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ABSTRACT

Sharpness-Aware Minimization (SAM) has substantially improved the generaliza-
tion of neural networks under various settings. Despite the success, its effectiveness
remains poorly understood. In this work, we discover an intriguing phenomenon
in the training dynamics of SAM, shedding light on understanding its implicit
bias towards flatter minima over Stochastic Gradient Descent (SGD). Specifically,
we find that SAM efficiently selects flatter minima late in training1. Remarkably,
even a few epochs of SAM applied at the end of training yield nearly the same
generalization and solution sharpness as full SAM training. Subsequently, we delve
deeper into the underlying mechanism behind this phenomenon. Theoretically,
we identify two phases in the learning dynamics after applying SAM late in train-
ing: i) SAM first escapes the minimum found by SGD exponentially fast; and ii)
then rapidly converges to a flatter minimum within the same valley. Furthermore,
we empirically investigate the role of SAM during the early training phase. We
conjecture that the optimization method chosen in the late phase is more crucial
in shaping the final solution’s properties. Based on this viewpoint, we extend
our findings from SAM to Adversarial Training. We released our source code at
https://github.com/zzp1012/SAM-in-Late-Phase.

1 INTRODUCTION

Understanding the surprising generalization abilities of over-parameterized neural networks yields an
important yet open problem in deep learning. Recently, it has been observed that the generalization
of neural networks is closely tied to the sharpness of the loss landscape (Keskar et al., 2017;
Zhang et al., 2017; Neyshabur et al., 2017; Jiang et al., 2020). This has led to the development of
many gradient-based optimization algorithms that explicitly/implicitly regularize the sharpness of
solutions. In particular, Foret et al. (2021) proposed Sharpness-Aware Minimization (SAM), which
has substantially improved the generalization and robustness (Zhang et al., 2024) of neural networks
across many tasks, including computer vision (Foret et al., 2021; Chen et al., 2022; Kaddour et al.,
2022) and natural language processing (Bahri et al., 2022).

Despite the empirical success of SAM, its effectiveness is not yet fully understood. Andriushchenko
& Flammarion (2022) has shown that existing theoretical justifications based on PAC-Bayes gen-
eralization bounds (Foret et al., 2021; Wu et al., 2020a) are incomplete in explaining the superior
performance of SAM. Additionally, recent theoretical analyses of SAM’s dynamics and properties
often rely on unrealistic assumptions, such as a sufficiently small learning rate or perturbation radius,
which undermines the validity of their conclusions. Understanding the hidden mechanisms behind
SAM remains an active area of research.

Recent works show that the effectiveness of gradient-based optimization methods can be attributed to
their implicit bias toward solutions with favorable properties (Vardi, 2023). One notable example of
such implicit bias is that Stochastic Gradient Descent (SGD) and its variants tend to find flat minima,
which often leads to better generalization (Keskar et al., 2017; Zhang et al., 2017). It is known that
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Figure 1: SAM operates efficiently even when applied only during the final few epochs of
training. (a) Test error curves for WideResNet-16-8 on CIFAR-10 trained with different strategies.
The blue and green baseline curves represent training solely with SGD and SAM, respectively. The
orange curve shows the test error of a neural network initially trained with SGD up to epoch t = 175,
followed by SAM training up to epoch T = 200. The first 100 epochs are omitted for clarity. Curves
are means and standard deviations over five trials with different random seeds. The detailed settings
and hyper-parameters are described in Section 2. (b) A schematic picture of the training trajectory
after applying SAM late in training. The contour plot represents the loss landscape, with darker
regions indicating lower loss. The orange dotted lines depict the path of the SAM iterator.

SAM selects flatter minima over SGD in practice, which represents a form of implicit bias as well.
While the design of SAM is inspired by sharpness regularization, its practical implementation (see
Equation (3)), which minimizes a first-order approximation of the original objective (see Equations (1)
and (2)), does not explicitly achieve this. Understanding SAM’s implicit bias towards flatter minima,
especially in comparison to SGD, is of paramount importance for explaining its effectiveness.

