION-DENOISING STRUCTURE

Firstly, the architecture composition of the conditional learning module and the denoising generation module
are introduced. For convenience, the term Block is utilized to refer to a set of consecutive neural network,
such as Encoder Block, Middle Block, Decoder Block, and Adapter Block, etc., which are reused as important
components in building the Unet structure. As shown in Figure 2, condition net and denoising net both follow
the encoder-decoder design, where the encoder and decoder are composed of Encoder Block-a,b,c and Decoder
Block-a,b,c, respectively. Besides, the Middle Block is designed to connect the encoder and decoder. Unet
consists of seven Blocks, where Encoder Block-a and Decoder Block-a have the same feature dimension Pd/2
and skip connections are established between the two blocks, similarly, the other blocks have dimensions Pd/4
and Pd/8, respectively.

In the training and inference of UTSD , the reverse process is divided into a context learning stage and a
denosing generation stage, corresponding to condition-denoising net, respectively.

Context Learning Stage. In the context learning stage, condition net accepts observation tokens Xemb as
input, and Decoder Block-a at the end does not output any result. Specifically, the deep representation included
in the observation sequence undergoes 4 consecutive Blocks (Middle Block and Decoder Block) to obtain the
multi-scale historical fluctuation pattern {hm,a,b,c}, as shown in Figure 2. This set of tempotal representations
passes through Adapter Blocks with the same structure to obtain a set of condition variables {hm,a,b,c}. This is
passed as a condition context to several Blocks in denoising net, thus guiding the condition generation process.

Denoising Generation Stage. In the denoising generation stage, Y T
1:H ∈ RB·d×PH×Pd obtained by sampling

from gaussian distribution N(0, I) is utilized as the initial input, where PH = H/Pd. In each round of
denoising iteration, the denoising net accepts the diffusion timestep t and Y t

1:H as input, and its output is
utilized to calculate the sample Y t−1

1:H for the next round of denoising iteration. After T rounds of denoising
process, Y 0

1:H ∈ RB·d×PH×Pd undergoes the flatten and channel independent to obtain the prediction result

5
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Figure 3: (a): Illustration of two submodules, where Transformer1D contains two versions that are utilized
to establish condition-denoising net, respectively. (b): The unconditional generation paradigm of UTSD can be
divided into two phases, the multi-domain pre-training phase and downstream data domain fine-tuning phase.

Y 0
1:H ∈ RB×d×H . In particular, during inference, condition net only needs to learn a set {hm,a,b,c} from the

observation sequence, and in the subsequent all T rounds of iterations, denoising net reuses this set of historical
pattern representations to predict noise from samples with different timesteps t.

3.3 BLOCKS IMPLEMENTATION

All Blocks included in condition-denoising net are built from two smaller modules, ResNet1D Module and
Transformer1D (writer/reader) Module. The ResNet1D module accepts the embedding temb of diffusion
timesteps t (only in the denoising generation stage) and the latent representation Xemb as input data, which
contains two 1d convolutions. After the first convolution layer, the latent representation Xemb is added to
the timestep embedding temb through the linear layer, and the output is obtained by second convolution
layer (the normalization layer, activation layer, etc., are ignored in the description). The Transformer1D
module has two versions, writer and reader, which constitute Blocks in condition and denoising net, re-
spectively. Transformer1D-writer accepts the latent representation Xemb ∈ RB·d×PL×Pd as input, where
self-attention mechanism is utilized to capture dependencies between global patches in the lookback window.
Transformer1D-reader accepts the condition variable {hm,a,b,c}, noised sample Y t

1:H ∈ RB·d×PH×Pd , and the
trend part embedding pemb (as prompt) as input, where self-attention concatenates the context into the key-value
vector, thereby using historical fluctuation patterns as contextual information to guide the denoising process. In
the subsequent cross-attention mechanism, the historical trend information contained in pemb is used to model
the long-term trend of future sequences. The proposed condition-denoising net establishes the direct connec-
tion between the generated sequence space and the observed sequence through Transformer1D-writer,reader,
ensuring that UTSD has strong generalization capabilities to address the challenge of cross-domain probability
distribution modeling. In addition, each Encoder Block has Downsample1D as the end layer and each Decoder
Block has Upsample1D as the first layer, as shown in Figure 2. The implementation details of ResNet1D,
Transformer1D, Downsample1D, and Upsample1D are given in the Figure 3.

3.4 TRANSFER-ADAPTER MODULE

For pretrained models, directly fine-tuning with limited data at full weight or continuing training leads to catas-
trophic forgetting, mode collapse, and overfitting (Hu et al., 2022; Ruiz et al., 2023). Existing time series
models avoid forgetting by freezing the original model weights and adding a small number of new parame-
ters (Zhou et al., 2023), or low-rank adaptation prevents catastrophic forgetting by learning parameter shifts of
a low-rank matrix (Jin et al., 2023). However, in order to deal with cross-domain challenges, it is necessary to
design fine-tuning strategies that can adapt to the diffusion and denoising process.

UTSD’s hybrid architecture supports naturally efficient fine-tuning through the ‘plug-and-play’ Adapter.
Specifically, pre-training to obtain a Condition-Denoising Net with a large number of weights is completely
frozen, and only a small number of weights in the Adapter component need to be optimised. The effective-
ness of the fine-tuning strategy can be intuitively explained by the fact that the pre-trained Condition Net is
responsible for capturing generic fluctuation patterns from observed sequences as conditional information, the
Denoising Net is required to reconstruct sequence samples from noise in the target domain based on specific
fluctuation patterns, and the fine-tuning-enabled Adapter is used to connect the unified representation space
with the proprietary representation space.

6
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Table 1: Experimental Tasks. We validate the proposed UTSD on four forecasting tasks.
Forecasting Scenarios Descriptions Baselines Metrics

Trained across-domain Deep model trained on multi-domain fusion dataset and
subsequently tested on each small-scale dataset UniTime, GPT4TS, Moirai MSE, MAE

Trained from scratch Deep model trained from scratch and
tested on each small-scale dataset

TimeLLM, LLM4TS, GPT4TS, PatchTST,
TimesNet, DLinear, FEDformer, Autoformer, Informer MSE, MAE

Zero-shot Deep model trained on dataset-A and
subsequently tested on other dataset-B

TimeLLM, LLMTime, GPT4TS, PatchTST,
TimesNet, DLinear, Autoformer MSE, MAE

Probability Probabilistic model trained on each small-scale dataset and
demonstratd with repeated sampling on the test set DiffusionTS, LDT, CSDI, TimeGrad MSE-a,t,m,l, Stability

In additional, In Adapter, the innovative 1 × 1 Conv1D is designed to align the number of tokens in the obser-
vation space and the forecasting space. Adapter utilizes the attention mechanism to capture the dependencies
between all tokens, which establishes a connection between context learning and noise reduction reconstruc-
tion. These hybrid structures ensure that UTSD has the flexibility to generate high-quality prediction sequences
of arbitrary length. Adapter is a bridge between the conditional and denoising networks, supporting flexible
input or output of prediction sequences of arbitrary time steps.

4 EXPERIMENTS

For different forecasting scenarios, four task paradigms are designed, which include across-domain pretrain-
ing, training from scratch, zero-shot learning and probability distribution modeling, as shown in Table 1.

To evaluate the performance of the proposed method, we extensively experiment with several popular real-
world datasets, including: ETT-h1,h2,m1,m2 (Zhou et al., 2021), Exchange (Lai et al., 2017), Weather (Wet-
terstation, 2015), Electricity (Trindade, 2015) and Traffic (PeMS, 2015). All forecasting scenarios have the
same settings: lookback window L = 336, forecast horizon H = {96, 192, 336, 720}. In particular, all results
shown in the paper are calculated based on single sampling, which demonstrates the satisfactory generation sta-
bility of UTSD as a probabilistic model. Table 1 shows the details of various forecasting scenarios, where all the
utilized baselines include the following four components: (1) LLM-based model: GPT4TS (Zhou et al., 2023),
LLMTime (Gruver et al., 2024), TimeLLM (Jin et al., 2023); (2) Unified time series model: UniTime (Liu et al.,
2024a), Moirai (Woo et al., 2024); (3) Deep model: PatchTST (Nie et al., 2023), TimesNet (Wu et al., 2023),
DLinear (Zeng et al., 2023), FEDformer (Zhou et al., 2022), Autoformer (Wu et al., 2021) and Informer (Zhou
et al., 2021); (4) Diffusion model: DiffusionTS (Yuan & Qiao, 2024), LDT (Li et al., 2024), CSDI (Tashiro
et al., 2021) and TimeGrad (Rasul et al., 2021). See the Appendix section for details on the Benchmark, the
experimental environment, and the training hyperparameters.

4.1 ACROSS-DOMAIN AND SCRATCH FORECASTING

Across-domain prediction is defined as pre-training UTSD on a mixed dataset for learning pivotal information
from multiple domains and subsequent inference on a specified dataset. Regarding the establishment of the
mixed dataset and the multi-domain pre-training, we follow the experimental setup of UniTime (Liu et al.,
2024a), which is described in the Appendix section E.1. The left part of Table 2 shows the results of cross-
domain pre-training, which validates the ability of the proposed method to model multi-domain probability
distributions. Compared to SOTA time series foundation models, UTSD achieves an overall better performance
than them. Specifically, the average MSE of the proposed UTSD is reduced by 14.2%, 20.1% and 27.6%
compared to the existing Moirai, UniTime and GPT4TS, respectively, which demonstrates the potential of
UTSD as a unified temporal spreading model.