In this work, we uncover an intriguing phenomenon in the training dynamics of SAM, which sheds
light on understanding its implicit bias toward flatter minima. Specifically, we find that SAM operates
efficiently even when applied only during the last few epochs of training2. As shown in Figure 1
(a), SAM applied in the last few epochs—after initial training with SGD—can achieve nearly the
same test performance as training exclusively with SAM. Furthermore, our analysis of the solution
sharpness reveals that last-few-epochs SAM identifies flatter minima as effectively as full SAM
training. We conclude that SAM efficiently selects flatter minima over SGD late in training. Contrary
to the conventional view that early training dynamics are critical (Achille et al., 2019; Frankle et al.,
2020), our discovery underscores the importance of the late training phase for generalization.

Subsequently, we delve deeper into the mechanism behind the efficiency of SAM in selecting flatter
minima over SGD during the late phase of training. Theoretically, we identify a two-phase picture in
the learning dynamics after applying SAM late in training: Phase I. SAM initially escapes from the
relatively sharp minimum found by SGD exponentially fast; Phase II. it then rapidly converges to a
flatter minimum over SGD within the same valley. See Figure 1 (b) for an illustration. As outlined in
Table 1, we characterize the two-phase picture into four key claims (P1-4), each supported by rigorous
analyses of SAM’s convergence, escape behavior, and bias toward flatter minima. These claims
are further validated by experiments in both toy models and real-world scenarios. This two-phase
picture explains SAM’s ability to efficiently find flatter minima, even when applied only in the last
few epochs, yielding novel insights into its implicit bias and effectiveness.

Furthermore, we investigate the necessity of applying SAM during the early phase of training. Our
results show that early-phase SAM has a minimal effect on both generalization and sharpness of the
final solution. Based on these findings, we conjecture that the choice of the optimization algorithm
during the late phase of training plays a more critical role in shaping the final properties of the
solution. Extending this viewpoint to Adversarial Training (AT) (Madry et al., 2018) and robustness,
we find that similar to SAM, AT efficiently selects robust minima when applied late in training.

In summary, our work focuses on the implicit bias of SAM in the late training phase, which has not
yet been carefully studied. Our two-phase picture advances the understanding of its effectiveness.

2Andriushchenko & Flammarion (2022) observed a similar finding but did not explore it in depth. Surprising,
we first show that even few epochs of SAM at the end of training yield generalization comparable to full SAM
training. We study this further via extensive experiments under various setup and rigorous theoretical analysis.
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2 BACKGROUND AND PRELIMINARIES

Notation and Setup. Let Dtrain = {(xi,yi)}ni=1 and Dtest = {(xi,yi)}n+m
i=n+1 be the training set

and the testing set, where xi ∈ Rd is the input and yi ∈ Rk is the corresponding target. We consider
a model in the form of f(x;θ), where θ ∈ Rp are the model parameters and f(x;θ) ∈ Rk is the
output of the input x. The loss of the model at the i-th sample (xi,yi) is denoted as ℓ(yi; f(xi;θ)),
simplified to ℓi(θ). The loss over the training set and the testing loss are then given by LDtrain(θ) =
1
n

∑n
i=1 ℓi(θ) and LDtest(θ) = 1

m

∑n+m
i=n+1 ℓi(θ), respectively. Unless otherwise specified, we

denote L(θ) = LDtrain
(θ) for simplicity. For classification tasks, we define the classification error

on the test set Dtest as ErrDtest
(θ). For a matrix A, let ∥A∥2, ∥A∥F , and Tr(A) denote its spectral

norm, Frobenius norm and trace, respectively.