The right part of Table 2 demonstrates the results of training from scratch on each particular dataset, the average
MSE is reduced by 17.9%, 18.6% and 22.4% compared to the existing TimeLLM, LLM4TS and GPT4TS,
which indicates that the proposed method can fully utilize a small amount of data for efficient training. Table 2
demonstrates the overall performance of the proposed method. Overall, the scratch UTSD achieves comparable
performance to SOTA model TimeLLM, and excitingly, the cross-domain UTSD achieves overall better results
than the existing foundation model.

4.2 ZERO-SHOT FORECASTING

Zero-shot forecasting is defined as first training the model on data domain A and subsequently forecasting on
other “never seen” data domains. Specifically, Table 3 shows the results of the long-time forecasting task under
zero-shot setting. An encouraging result is that UTSD shows strong generalization ability on the zero-shot
scenarios. The potential advantages include, the first being that UTSD serves as a thorough foundation model
on time series, whereas LLM-based models generally face cross-modality challenges. Another advantage is
the utilization of unique probability distribution modeling rather than regression modeling, which ensures that
UTSD can learn pivotal information from multiple domains and efficiently migrate it to never-before-seen target
domains.
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Table 2: Comparison of the performance from diverse prediction lengths on Across-domain and
Scratch Forecasting. We boldface the best performance on two scenarios, respectively.

Method

Models Trained Across Datasets Models Trained From Scratch

Ours Moirai UniTime GPT4TS Ours TimeLLM LLM4TS GPT4TS PatchTST TimesNet DLinear FEDformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.357 0.378 0.404 0.383 0.322 0.363 0.509 0.463 0.299 0.333 0.272 0.334 0.285 0.343 0.292 0.346 0.344 0.373 0.338 0.375 0.345 0.372 0.379 0.419

192 0.354 0.386 0.435 0.402 0.366 0.387 0.537 0.476 0.304 0.358 0.310 0.358 0.324 0.366 0.332 0.372 0.367 0.386 0.374 0.387 0.380 0.389 0.426 0.441

336 0.363 0.388 0.462 0.416 0.398 0.407 0.564 0.488 0.312 0.365 0.352 0.384 0.353 0.385 0.366 0.394 0.392 0.407 0.410 0.411 0.413 0.413 0.445 0.459

720 0.370 0.403 0.490 0.437 0.454 0.440 0.592 0.504 0.317 0.368 0.383 0.411 0.408 0.419 0.417 0.421 0.464 0.442 0.478 0.450 0.474 0.453 0.543 0.490

Avg 0.361 0.389 0.448 0.410 0.385 0.399 0.551 0.483 0.308 0.356 0.329 0.372 0.343 0.378 0.352 0.383 0.392 0.402 0.400 0.406 0.403 0.407 0.448 0.452

E
T

T
m

2

96 0.195 0.289 0.205 0.282 0.183 0.266 0.229 0.304 0.191 0.284 0.161 0.253 0.165 0.254 0.173 0.262 0.177 0.260 0.187 0.267 0.193 0.292 0.203 0.287

192 0.241 0.322 0.261 0.318 0.251 0.310 0.287 0.338 0.221 0.306 0.219 0.293 0.220 0.292 0.229 0.301 0.246 0.305 0.249 0.309 0.284 0.362 0.269 0.328

336 0.286 0.345 0.319 0.355 0.319 0.351 0.337 0.367 0.235 0.314 0.271 0.329 0.268 0.326 0.286 0.341 0.305 0.343 0.321 0.351 0.369 0.427 0.325 0.366

720 0.371 0.404 0.415 0.410 0.420 0.410 0.430 0.416 0.283 0.353 0.352 0.379 0.350 0.380 0.378 0.401 0.410 0.405 0.408 0.403 0.554 0.522 0.421 0.415

Avg 0.273 0.340 0.300 0.341 0.293 0.334 0.321 0.356 0.233 0.314 0.251 0.313 0.251 0.313 0.267 0.326 0.285 0.328 0.291 0.333 0.350 0.401 0.305 0.349

E
T

T
h1

96 0.364 0.404 0.375 0.402 0.397 0.418 0.449 0.424 0.274 0.301 0.362 0.392 0.371 0.394 0.376 0.397 0.404 0.413 0.384 0.402 0.386 0.400 0.376 0.419

192 0.384 0.392 0.399 0.419 0.434 0.439 0.503 0.453 0.290 0.339 0.398 0.418 0.403 0.412 0.416 0.418 0.454 0.440 0.436 0.429 0.437 0.432 0.420 0.448

336 0.394 0.409 0.412 0.429 0.468 0.457 0.540 0.477 0.383 0.424 0.430 0.427 0.420 0.422 0.442 0.433 0.497 0.462 0.491 0.469 0.481 0.459 0.459 0.465

720 0.412 0.415 0.413 0.444 0.469 0.477 0.515 0.489 0.387 0.428 0.442 0.457 0.422 0.444 0.477 0.456 0.496 0.481 0.521 0.500 0.519 0.516 0.506 0.507

Avg 0.388 0.405 0.399 0.424 0.442 0.448 0.502 0.461 0.334 0.383 0.408 0.423 0.404 0.418 0.428 0.426 0.463 0.449 0.458 0.450 0.456 0.452 0.440 0.460

E
T

T
h2

96 0.321 0.362 0.281 0.334 0.296 0.345 0.303 0.349 0.241 0.301 0.268 0.328 0.262 0.332 0.285 0.342 0.312 0.358 0.340 0.374 0.333 0.387 0.358 0.397

192 0.417 0.425 0.340 0.373 0.374 0.394 0.391 0.399 0.275 0.375 0.329 0.375 0.328 0.377 0.354 0.389 0.397 0.408 0.402 0.414 0.477 0.476 0.429 0.439

336 0.426 0.437 0.362 0.393 0.415 0.427 0.422 0.428 0.302 0.372 0.368 0.409 0.353 0.396 0.373 0.407 0.435 0.440 0.452 0.452 0.594 0.541 0.496 0.487

720 0.473 0.474 0.380 0.416 0.425 0.444 0.429 0.449 0.323 0.386 0.372 0.420 0.383 0.425 0.406 0.441 0.436 0.449 0.462 0.468 0.831 0.657 0.463 0.474

Avg 0.409 0.425 0.341 0.379 0.378 0.403 0.386 0.406 0.285 0.358 0.334 0.383 0.331 0.383 0.355 0.395 0.395 0.414 0.414 0.427 0.559 0.515 0.437 0.449

E
le

ct
ri

ci
ty

96 0.183 0.298 0.205 0.299 0.196 0.287 0.232 0.321 0.128 0.221 0.131 0.224 0.128 0.223 0.139 0.238 0.186 0.269 0.168 0.272 0.197 0.282 0.193 0.308

192 0.192 0.302 0.220 0.310 0.199 0.291 0.234 0.325 0.147 0.240 0.152 0.241 0.146 0.240 0.153 0.251 0.190 0.273 0.184 0.289 0.196 0.285 0.201 0.315

336 0.203 0.298 0.236 0.323 0.214 0.305 0.249 0.338 0.149 0.244 0.160 0.248 0.163 0.258 0.169 0.266 0.206 0.290 0.198 0.300 0.209 0.301 0.214 0.329

720 0.230 0.333 0.270 0.347 0.254 0.335 0.289 0.366 0.172 0.272 0.192 0.298 0.200 0.292 0.206 0.297 0.247 0.322 0.220 0.320 0.245 0.333 0.246 0.355

Avg 0.202 0.308 0.233 0.320 0.216 0.305 0.251 0.338 0.149 0.244 0.158 0.252 0.159 0.253 0.167 0.263 0.207 0.289 0.192 0.295 0.212 0.300 0.214 0.327

Tr
af

fic

96 0.309 0.214 0.343 0.263 0.328 0.252 0.388 0.282 0.284 0.203 0.362 0.248 0.372 0.259 0.388 0.282 0.360 0.249 0.593 0.321 0.420 0.282 0.587 0.366

192 0.320 0.240 0.383 0.277 0.346 0.261 0.407 0.290 0.293 0.211 0.374 0.247 0.391 0.265 0.407 0.290 0.379 0.256 0.617 0.336 0.424 0.287 0.604 0.373

336 0.328 0.241 0.390 0.281 0.354 0.265 0.412 0.294 0.308 0.215 0.385 0.271 0.405 0.275 0.412 0.294 0.392 0.264 0.629 0.336 0.436 0.296 0.621 0.383

720 0.331 0.260 0.420 0.296 0.396 0.286 0.450 0.312 0.319 0.223 0.430 0.288 0.437 0.292 0.450 0.312 0.432 0.286 0.640 0.350 0.466 0.315 0.626 0.382

Avg 0.322 0.239 0.384 0.279 0.356 0.266 0.414 0.295 0.301 0.213 0.388 0.264 0.401 0.273 0.414 0.295 0.391 0.264 0.620 0.336 0.437 0.264 0.611 0.376

W
ea

th
er

96 0.157 0.206 0.173 0.212 0.171 0.214 0.212 0.251 0.133 0.195 0.147 0.201 0.147 0.196 0.162 0.212 0.177 0.218 0.172 0.220 0.196 0.255 0.217 0.296

192 0.204 0.250 0.216 0.250 0.217 0.254 0.261 0.288 0.184 0.237 0.189 0.234 0.191 0.238 0.204 0.248 0.222 0.259 0.219 0.261 0.237 0.296 0.276 0.336

336 0.251 0.279 0.260 0.282 0.274 0.293 0.313 0.324 0.207 0.258 0.262 0.279 0.241 0.277 0.254 0.286 0.277 0.297 0.280 0.306 0.283 0.335 0.339 0.380

720 0.309 0.317 0.320 0.322 0.351 0.343 0.386 0.372 0.264 0.313 0.304 0.316 0.313 0.329 0.326 0.337 0.352 0.347 0.365 0.359 0.345 0.381 0.403 0.428

Avg 0.230 0.263 0.242 0.267 0.253 0.276 0.293 0.309 0.202 0.246 0.225 0.257 0.223 0.260 0.237 0.271 0.257 0.280 0.259 0.287 0.265 0.317 0.309 0.360

1st Count 50 11 9 0 60 7 2 0 1 0 0 0

Table 3: Comparison of the performance on Zero-shot Forecasting task. We boldface the best
performance in each metric. Where source→target indicates that the model is first pretrained on the
source domain, subsequently, the model parameters are frozen and predicted on the target domain.

Metric
UTSD TimeLLM LLMTime GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Informer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2→ETTm1 0.404 0.411 0.414 0.438 1.933 0.984 0.790 0.579 0.516 0.473 0.596 0.508 0.857 0.599 0.718 0.564 0.722 0.566 1.180 0.804

ETTm1→ETTm2 0.283 0.349 0.268 0.320 1.867 0.869 0.342 0.369 0.360 0.410 0.325 0.361 0.357 0.384 0.321 0.360 0.325 0.365 0.513 0.518

ETTh2→ETTh1 0.425 0.439 0.479 0.474 1.961 0.981 0.780 0.604 0.609 0.532 0.616 0.537 0.920 0.635 0.746 0.598 0.735 0.593 1.201 0.842

ETTh1→ETTh2 0.337 0.375 0.353 0.387 0.992 0.708 0.420 0.430 0.478 0.483 0.416 0.444 0.443 0.442 0.444 0.463 0.445 0.459 0.729 0.652

ETTm1→ETTh2 0.370 0.398 0.381 0.412 0.992 0.708 0.433 0.439 0.464 0.475 0.439 0.438 0.457 0.454 0.468 0.483 0.470 0.479 0.768 0.680

ETTh1→ETTm2 0.301 0.366 0.273 0.340 1.867 0.869 0.325 0.363 0.415 0.452 0.314 0.360 0.327 0.361 0.455 0.487 0.457 0.483 0.747 0.686

ETTh1→ETTh2 0.303 0.368 0.353 0.387 0.992 0.708 0.406 0.422 0.493 0.488 0.380 0.405 0.421 0.431 0.582 0.548 0.784 0.781 0.973 1.092
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Figure 4: Visualization of comparisons between UTSD and exsting probabilistic and deep model
baselines on the Electricity (upper) and Traffic (bottom) dataset.

Table 4: Comparison of the performance from diverse diffusion model on Probabilistic Forecasting
task with L = 336, H = 96. We boldface the best performance in each metric. The unit of STA is 10−2.

Metric
Ours DiffusionTS LDT CSDI TimeGrad

topQ midQ lastQ AVG STA topQ midQ lastQ AVG STA topQ midQ lastQ AVG STA topQ midQ lastQ AVG STA topQ midQ lastQ AVG STA

ETTh1
MSE 0.274 0.274 0.276 0.274 0.028 0.377 0.401 0.454 0.442 0.175 0.611 0.632 0.758 0.720 0.271 0.962 0.751 0.848 0.854 0.445 1.297 1.187 0.739 1.095 0.517
MAE 0.301 0.301 0.303 0.302 0.016 0.411 0.439 0.499 0.480 0.073 0.668 0.685 0.832 0.786 0.142 0.704 0.578 0.615 0.632 0.155 1.118 1.009 0.811 1.039 0.323

ETTh2
MSE 0.239 0.241 0.249 0.243 0.065 0.455 0.314 0.493 0.427 0.225 0.583 0.669 0.741 0.696 0.419 0.432 0.741 1.659 0.944 1.319 0.856 1.007 1.184 0.931 0.922
MAE 0.301 0.300 0.308 0.303 0.030 0.556 0.416 0.581 0.530 0.136 0.708 0.745 0.825 0.750 0.209 0.458 0.579 0.892 0.643 0.557 0.957 1.232 1.324 1.135 0.390

ETTm1
MSE 0.297 0.298 0.302 0.299 0.019 0.292 0.291 0.349 0.324 0.146 0.408 0.432 0.434 0.418 0.143 0.395 0.315 0.384 0.365 0.193 0.619 0.476 0.729 0.628 0.508
MAE 0.331 0.332 0.336 0.333 0.008 0.338 0.343 0.384 0.363 0.087 0.465 0.499 0.512 0.486 0.106 0.407 0.352 0.401 0.387 0.180 0.631 0.547 0.740 0.708 0.377

ETTm2
MSE 0.204 0.191 0.186 0.194 0.036 0.312 0.279 0.334 0.302 0.216 0.377 0.369 0.416 0.382 0.281 0.199 0.331 0.753 0.428 0.719 0.471 0.513 0.669 0.574 0.590
MAE 0.300 0.285 0.278 0.288 0.019 0.412 0.357 0.461 0.395 0.153 0.471 0.439 0.565 0.490 0.221 0.271 0.366 0.581 0.406 0.328 0.518 0.573 0.757 0.662 0.389

4.3 PROBABILISTIC FORECASTING

Diffusion-based forecasting methdologies generally face the challenge of generation dithering, and existing
models mitigate this difficulty through repeatedly sampling and subsequently taking the average or median
as the final prediction result. In real-world scenarios, models are required to generate stable predictions for
a fixed observation sequence. Besides, repeated sampling inevitably results in intolerable inference overhead
since iterative denoising is required for each sample. Based on this, improved evaluation metrics are utilized
to simultaneously measure prediction accuracy and generation stability. Table 4 demonstrates the mse and
mae between the predicted and true results at different quantile points. All probabilistic models first repeat the
sampling 100 times, and then take out the values at the 25, 50, and 75 percentile positions at each time point,
sorted from smallest to largest, and calculate the mean square error (mae is the same) between this prediction
and the true result, denoted as Top Quartile MSE (topQ), Middle Quartile MSE (midQ) and Last Quartile MSE
(lastQ), respectively. In addition, the standard deviation of the distribution consisting of the mean square error
of all the predictions is displayed as the stability of the prediction (STA) in Table 4. Specifically, the average
MSE is reduced by 32.3%, 54.3% and 90.2% compared to the existing DiffusionTS, LDT and CSDI.

4.4 VISUALIZATION

To visualize the performance of UTSD compared to the deep models and probabilistic models, three visual-
ization tasks were devised. We plotted the prediction intervals for the probabilistic baseline as shown in the
upper left of Figure 4, where the light and dark green colors indicate the prediction results for the 10-90%
and 25-75% confidence intervals (with 50 repetitive samples for each model), and the blue and green curves
indicate the ground truth and median prediction results, respectively. Specifically, compared to other proba-
bilistic methods with large prediction intervals, it is proposed that the prediction results of UTSD in multiple
benchmarks converge to a very small region.

In addition, on the right part of Figure 4, t-SNE is utilized to project the all prediction results onto a two-
dimensional space, where the cross dashed lines mark the ground truth. Among them, UTSD ’s predictions
are more aggregated and closest to the actual sequence, which implies that UTSD has stronger generative
robustness compared to other diffusion models and can be utilized in real-world highly accurate scenarios.
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Figure 5: Visualization of comparisons between UTSD and exsting probabilistic and deep model
baselines on the ETTh1 (Upper) and ETTh2 (Bottom) dataset.

The bottom left of Figure 4 demonstrates the prediction results of the deep model baseline, where the blue and
red curves indicate the ground truth and prediction results, respectively. Note that UTSD demonstrates that
the prediction results with the single sampling alone can match or even outperform the traditional regression
model. The results of the visualization demonstrate that the proposed unified diffusion architecture to model
the distribution of multiple domains are broadly effective, which ensures the superior performance of UTSD .

To further demonstrate the distributions of the generated and truth series, Figure 5 shows the results of com-
paring several probabilistic baselines with UTSD . The results show that UTSD learns comprehensive char-
acterization information and generates sequences that are more consistent with the actual distribution. More
visualization results of the baseline models on the multiple dataset are shown in the Appendix.

Table 5: Ablation study for model architecture.
w/o Adapter w/o Classifier-free w/o ConditionNet

ETTh1 ETTm1 ECL Weather ETTh1 ETTm1 ECL Weather ETTh1 ETTm1 ECL Weather

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0.347 0.412 0.344 0.412 0.169 0.278 0.204 0.254 0.371 0.443 0.339 0.408 0.17 0.285 0.224 0.279 0.412 0.487 0.361 0.431 0.189 0.316 0.251 0.311

↓ 5.8% ↓ 13.7% ↓ 13.5% ↓ 2.1% ↓ 13.3% ↓ 12.2% ↓ 15.4% ↓ 12.0% ↓ 25.3% ↓ 19.1% ↓ 27.9% ↓ 25.2%

4.5 ABLATION STUDY

To elaborate on the property of our proposed UTSD , we conduct detailed ablations on model architecture. As
shown in Table 5, we find that removing the ConditionNet module in UTSD will cause significant performance
degradation. These results may come from that the proposed condition network will improve the the gener-
alization capability of UTSD to learn multi-scale representations from complex sequences, and this temporal
information is crucial for the reverse denoising process.