For our theoretical analysis in Section 4, we always assume k = 1 for simplicity3 and consider
the squared loss, i.e., ℓi(θ) = 1

2 |f(xi;θ) − yi|2. We focus on the over-parameterized case in
the sense that minθ L(θ) = 0. To characterize the local geometry of the training loss at point
θ, we consider the Fisher matrix G(θ) = 1

n

∑n
i=1 ∇f(xi;θ)∇f(xi;θ)

⊤ and the Hessian matrix
H(θ) = G(θ) + 1

n

∑n
i=1 (f(xi;θ)− yi)∇2f(xi;θ), where G(θ) ≈ H(θ) in the low-loss region.

Sharpness-Aware Minimization. The central idea behind SAM is to minimize the worst-case loss
within a neighborhood of the current parameters. Specifically, SAM problem can be formulated as

min
θ

LSAM(θ; ρ), where LSAM(θ; ρ) = max
∥ϵ∥2≤ρ

L(θ + ϵ). (1)

Here, ρ is a given neighborhood radius. However, finding the perturbation in the parameter space that
maximizes the loss, i.e. ϵ, can be computationally intractable in practice. Thus Foret et al. (2021)
approximated the maximize-loss perturbation using a first order solution:

ϵ ≈ argmax
∥ϵ∥2≤ρ

(
L (θ) + ϵ⊤∇L (θ)

)
= ρ∇L (θ) / ∥∇L (θ)∥2 . (2)

Consequently, let η be the learning rate and ξt = {ξt,1, · · · , ξt,B} ⊂ [n] be the batch indices sampled
at iteration t, where B is the batch size. The mini-batch loss is given by Lξt(θ) =

1
B

∑
i∈ξt

ℓi(θ).
With a small yet key modification to SGD , the update rule of SAM with stochastic gradients is:

θt+1 = θt − η∇Lξt

(
θt + ρt∇Lξt(θ

t)
)
, where ρt = ρ/

∥∥∇Lξt

(
θt
)∥∥

2
. (3)

𝜽0

𝜽SAM
𝑇𝜽SGD

𝑇

𝜽SGD
𝑡1

𝜽SGD→SAM, 𝑡1
𝑇

𝜽SGD
𝑡2

𝜽SGD→SAM, 𝑡2
𝑇

Figure 2: The illustration of the
switching method. Blue dashed
lines represent SGD training, while
orange dashed lines represent SAM
training. θ0 denotes the random ini-
tialization. t1, t2 denotes two dif-
ferent switching points.

Our experiments are conducted using SAM in Equation (3),
whereas our theoretical analyses in Section 4 apply the simpli-
fied SAM in Equation (4). Specifically, we approximate the
step size ρt in Equation (3) with a constant ρ. We also assume
the independence between the randomness in the inner and
outer updates, i.e., ξ1t , ξ

2
t . These simplifications facilitate math-

ematical tractability while capturing the central behavior of
SAM in training dynamics and generalization, which has been
supported by empirical evidence (Andriushchenko & Flam-
marion, 2022). They have also been widely adopted in recent
theoretical advances on SAM (Andriushchenko & Flammarion,
2022; Behdin & Mazumder, 2023; Agarwala & Dauphin, 2023;
Behdin et al., 2023; Monzio Compagnoni et al., 2023).

θt+1 = θt − η∇Lξ1t

(
θt + ρ∇Lξ2t

(θt)
)
. (4)

Switching Method. In this paper, we demonstrate our main dis-
covery by switching between SGD and SAM at a specific point
during training, referred to as switching method. Specifically,
let T be the total number of training epochs and t be the switching epoch, considering the switch
from SGD to SAM without loss of generality. We initially train the model from scratch with SGD
for t epochs to get θt

SGD, and then switch to SAM for the remaining T − t epochs to get θT
SGD→SAM,t.