Specifically, for fairness purposes, the ablation model w/o Adapter is designed to feed the multilevel features
captured by ConditionNet directly to DenoisingNet. In addition, the ablation model w/o Classifier-free follows
the same design as the traditional condition diffusion model. In w/o ConditionNet, the observation sequences
are directly input into the denoising model as prompt information.

From Table 5, we can find that the performance of w/o ConditionNet is degraded by 27.9% on the ECL dataset,
and by 25.2% on the Weather dataset respectively, and degraded 25.3% and 19.1% on the ETT dataset, re-
spectively. Similar results were obtained for ablation experiments on other components, demonstrating the
superiority of the design.

5 CONCLUSION AND FUTURE WORK

In this paper, a unified time series diffusion (UTSD) model was established for the first time to model the
joint probability distribution of multiple data domains by using the powerful probability distribution modeling
ability of Diffusion. To ensure that the model has sufficient generalization ability for the generation task of
multiple data domains, UTSD contains two pivotal modules: ConditionNet learns the general representation
of fluctuation patterns from multiple domains in the pre-training phase, and DenoisingNet accepts multi-scale
representations as conditional context in the reverse denoising process. In the fine-tuning stage, ConditionNet
and DenoisingNet are frozen, and the Transfer-Adapter Module is used to transform the fluctuation patterns
shared across domains into the corresponding latent space of the downstream data domain, so as to allow the
model to generate time series samples that match the style of the specified data domain. Besides, this paper
also designs the diffusion and denoising process on the actual sequence space, combined with the improved
classifier-free guidance as condition generation strategy, which greatly improves the accuracy of the model in
the forecasting task.
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A RELATED WORK

A.1 LLM-BASED TS MODEL

The first attempt to establish a unified time series model is OneFitsAll (Zhou et al., 2023). OneFitsAll uses
GPT2 (Radford et al., 2019) pretrained from billions of tokens as a backbone, where it freezes the self-attention
and feedforward layers in the pretrained language model and evaluates by fine-tuning the output and normal-
ization layers on the time series data domain. However, the semantic information in the pre-trained model is
difficult to be directly used in temporal scene. TimeLLM (Jin et al., 2023) uses text prototypes to reprogram
the input sequence data and then feed it into the frozen LLM (Touvron et al., 2023) to align the two modalities
of time series and natural language. In addition, to fully activate the modeling ability of LLM for time-series
data, TEST (Sun et al., 2023) builds an encoder to align the embedding Spaces of two modalities by comparing
the alignment of instances, features and text prototypes. Although LLM-based models show good zero-shot
inference ability, these models still face cross-modal challenges, and it is still urgent to establish a time series
foundation model trained from scratch.

A.2 UNIFIED TS MODEL

Different from NLP (Brown et al., 2020; Hu et al., 2022) and CV (Ho et al., 2020; Rombach et al., 2021),
the background knowledge and statistical characteristics of time series data from different domains often vary
greatly (Woo et al., 2024), so it is challenging to train a unified time series model by utilizing multiple data
domains. The first attempt to cross-domain training is UniTime (Liu et al., 2024a), which uses domain in-
structions and a Language-TS transfer module to provide recognition information to distinguish time series
data from different domains, and uses masking technology to alleviate the problem of unbalanced domain
convergence speed. On this basis, many time series foundation models have emerged. The first is the MO-
MENT (Goswami et al., 2024) of encoder-only attention architecture with input patching; Then, in order to
overcome the differences between data domains, MOIRAI (Woo et al., 2024) based on mask encoder architec-
ture includes multiple input-output projection layers to deal with different patterns of frequency-varying time
series, and a spatio-temporal shared attention mechanism is designed. Different from the mainstream encoder-
only architectures, decoder-only based timers show similar capabilities to large language models (Das et al.,
2024). In addition to showing strong generalization in zero-shot inference, the Timer (Liu et al., 2024c) based
on autoregressive generation strategy can capture the temporal representation from any length of context.

A.3 PRE-TRAINED DIFFUSION ON VISION GENERATION

Due to its powerful distribution modeling and generation capabilities, Diffusion has quickly become a popular
component in the field of high-quality image generation (Balaji & Nah, 2022; Huang et al., 2023; Nichol &
Dhariwal, 2022). However, the image generation paradigm of diffusion through iterative denoising process
leads to a large amount of time overhead. In order to ensure the quality of generated images while reducing the
time overhead required for inference, LDM (Rombach et al., 2021) successfully compresses the forward diffu-
sion process and the reverse noise reduction process from the real image space to the latent space through the
pre-trained VAE (van den Oord et al., 2017), which greatly reduces the computational overhead and memory re-
quirements for inference. Subsequently, researchers have focused on generating high-quality images that meet
user expectations. Large pre-trained text-image diffusion models (Rombach et al., 2021) based on CLIP (Rad-
ford et al., 2021) allow users to input text as prompt to generate pictures with specified styles. Since it is
often difficult to describe every image/video detail with text alone, there are many works (Hoe et al., 2024; Qi
et al., 2024) by providing additional inputs as condition context. ControlNet (Zhang et al., 2023) in particular,
by producing trainable copies of its encoder connected to zero convolutions, by reusing a powerful backbone
derived from pre-training process, Additional images provided by the user (e.g., Canny Edge (Canny, 1986),
Depth Map (Ranftl et al., 2019), and Normal Map (Vasiljevic et al., 2019), etc.) to enable more fine-grained
spatial control.

A.4 DIFFUSION MODEL ON TS

Since the success of diffusion models in vision, TimeGrad (Rasul et al., 2021) is the first time to use diffusion
model to model the probability distribution of time series data, which chooses LSTM or GRU model as the
architecture to predict future series in an autoregressive way. Subsequently, CSDI (Tashiro et al., 2021) and
SSSD (Alcaraz & Strodthoff, 2022) designed a diffusion model with the observed data as the context condition,
and filled the missing part by introducing the noise of the diffusion process into the missing part, and then
gradually denoising at each step. To improve the learning ability to model long-term dependencies in time series
data, TimeDiff (Shen & Kwok, 2023) introduces future-Mixup and autoregressive initialization mechanisms to
predict all timepoints of future sequence. DiffusionTS (Yuan & Qiao, 2024) utilizes the transformer architecture
to model the seasonal-trend components separately, and the Fourier-based losses are designed to reconstruct the
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sequence sample directly rather than the noise at each diffusion step. Inspired by LDM, recent LDT (Li et al.,
2024) utilizes a transformer-based autoencoder to learn latent representations from raw observation sequence
and subsequently predicts future sequence in a non-autoregressive manner in the latent space.

Although there have been a lot of methodologies on the application of diffusion to time series, to the best of
our knowledge, there are few researches about building a unified time series diffusion model. The establish-
ment of UTSD faces the challenge of capturing distributions from multiple data domains, and only introducing
inductive biases may not be sufficient for diffusion models to capture distribution characteristics of different
domains (Shen et al., 2024). The Condition-Denoising architecture is designed where the independent Condi-
tionNet ensures that the model can capture multi-scale domain specified pattern features. In addition, LDMs
are widely used in Vision (Zhang et al., 2023; Esser & Kulal, 2024; Liu et al., 2024b) because high-resolution
images are generally large in size (512*512), while the number of timepoints in time-series data is usually less
than 1,000. By modeling in the actual sequence space instead of the latent space, the proposed UTSD avoids
error accumulation in the latent space during multiple rounds of iterative noise reduction (e.g., the number of
steps of DDPM is 200).

B DIFFUSION MODEL

The diffusion model is a popular generative model and has attracted significant attention in various domains,
such as image, video, 3-D objective, etc. A well-known diffusion model is the denoising diffusion probabilistic
model (DDPM). DDPM consists of a forward diffusion process and a backward denoising process. The dif-
fusion process means gradually adding Gaussian noise to the real samples of the dataset, while the denoising
process means gradually denoising the noisy data to restore the real data points.

Given a data point sampled from a real data distribution x0 ∼ q(x), the forward diffusion process gradually
adds Gaussian noise T steps, producing a series of noisy samples {x1, · · · ,xT }. The step size are controlled
by a variance schedule {βT ∈ (0, 1)}Tt=1. The diffusion process can be formulated as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (4)

Which means xt is sampled from q(xt|xt−1), satisfied the Gaussian distribution N (xt;
√
1− βtxt−1, βtI).

The diffusion process follows a Markov process:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (5)

xt is defined by xt−1 and βT , and can be directly calculated with given x0 and {β1, · · · , βT } step values. Let

αt = 1− βt, and ᾱt =
T∏

t=1

αi, with the re-parametric, we get:

xt =
√
αtxt−1 +

√
1− αtzt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1zt−2

= · · ·
=

√
ᾱtx0 +

√
1− ᾱtz0

(6)

where z0, · · · , zt−1 ∼ N (0, I), and

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (7)

This indicates that with x0 and a fixed-value sequence {βT ∈ (0, 1)}Tt=1, and sample z from norm distribution
N (0, I), xt is defined. In general, we can afford a larger update step when the sample gets noisier, so β1 <
β2 < · · · < βT , and therefore ᾱ1 > · · · > ᾱT .

The reverse denoising process samples from q(xt−1|xt), and we can reconstruct the real data point for a
random Gaussian distribution. However, we need to find the data distribution from the whole dataset, and we
cannot predict the conditional distribution q(xt−1|xt) directly, so we need to learn a model pθ to approximately
simulate this conditional probability to run the inverse diffusion process.

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) .

(8)

Given xt and x0 the posteriori diffusion conditional probability can be formulated as :

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI). (9)
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Following the Bayes’ rule:

q(xt−1|xt,x0) = q(xt|xt−1,x0)
q(xt−1|x0)

q(xt|x0)

∝ exp

(
−1

2

((
xt −

√
ᾱtxt−1

)2
βt

+
(xt−1 −

√
ᾱt−1x0)

2

1− ᾱt−1
−
(
xt −

√
ᾱtx0

)2
1− ᾱt

))

= exp

(
−1

2

((
αt

βt
+

1

1− ᾱt−1

)
x2
t−1 −

(
2
√
αt

βt
xt +

2
√
ᾱt−1

1− ᾱt−1
x0

)
xt−1 + C (xt,x0)

) (10)

where C (xt,x0) is a function contains xt and x0, without xt−1. The mean and variance can be calculated by:

β̃t = 1/(
αt

βt
+

1

1− ᾱt−1
) =

1− ᾱt−1

1− ᾱt
· βt

µ̃t(xt,x0) = (

√
αt

βt
xt +

√
ᾱt−1

1− ᾱt−1
x0)/(

αt

βt
+

1

1− ᾱt−1
)

=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0

(11)

In the forward process, we have x0 = 1√
ᾱt

(xt =
√
1− ᾱtzt). Taking into Eqn. 11, we have:

µ̃t =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt

1√
ᾱt

(xt −
√
1− ᾱtzt) (12)

=
1√
αt

(xt −
βt√
1− ᾱt

zt) (13)

To train the diffusion model, one uniformly samples t form {1, 2, · · · , T} and then minimizes the following
KL-divergence:

Lt = DKL(q(xt−1|xt)||pθ(xt−1|xt)). (14)

Connecting Eqn. 9, 11, and 13, the training objective is transformed into:

Lt =
1

2σ2
t

||µ̃t(xt,x0, t)− µθ(xt, t)||2. (15)

C MORE DISCUSSION ABOUT ARCHITECTURE

The pre-training, fine-tuning, and inference paradigm for UTSD is shown in Figure 9. (a) In the pretraining
stage, all modules of UTSD are trained end-to-end on the fusion dataset with the forecasting task as the metric.
(b) In the finetuning stage, only the adapter module is allowed to continue training on a specific dataset. (c)
Finally, all the weights were frozen, and the prediction sequence was generated after T rounds of iterative
denoising.

Table 6: We compare the performance difference between two versions: UTSD and Latent-UTSD
on multiple datasets derived from different domain knowledge, sampling rates, scale features. Ex-
tensive experimental results reflect the performance of the two versions of the model in the real
world, which serves as the experimental basis for our final establishment of the UTSD model archi-
tecture. Specifically, the input sequence length is fixed bits 336, and we bold the best performance
in each metric.

Metric
ETTh1 ETTm1 Traffic Weather

96 192 336 720 avg 96 192 336 720 avg 96 192 336 720 avg 96 192 336 720 avg

UTSD
MSE 0.274 0.290 0.383 0.387 0.334 0.299 0.304 0.312 0.317 0.308 0.284 0.293 0.308 0.319 0.301 0.133 0.184 0.207 0.264 0.202

MAE 0.301 0.339 0.424 0.428 0.383 0.333 0.358 0.365 0.368 0.356 0.203 0.211 0.215 0.223 0.213 0.195 0.237 0.258 0.313 0.246

Latent-UTSD
MSE 0.323 0.342 0.450 0.454 0.392 0.352 0.365 0.365 0.370 0.363 0.314 0.316 0.341 0.343 0.329 0.154 0.211 0.238 0.313 0.229

MAE 0.348 0.386 0.493 0.492 0.430 0.390 0.418 0.435 0.443 0.422 0.223 0.236 0.242 0.242 0.235 0.226 0.271 0.297 0.359 0.288

Figure 6 illustrates the two frameworks contained in UTSD, with the left side showing the model infrastructure
described in the main text and the right side showing the model architecture we discuss in this section, hereafter
referred to as Latent-UTSD. Table 6 demonstrates the overall performance of the proposed UTSD and Latent-
UTSD. In the algorithmic framework of Latent-UTSD, a multi-domain mixed comprehensive dataset is utilized
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Figure 6: Illustration of Comparison about two computational frameworks proposed by our method-
ology.
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Figure 7: Illustration of Comparison about two adapter paradigm proposed for our methodology.

to train the autoencoder with the end-to-end manner. Firstly, a pre-trained encoder is utilized to calculate
the latent representation Z0 of the original sequence X0

−L+1:0, corresponding to which the initial random
situation input in the denoising network has the same shape as the latent representation. Subsequently, the
multi-scale fluctuation patterns embedded in the latent representation space are captured by the condition net,
and the model reconstructs the latent representation of the fusion distribution from the gaussian distribution
by iterative denoising process. Finally, the pre-trained decoder generates the forecast sequence Y 0

1:H from the
latent representation.

Table 7: Detailed experimental configuration of training preocess for each dataset.
config Multi-domain ETTh1 ETTh2 ETTm1 ETTm2 Weather ECL Traffic

SquenceLen 27,593,879 17,420 17,420 69,680 69,680 52,696 26,304 17,544
Channel 1 7 7 7 7 21 321 862

BatchSize 2,048 512 512 512 512 128 16 16
TrainSteps 1,000,000 10,000 10,000 10,000 10,000 20,000 100,000 100,000

Figure 7 demonstrates the two adapter application paradigms proposed in this paper, which are to establish
connections between condition net and denoising net through the adapter block at the location of all Blocks, or
only at the location of Middle Block as well as Decoder Block.

In addition to cross-domain conditional generation that includes forecasting and imputation, UTSD also sup-
ports the unconditional cross-domain generation task, the implementation of which is demonstrated in Figure 8.
The unconditional generation paradigm of UTSD can be divided into two phases: 1) In the multi-domain pre-
training phase, time series Y T

1:H from different domain backgrounds are successively obtained a set of noised
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Figure 8: In the cross-domain time series generation paradigm, the UTSD architecture is connected
by a bridge module consisting of an encoder block and an adapter block, and the locked grey block
shows the backbone of the pre-trained obtained UTSD. based on this, several trainable consecutive
adapter blocks (blue blocks) are added with a set of zero convolution layer (white) to construct the
fine-tuned network. Which is used to align the multi-domain uniform representation space with the
specified domain representation space.

sequence
{
Y 1
1:H , ..., Y T−1

1:H , Y T
1:H

}
. In each iterative step, the noised sequences Y T

1:H as the input of encoder
block-a,b,c and a set of multi-scale condition variables is captured from it, and the rich fluctuation pattern in-
formation embedded is used to reconstruct the denoised result Y T−1

1:H in Decoder; 2) In the downstream data
domain fine-tuning phase, the pre-training weights in Encoder and Decoder are frozen. An additional set of
adapter block and zero convolution is introduced to align the multi-domain uniform representation space with
the specified domain representation space.

In UTSD-generation, the trainable Adapter is connected to the locked pre-trained weights. The zero convolution
with weights initialised to zero are designed to ensure that they grow progressively during training. This
architecture ensures that harmful noise is not added to the deep features of large diffusion models at the start of
training, and protects the large-scale pre-trained backbone in the trainable replicas from such noise.

D EXPERIMENTAL DETAILS

D.1 MODEL AND DIFFUSION PROCESS HYPERPARAMETERS

The proposed model includes three components, ConditionNet, DenoisingNet and Adapter. ConditionNet and
DenoisingNet are composed of the same Unet structure, which contains 3 encoderblocks, 3 decoderblocks
and 1 MiddleBlock. In the UTSD architecture, all components are composed four minimal blocks (encoder
block, decoder block, middle block and adapter block). The basic construction of each block is illustrated in
Figure 2, however, in the concrete implementation we allow consecutive L-layer block residues to be stacked
together to form stacked-block and used to form the Condition Net, Denoising Net and Adapter. Furthermore,
the number of input and output channels of the middle block is denoted as D, and accordingly the number of
output channels in the three pairs of encoder-decoder blocks are D/4, D/2, and D, respectively.

In order to verify the sensitivity of UTSD to hyperparameter selection, the Table 8 shows the performance
of UTSD with different parameter scales on multiple benchmarks. Where the model parameter combinations
include (L,D) = (2, 128), (2, 256), (3, 128), (3, 256), (4, 128), (4, 256), with a fixed forecasting window of
96, and a performance metric of MSE.

By default, the hyperparameters of UTSD are fixed to L equal to 3 and D equal to 256, and all experimental
results presented follow this setting. In the scratch forecasting task, the number of output channels in the three
pairs of Encoder-Decoder blocks is 64, 128, 256, respectively, and the number of input and output channels of
the Middle Block is fixed to 256. Correspondingly, the number of output channels of the three groups of blocks
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Table 8: To verify the sensitivity of UTSD to hyperparameter selection, the table 1 shows the per-
formance of UTSD with different parameter scales on multiple benchmarks, with a fixed forecasting
window of 96, and a performance metric of MSE.