Notably, when t = T or t = 0, the model is trained exclusively with SGD or SAM, simply denoted
3The extension to the case where k > 1 is straightforward.
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Figure 3: The impact of SAM training proportion on generalization/sharpness when switching
from SGD to SAM. The generalization gap between the models θT

SGD→SAM,t and θT
SAM (top row) / the

sharpness of θT
SGD→SAM,t (bottom row) vs. the SAM training proportion of θT

SGD→SAM,t. Dots represent
the mean over three trials with different random seeds, and error bars indicate standard deviations.
Results on more datasets and architectures can be found in Appendix B.2.

as θT
SGD and θT

SAM, respectively. See Figure 2 for an illustration. We fix the total number of training
epochs T and vary the switching point t to study the effect of SAM at different training phases. To
ensure a fair comparison, we ensure the same initialization, mini-batch orders, and hyper-parameters
across all models, regardless of the switching point. Consequently, the training trajectories of models
with different switching points align precisely before the switch.

Main Experimental Setup. Following Foret et al. (2021); Kwon et al. (2021), we perform experi-
ments on the commonly used image classification datasets CIFAR-10/100 (Krizhevsky et al., 2009),
with standard architectures such as WideResNet (Zagoruyko & Komodakis, 2016), ResNet (He et al.,
2016), and VGG (Simonyan & Zisserman, 2015). We use the standard configurations for the basic
training settings shared by SAM and SGD (e.g., learning rate, batch size, and data augmentation) as
in the original papers , and set the SAM-specific perturbation radius ρ to 0.05, as recommended by
Foret et al. (2021). We also extend our findings to AT (Madry et al., 2018) and ASAM (Kwon et al.,
2021). Due to space limits, more experimental details and results can be found in Appendix B.

3 SAM EFFICIENTLY SELECTS FLATTER MINIMA LATE IN TRAINING

In this section, we provide empirical evidence indicating that SAM efficiently selects flatter minima
over SGD late in training. We first show that applying SAM only during the last few epochs of
training achieves generalization comparable to training entirely with SAM. Taking a step further, we
demonstrate that last-few-epochs SAM finds flatter minima as effectively as full SAM training.

Applying SAM in the last few epochs achieves generalization comparable to full SAM training.
We conduct experiments on various datasets and architectures to investigate the effect of applying
SAM late in training, after initial training with SGD, on generalization. Specifically, we use the
switching method (detailed in Section 2), which switches from SGD to SAM at epoch t, to obtain
the model θT

SGD→SAM,t. For comparison, we train a baseline model entirely with SAM under the same
settings, resulting in θT

SAM. Both models are trained for a total of T epochs. To assess the generalization
ability of θT

SGD→SAM,t relative to θT
SAM, we calculated the test loss and test error gaps between these

two models: LDtest

(
θT

SGD→SAM,t

)
−LDtest

(
θT

SAM
)

and ErrDtest

(
θT

SGD→SAM,t

)
−ErrDtest

(
θT

SAM
)
, where Dtest

denotes the unseen test set. If the generalization gap between θT
SGD→SAM,t and θT

SAM approaches zero,
then we say θT

SGD→SAM,t achieve nearly the same generalization performance as θT
SAM.

Surprisingly, we find that applying SAM only in the final few epochs can achieve nearly the same
generalization performance as training entirely with SAM. In particular, we fix the number of total
training epochs T and vary the switching point t to adjust the SAM training proportion of θT

SGD→SAM,t,
which is exactly (T − t)/T . We analyze how the generalization gap between θT

SGD→SAM,t and θT
SAM

changes as the SAM training proportion increases. In Figure 3, the generalization gap becomes

4



Published as a conference paper at ICLR 2025

negligible once the SAM training proportion exceeds zero, indicating that even a few epochs of SAM
applied at the end of training yield generalization performance comparable to full SAM training. This
phenomenon is consistently observed across various datasets and architectures.

A similar phenomenon was noted by Andriushchenko & Flammarion (2022), but it was not given
significant attention. We isolate and extend this phenomenon by showing that even fewer epochs of
SAM (e.g. 1-5 epochs for WideResNet-16-8 on CIFAR-10) applied in the late phase of training yield
test error and loss comparable to full SAM training.