Hyperparameter ETTh1 ETTh2 ETTm1 ETTm2 Weather ECL Traffic
(L=2,D=128) 0.352 0.307 0.335 0.244 0.215 0.153 0.311
(L=2,D=256) 0.344 0.302 0.319 0.254 0.211 0.158 0.325
(L=3,D=128) 0.328 0.274 0.321 0.239 0.203 0.154 0.296
(L=3,D=256) 0.334 0.285 0.308 0.233 0.202 0.149 0.301
(L=4,D=128) 0.322 0.280 0.302 0.235 0.198 0.145 0.298
(L=4,D=256) 0.340 0.313 0.319 0.234 0.214 0.160 0.306
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Figure 9: Illustration of the paradigm in the pre-training, fine-tuning, inference stages of the pro-
posed UTSD architecture.

in the across-domain pretraining forecasting task is 128, 256, 512 respectively. The patch size of lookback
window is fixed to 48 in the full prediction task. We adopted the setting of DDPM, where the number of
backward iteration steps is set to 200 for the inference process and 1000 for the training process.

E DIFFUSION MODEL FOR TIME SERIES PREDICTION

The pre-training, fine-tuning, and inference paradigm for UTSD is shown in Figure 9. (a) In the pretraining
stage, all modules of UTSD are trained end-to-end on the fusion dataset with the forecasting task as the metric.
(b) In the finetuning stage, only the adapter module is allowed to continue training on a specific dataset. (c)
Finally, all the weights were frozen, and the prediction sequence was generated after T rounds of iterative
denoising.

E.1 EXPERIMENTAL CONFIGURATION

All experiments are repeated three times, implemented in PyTorch and conducted on a single Tesla V100 SXM2
32GB GPU. Our method is trained with the L2 Loss, using the ADAM optimizer with an initial learning rate
of 10−4, and Batch size is set in 16 → 256. The mean square error (MSE) and mean absolute error (MAE) are
used as metrics in all forecasting tasks. By default, the proposed UTSD contains 3 pairs of Encoder-Decoder
Blocks. All the baselines that we reproduced are implemented based on configurations of the original paper or
their official code. For a fair comparison, we design the same input embedding and final prediction layer for all
base models. We provide the detailed experimental configuration about the batch size and number of training
steps for several benchamrk in Table 7.

E.2 BENCHMARKS

To evaluate the performance of the proposed method, we extensively experiment with the mainstream time
series analysis tasks including long-term forecasting and imputation (i.e., predicting the missing data in a
time series). The long-term forecasting and imputation are evaluated with several popular real-world datasets,
including: ETT (ETTh1, ETTh2, ETTm1, and ETTm2)1 (Zhou et al., 2021) contains six power load features
and oil temperature used for monitoring electricity transformers. ETT involves four subsets. ETTm1 and
ETTm2 are recorded at 15-minute intervals, while ETTh1 and ETTh2 are recorded hourly. Weather2 contains
21 meteorological indicators, such as temperature, humidity, and precipitation, which are recorded every 10

1https://github.com/zhouhaoyi/Informer2020
2https://www.bgc-jena.mpg.de/wetter/
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minutes in the year 2020. Electricity3 comprises hourly power consumption of 321 clients from 2012 to 2014.
Traffic4 reports the number of vehicles loaded on all 862 roads at each moment in time.

Table 9: Comparison of the performance on Zero-shot Forecasting task. We boldface the best
performance in each metric. Where source→target indicates that the model is first rained on the source
domain, subsequently, the model parameters are frozen and predicted on the target domain.

Metric
UTSD TimeLLM LLMTime GPT4TS DLinear PatchTST TimesNet Autoformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2
↓

ETTm1

96 0.365 0.387 0.359 0.397 1.179 0.781 0.747 0.558 0.570 0.490 0.491 0.437 0.747 0.558 0.735 0.576
192 0.384 0.400 0.390 0.420 1.327 0.846 0.781 0.560 0.590 0.506 0.530 0.470 0.781 0.560 0.753 0.586
336 0.410 0.414 0.421 0.445 1.478 0.902 0.778 0.578 0.706 0.567 0.565 0.497 0.778 0.578 0.750 0.593
720 0.457 0.441 0.487 0.488 3.749 1.408 0.769 0.573 0.731 0.584 0.686 0.565 0.769 0.573 0.782 0.609
Avg 0.404 0.411 0.414 0.438 1.933 0.984 0.769 0.567 0.649 0.537 0.568 0.492 0.769 0.567 0.755 0.591

ETTm1
↓

ETTm2

96 0.196 0.292 0.169 0.257 0.646 0.563 0.217 0.294 0.221 0.314 0.195 0.271 0.222 0.295 0.385 0.457
192 0.248 0.325 0.227 0.318 0.934 0.654 0.277 0.327 0.286 0.359 0.258 0.311 0.288 0.337 0.433 0.469
336 0.305 0.364 0.290 0.338 1.157 0.728 0.331 0.360 0.357 0.406 0.317 0.348 0.341 0.367 0.476 0.477
720 0.384 0.413 0.375 0.367 4.730 1.531 0.429 0.413 0.476 0.476 0.416 0.404 0.436 0.418 0.582 0.535
Avg 0.283 0.349 0.268 0.320 1.867 0.869 0.313 0.348 0.335 0.389 0.296 0.334 0.322 0.354 0.469 0.484

ETTh2
↓

ETTh1

96 0.373 0.404 0.450 0.452 1.130 0.777 0.732 0.577 0.689 0.555 0.485 0.465 0.848 0.601 0.693 0.569
192 0.405 0.422 0.465 0.461 1.242 0.820 0.758 0.559 0.707 0.568 0.565 0.509 0.860 0.610 0.760 0.601
336 0.434 0.442 0.501 0.482 1.328 0.864 0.759 0.578 0.710 0.577 0.581 0.515 0.867 0.626 0.781 0.619
720 0.489 0.488 0.501 0.502 4.145 1.461 0.781 0.597 0.704 0.596 0.628 0.561 0.887 0.648 0.796 0.644
Avg 0.425 0.439 0.479 0.474 1.961 0.981 0.757 0.578 0.703 0.574 0.565 0.513 0.865 0.621 0.757 0.608

ETTh1
↓

ETTh2

96 0.273 0.328 0.279 0.337 0.510 0.576 0.335 0.374 0.347 0.400 0.304 0.350 0.358 0.387 0.469 0.486
192 0.309 0.356 0.351 0.374 0.523 0.586 0.412 0.417 0.447 0.460 0.386 0.400 0.427 0.429 0.634 0.567
336 0.335 0.378 0.388 0.415 0.640 0.637 0.441 0.444 0.515 0.505 0.414 0.428 0.449 0.451 0.655 0.588
720 0.430 0.439 0.391 0.420 2.296 1.034 0.438 0.452 0.665 0.589 0.419 0.443 0.448 0.458 0.570 0.549
Avg 0.337 0.375 0.353 0.387 0.992 0.708 0.406 0.422 0.493 0.488 0.380 0.405 0.421 0.431 0.582 0.548

ETTm1
↓

ETTh2

96 0.317 0.357 0.321 0.369 0.510 0.576 0.353 0.392 0.365 0.415 0.354 0.385 0.377 0.407 0.435 0.470
192 0.351 0.384 0.389 0.410 0.523 0.586 0.443 0.437 0.454 0.462 0.447 0.434 0.471 0.453 0.495 0.489
336 0.369 0.402 0.408 0.433 0.640 0.637 0.469 0.461 0.496 0.494 0.481 0.463 0.472 0.484 0.470 0.472
720 0.441 0.448 0.406 0.436 2.296 1.034 0.466 0.468 0.541 0.529 0.474 0.471 0.495 0.482 0.480 0.485
Avg 0.370 0.398 0.381 0.412 0.992 0.708 0.433 0.439 0.464 0.475 0.439 0.438 0.457 0.454 0.470 0.479

ETTh1
↓

ETTm2

96 0.214 0.315 0.189 0.293 0.646 0.563 0.236 0.315 0.255 0.357 0.215 0.304 0.239 0.313 0.352 0.432
192 0.269 0.348 0.237 0.312 0.934 0.654 0.287 0.342 0.338 0.413 0.275 0.339 0.291 0.342 0.413 0.460
336 0.319 0.376 0.291 0.365 1.157 0.728 0.341 0.374 0.425 0.465 0.334 0.373 0.342 0.371 0.465 0.489
720 0.403 0.425 0.372 0.390 4.730 1.531 0.435 0.422 0.640 0.573 0.431 0.424 0.434 0.419 0.599 0.551
Avg 0.301 0.366 0.273 0.340 1.867 0.869 0.325 0.363 0.415 0.452 0.314 0.360 0.327 0.361 0.457 0.483

ETTh1
↓

ETTh2

96 0.259 0.321 0.279 0.337 0.510 0.576 0.335 0.374 0.347 0.400 0.304 0.350 0.358 0.387 0.469 0.486
192 0.295 0.349 0.351 0.374 0.523 0.586 0.412 0.417 0.447 0.460 0.386 0.400 0.427 0.429 0.634 0.567
336 0.321 0.371 0.388 0.415 0.640 0.637 0.441 0.444 0.515 0.505 0.414 0.428 0.449 0.451 0.655 0.588
720 0.336 0.432 0.391 0.420 2.296 1.034 0.438 0.452 0.665 0.589 0.419 0.443 0.448 0.458 0.570 0.549
Avg 0.303 0.368 0.353 0.387 0.992 0.708 0.406 0.422 0.493 0.488 0.380 0.405 0.421 0.431 0.582 0.548

F MORE EXPERIMENTAL RESULTS

Table 9 shows the complete experimental results of zero-shot forecasting task. In zero-shot inference, the model
is first trained on the dataset A, and subsequently the prediction performance is tested on dataset B. Table 9
demonstrates the experimental results under the full prediction length 96, 192, 336, 720 settings, which show
that the proposed UTSD has excellent generalization ability and robustness compared to existing methods.

Table 10 demonstrates, the results of the multi-domain pretrained model after finetuning, where the model
achieves a performance that exceeds the performance of the trained from scratch model on both ETTh2 and
ETTm2 datasets. The experimental results illustrate that the adapter-based finetuning strategy fully utilise the
potential representations learned from multiple data domains during the pretraining phase. Our finetuning strat-
egy effectively activates the inference performance of pretrained models in downstream tasks, which provides
implications for future work.

The Table 11 demonstrates the imputation results of training from scratch on each particular dataset, the aver-
age MSE is reduced by 17.0%, 20.1% and 38.7% compared to the existing GPT4TS, TimesNet and PatchTST.
Excitingly, the proposed UTSD achieves better overall results on the imputation task than existing multitasking

3https://archive.ics.uci.edu/dataset/321/electricity
4http://pems.dot.ca.gov
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Table 10: Comparison of the performance of the proposed methods under training from scratch and
fine-tuning settings.

Metric

ETTh2 ETTm2

96 192 336 720 avg 96 192 336 720 avg

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Scratch 0.241 0.301 0.275 0.375 0.302 0.372 0.323 0.386 0.285 0.358 0.191 0.284 0.221 0.306 0.235 0.314 0.283 0.353 0.233 0.314

Finetune 0.212 0.261 0.250 0.304 0.274 0.323 0.295 0.347 0.258 0.309 0.187 0.244 0.213 0.290 0.222 0.268 0.263 0.297 0.221 0.275

Table 11: Comparison of the complete performance with diverse mask ratios on full-data imputa-
tion task.

Method UTSD TimeLLM GPT4TS TimesNet LLMTime PatchTST DLinear FEDformer Stationary Autoformer

MaskRatio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

12.5% 0.019 0.077 0.017 0.085 0.023 0.101 0.041 0.130 0.096 0.229 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144

25% 0.022 0.092 0.022 0.096 0.025 0.104 0.047 0.139 0.100 0.234 0.098 0.212 0.086 0.201 0.059 0.174 0.040 0.128 0.056 0.156

37.5% 0.028 0.110 0.029 0.111 0.029 0.111 0.049 0.143 0.133 0.271 0.113 0.231 0.103 0.219 0.069 0.191 0.039 0.131 0.057 0.161

50% 0.035 0.117 0.040 0.128 0.036 0.124 0.055 0.151 0.186 0.323 0.134 0.255 0.132 0.248 0.089 0.218 0.047 0.145 0.067 0.174

Avg 0.026 0.099 0.028 0.105 0.027 0.107 0.047 0.140 0.120 0.253 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.150

E
T

T
m

2

12.5% 0.018 0.079 0.017 0.076 0.018 0.080 0.026 0.094 0.108 0.239 0.034 0.127 0.062 0.166 0.056 0.159 0.021 0.088 0.023 0.092

25% 0.019 0.082 0.020 0.080 0.020 0.085 0.028 0.099 0.164 0.294 0.042 0.143 0.085 0.196 0.080 0.195 0.024 0.096 0.026 0.101

37.5% 0.021 0.085 0.022 0.087 0.023 0.091 0.030 0.104 0.237 0.356 0.051 0.159 0.106 0.222 0.110 0.231 0.027 0.103 0.030 0.108

50% 0.024 0.094 0.025 0.095 0.026 0.098 0.034 0.110 0.323 0.421 0.059 0.174 0.131 0.247 0.156 0.276 0.030 0.108 0.035 0.119

Avg 0.020 0.085 0.021 0.084 0.022 0.088 0.029 0.102 0.208 0.327 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105

E
T

T
h1

12.5% 0.040 0.137 0.043 0.140 0.057 0.159 0.093 0.201 0.126 0.263 0.240 0.345 0.151 0.267 0.070 0.190 0.060 0.165 0.074 0.182

25% 0.053 0.155 0.054 0.156 0.069 0.178 0.107 0.217 0.169 0.304 0.265 0.364 0.180 0.292 0.106 0.236 0.080 0.189 0.090 0.203

37.5% 0.070 0.175 0.072 0.180 0.084 0.196 0.120 0.230 0.220 0.347 0.296 0.382 0.215 0.318 0.124 0.258 0.102 0.212 0.109 0.222

50% 0.093 0.202 0.107 0.216 0.102 0.215 0.141 0.248 0.293 0.402 0.334 0.404 0.257 0.347 0.165 0.299 0.133 0.240 0.137 0.248

Avg 0.064 0.167 0.069 0.173 0.078 0.187 0.115 0.224 0.202 0.329 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214

E
T

T
h2

12.5% 0.040 0.124 0.039 0.125 0.040 0.130 0.057 0.152 0.187 0.319 0.101 0.231 0.100 0.216 0.095 0.212 0.042 0.133 0.044 0.138

25% 0.043 0.131 0.044 0.135 0.046 0.141 0.061 0.158 0.279 0.390 0.115 0.246 0.127 0.247 0.137 0.258 0.049 0.147 0.050 0.149

37.5% 0.049 0.143 0.051 0.147 0.052 0.151 0.067 0.166 0.400 0.465 0.126 0.257 0.158 0.276 0.187 0.304 0.056 0.158 0.060 0.163

50% 0.053 0.155 0.059 0.158 0.060 0.162 0.073 0.174 0.602 0.572 0.136 0.268 0.183 0.299 0.232 0.341 0.065 0.170 0.068 0.173

Avg 0.047 0.138 0.048 0.141 0.049 0.146 0.065 0.163 0.367 0.436 0.119 0.250 0.142 0.259 0.163 0.279 0.053 0.152 0.055 0.156

E
le

ct
ri

ci
ty

12.5% 0.043 0.129 0.080 0.194 0.085 0.202 0.055 0.160 0.196 0.321 0.102 0.229 0.092 0.214 0.107 0.237 0.093 0.210 0.089 0.210

25% 0.049 0.142 0.087 0.203 0.089 0.206 0.065 0.175 0.207 0.332 0.121 0.252 0.118 0.247 0.120 0.251 0.097 0.214 0.096 0.220

37.5% 0.056 0.151 0.094 0.211 0.094 0.213 0.076 0.189 0.219 0.344 0.141 0.273 0.144 0.276 0.136 0.266 0.102 0.220 0.104 0.229

50% 0.065 0.165 0.101 0.220 0.100 0.221 0.091 0.208 0.235 0.357 0.160 0.293 0.175 0.305 0.158 0.284 0.108 0.228 0.113 0.239

Avg 0.053 0.147 0.090 0.207 0.092 0.210 0.072 0.183 0.214 0.339 0.131 0.262 0.132 0.260 0.130 0.259 0.100 0.218 0.101 0.225

W
ea

th
er

12.5% 0.024 0.040 0.026 0.049 0.025 0.045 0.029 0.049 0.057 0.141 0.047 0.101 0.039 0.084 0.041 0.107 0.027 0.051 0.026 0.047

25% 0.026 0.043 0.028 0.052 0.029 0.052 0.031 0.053 0.065 0.155 0.052 0.111 0.048 0.103 0.064 0.163 0.029 0.056 0.030 0.054

37.5% 0.030 0.047 0.033 0.060 0.031 0.057 0.035 0.058 0.081 0.180 0.058 0.121 0.057 0.117 0.107 0.229 0.033 0.062 0.032 0.060

50% 0.033 0.052 0.037 0.065 0.034 0.062 0.038 0.063 0.102 0.207 0.065 0.133 0.066 0.134 0.183 0.312 0.037 0.068 0.037 0.067

Avg 0.028 0.046 0.031 0.056 0.030 0.054 0.060 0.144 0.076 0.171 0.055 0.117 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057

1st Count 53 7 0 0 0 0 0 0 0 0
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foundation and specific models. Surprisingly, the proposed UTSD shows better results on the dataset charac-
terized by multi-periodic patterns, which conforms to the multi-scale representation mechanism designed in
our Condition-Denoising component. Specifically,the average MSE is reduced by 41.1%, 42.3% and 26.3%
compared to the existing GPT4TS, TimesNet and PatchTST on the ECL dataset.

Table 12: To further verify the comprehensive performance of the proposed UTSD in Long-term
Time-series Generation, we introduce additional evaluation metrics: Context-FID Score, Corre-
lational Score, Discriminative Score, Predictive Score. We boldface the best performance on all
metrics and datasets, respectively.

Dataset Length UTSD Diffusion-TS TimeGAN TimeVAE Diffwave DiffTime Cot-GAN Improve(%)

ETTh

Context-FID 64 0.522±.031 0.631±.058 1.130±.102 0.827±.146 1.543±.153 1.279±.083 3.008±.277
Score 128 0.633±.029 0.787±.062 1.553±.169 1.062±.134 2.354±.170 2.554±.318 2.639±.427 18.2

(Lower the Better) 256 0.347±.010 0.423±.038 5.872±.208 0.826±.093 2.899±.289 3.524±.830 4.075±.894
Correlational 64 0.070±.002 0.082±.005 0.483±.019 0.067±.006 0.186±.008 0.094±.010 0.271±.007

Score 128 0.072±.002 0.088±.005 0.188±.006 0.054±.007 0.203±.006 0.113±.012 0.176±.006 16.2
(Lower the Better) 256 0.054±.003 0.064±.007 0.522±.013 0.046±.007 0.199±.003 0.135±.006 0.222±.010

Discriminative 64 0.087±.017 0.106±.048 0.227±.078 0.171±.142 0.254±.074 0.150±.003 0.296±.348
Score 128 0.120±.023 0.144±.060 0.188±.074 0.154±.087 0.274±.047 0.176±.015 0.451±.080 18.5

(Lower the Better) 256 0.048±.011 0.060±.030 0.442±.056 0.178±.076 0.304±.068 0.243±.005 0.461±.010
Predictive 64 0.098±.003 0.116±.000 0.132±.008 0.118±.004 0.133±.008 0.118±.004 0.135±.003

Score 128 0.087±.003 0.110±.003 0.153±.014 0.113±.005 0.129±.003 0.120±.008 0.126±.001 17.8
(Lower the Better) 256 0.090±.006 0.109±.013 0.220±.008 0.110±.027 0.132±.001 0.118±.003 0.129±.000

Energy

Context-FID 64 0.136±.014 0.135±.017 1.230±.070 2.662±.087 2.697±.418 0.762±.157 1.824±.144
Score 128 0.084±.015 0.087±.019 2.535±.372 3.125±.106 5.552±.528 1.344±.131 1.822±.271 2.2

(Lower the Better) 256 0.122±.019 0.126±.024 5.032±.831 3.768±.998 5.572±.584 4.735±.729 2.533±.467
Correlational 64 0.618±.012 0.672±.035 3.668±.106 1.653±.208 6.847±.083 1.281±.218 3.319±.062

Score 128 0.426±.031 0.451±.079 4.790±.116 1.820±.329 6.663±.112 1.376±.201 3.713±.055 6.4
(Lower the Better) 256 0.341±.039 0.361±.092 4.487±.214 1.279±.114 5.690±.102 1.800±.138 3.739±.089

Discriminative 64 0.066±.005 0.078±.021 0.498±.001 0.499±.000 0.497±.004 0.328±.031 0.499±.001
Score 128 0.127±.038 0.143±.075 0.499±.001 0.499±.000 0.499±.001 0.396±.024 0.499±.001 13.2

(Lower the Better) 256 0.252±.047 0.290±.123 0.499±.000 0.499±.000 0.499±.000 0.437±.095 0.498±.004
Predictive 64 0.225±.001 0.249±.000 0.291±.003 0.302±.001 0.252±.001 0.252±.000 0.262±.002

Score 128 0.221±.001 0.247±.001 0.303±.002 0.318±.000 0.252±.000 0.251±.000 0.269±.002 11.0
(Lower the Better) 256 0.214±.001 0.245±.001 0.351±.004 0.353±.003 0.251±.000 0.251±.000 0.275±.004

The Table 12 demonstrates the generation results of training from scratch on each particular dataset. The gener-
ation metrics Context-FID Score, Correlational Score, Discriminative Score and Predictive Score is reduced by
18.2%, 16.2%, 18.5% and 17.8% on ETTh dataset compared to the existing DiffusionTS. Besides, compared
with DiffusionTS, the average improvement of all indicators of UTSD on ETTh and Energy datasets is 17.6%
and 8.2%, respectively.

G MORE VISUALIZATIONS

In Figure 12, to validate the generative power of the diffusion-based probabilistic model, we visualise the
generation results of UTSD and the pre-existing diffusion method on the same dataset using the t-SNE method.
The red colour represents the real sequence samples and the blue colour represents the generated dataset, where
the degree of aggregation of these two samples in two-dimensional space reflects the generative ability of the
model. Specifically, when the projections of the two samples in 2D space are fully aggregated, the model
exhibits excellent generative performance.

The Figure 13 illustrates the dithering issue of popular diffusion model on the temporal generation task, as
one of the challenges in building a unified times series generation model. The existing CSDI (Tashiro et al.,
2021) and TimeGrad (Rasul et al., 2021) try to improve the prediction accuracy by averaging the results of
multiple samples, however, this leads to a huge time overhead. In contrast, the proposed UTSD can generate
high-quality prediction sequences with only one sampling. Visualization of the prediction results obtained by
repeated sampling of the four probabilistic models. The same observation sequence is fixed, and each model
repeats the inference 50 times. tSNE is utilized to visualize all the predicted sequences. UTSD has the highest
stability and accuracy.

To validate the effectiveness of the proposed model architecture, we visualised experiments against condition
net ablation, as shown in Figure 14. For each dataset, the generative capacity of the full UTSD model is
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shown on the left, and the generative capacity of the model when the condition net structure is excluded is
shown on the right, where the true values are in blue and the generated samples are in yellow. For each
experiment, the model demonstrated the best generative performance when the generated samples and the true
values completely overlapped together.

To visualise the performance of the model on the Scratch prediction task, Figures 15—20 show the results on
several datasets. Specifically, the upper half shows the prediction results obtained from the probabilistic model
with 50 repetitive samples, where the light and dark green colours denote the prediction results for the 10−90%
and 25− 75% confidence intervals, respectively (50 repetitive samples for each model), and the blue and green
curves denote the true value and median prediction results, respectively. The lower half of the display shows
shows the prediction results of the deep regression model (UTSD samples only once), where the blue and red
curves indicate the ground truth and prediction results, respectively.

Regarding long-term multi-periodic series and short-term non-periodic series have been a great challenge for
time series forecasting. Therefore it is considered important to introduce more visualisation results as shown
in Figures 10 and 11. Figure 10 illustrates the real long-periodic series (timesteps equals to 720) sampled
from ETT, ECL and Traffic datasets and Figure 11 illustrates the real short-term non-periodic series (timesteps
equals to 96) sampled from ETT, ECL and Traffic datasets. Specifically, UTSD demonstrates excellent per-
formance in long-term series forecasting, which verifies that UTSD has the ability to capture long-term depen-
dencies, which is crucial for practical applications. In addition, UTSD likewise exhibits satisfactory prediction
results in short-term sequences, which demonstrates the ability of the diffusion-based forecasting model to
generate high-quality time-series samples.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E
C
L
-7
20

E
T
T
h
1-
72
0

E
T
T
m
1-
72
0

Tr
af
fi
c-
72
0

Figure 10: Demonstration of UTSD prediction results on real long-term multi-periodic sequences
sampled from ETT, ECL and Traffic datasets.
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Figure 11: Demonstration of UTSD prediction results on real short-term non-periodic sequences
sampled from ETT, ECL and Traffic datasets.

Figure 12: Visualization of comparisons between UTSD and exsting probabilistic and deep model
baselines on the ETTh (Upper) and ETTm (Bottom) dataset.
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Figure 13: Illustration of the dithering issue with popular diffusion models for time series generation
tasks, which is one of the challenges in building a unified time series generation model. With the
fixed observation sequence and groundtruth, each fully trained diffusion model is repeatedly sampled
50 times. All generated sequences and the groundtruth are projected into a two-dimensional space,
by the t-SNE approach. The visualisation results demonstrate the excellent stability and accuracy of
the proposed method.
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Figure 14: Visualisation on the validity of the proposed model architecture condition net. Where
the upper part shows the visualisation results on the ETTh1 and ETTh2 datasets, and the bottom part
shows the visualisation results on the ETTm1 and ETTm2 datasets.
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UTSD DiffusionTS

UTSD PatchTST TimesNet DLinear

CSDI TimeGrad

UTSD DiffusionTS CSDI TimeGrad

UTSD PatchTST TimesNet DLinear

Figure 15: Visualization of comparisons between UTSD and exsting probabilistic (upper) and
deep model (bottom) baselines on the ETTh1 dataset. Where the light blue curve represents the
groundtruth, and the green and red curves represent the prediction results of several baselines. The
light and dark green staining show the predictions of the probabilistic model at the 10 − 90% and
25− 75% confidence intervals, respectively.
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Figure 16: Visualization of comparisons between UTSD and exsting probabilistic (upper) and
deep model (bottom) baselines on the ETTh2 dataset. Where the light blue curve represents the
groundtruth, and the green and red curves represent the prediction results of several baselines. The
light and dark green staining show the predictions of the probabilistic model at the 10 − 90% and
25− 75% confidence intervals, respectively.
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Figure 17: Visualization of comparisons between UTSD and exsting probabilistic (upper) and deep
model (bottom) baselines on the ETTm1 and ETTm2 dataset. Where the light blue curve represents
the groundtruth, and the green and red curves represent the prediction results of several baselines.
The light and dark green staining show the predictions of the probabilistic model at the 10 − 90%
and 25− 75% confidence intervals, respectively.
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Figure 18: Visualization of comparisons between UTSD and exsting probabilistic (upper) and deep
model (bottom) baselines on the ECL dataset.
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Figure 19: Visualization of comparisons between UTSD and exsting probabilistic (upper) and deep
model (bottom) baselines on the ECL dataset.
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Figure 20: Visualization of comparisons between UTSD and exsting probabilistic (upper) and deep
model (bottom) baselines on the ECL dataset.
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