Applying SAM in the last few epochs finds flatter minima as effectively as full SAM training.
Furthermore, we investigate the effect of applying SAM in the late phase of training on the sharpness
of the final solution. Similarly as before, we analyze how the sharpness of the solution θT

SGD→SAM,t

changes w.r.t. the SAM training proportion. We measure the sharpness along the most curved
direction of the loss surface, i.e., the spectral norm of the Hessian matrix ∥H(θ)∥2. In Figure 3, the
sharpness of the solution θT

SGD→SAM,t dramatically drops once the SAM training proportion is greater
than zero, reflecting a similar trend to the generalization gap. This indicates that applying SAM in the
last few epochs of training is as effective as training entirely with SAM in achieving flatter minima.

In summary, we see that SAM efficiently selects flatter minima over SGD when applied late in training.
This suggests a fine-tuning scheme for SAM: start from a pretrained checkpoint and continue training
with SAM for several epochs, reducing computational costs while maintaining similar performance.
In Section 4, we will dig deeper into the underlying mechanism behind this phenomenon and gain
new insights into SAM’s implicit bias towards flatter minima.

4 HOW SAM EFFICIENTLY SELECTS FLATTER MINIMA LATE IN TRAINING

We have seen that SAM efficiently selects flatter minima over SGD when applied late in training. In
this section, we aim to explore the precise mechanism behind this phenomenon. Theoretically, we
identify a two-phase picture in training dynamics after switching to SAM in the late phase, which is
characterized by four key claims (P1-4), as outlined in Table 1. This picture demonstrates that SAM
provably escapes the minimum found by SGD and converges to a flatter minimum within the same
valley in just a few steps, explaining its efficiency in selecting flatter minima late in training.

Phase I
(escape)

(P1). SAM rapidly escapes from the minimum found by SGD; Corollary 4.2
(P2). However, the iterator remains within the current valley. Proposition 4.1

Phase II
(converge)

(P3). SAM selects a flatter minimum compared to SGD; Theorem 4.1
(P4). The convergence rate of SAM is extremely fast. Theorem 4.3

Table 1: Overview of the two-phase picture and corresponding theoretical results.

To understand the two-phase picture, let us first consider a toy but representative example.

Example 4.1. Consider using the shallow neural network f(u, v;x) = tanh(v tanh(ux)) to fit
a single data point (x = 1, y = 0) under the squared loss ℓ(y; y′) = (y − y′)2/2, then the loss
landscape can be written as L(θ) = 1

2 tanh
2(v tanh(u)), where θ = (u, v).

Figure 4 (a) visualizes the training dynamics for Example 4.1. In Figure 4 (a), the dynamics occur
within the valley surrounding the set of the minima M = {(u, v) : v = 0}. On M, the sharpness
is given by ∥H(θ)∥2 = Tr(H(θ)) = ∥H(θ)∥F = tanh2(u), implying that the smaller the |u|, the
flatter the minimum. Initially, SGD converges to a relatively sharp minimum θend

SGD. After switching
to SAM, the iterator exhibits the two-phase dynamics:

• Phase I (escape). SAM first escapes the sharp minimum θend
SGD found by SGD within a few

iterations (P1), but remains within the same valley around M4 (P2);

• Phase II (converge). SAM then rapidly converges to another flatter minimum θend
SAM (P3-4),

with a smaller |u| compared to θend
SGD.

4Note that the landscape has another valley around a different set of minima N = {(u, v) : u = 0}
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Figure 4: (a) Visualization of the two-phase dynamics for Example 4.1. The horizontal gray
line represents the set of the global minima M = {(u, v) : v = 0}, where smaller values of |u|
correspond to flatter minima. The blue lines trace the SGD iterates, leading to θend

SGD, while the orange
lines show the SAM iterates, which converge to a flatter minimum θend

SAM. Notably, θend
SGD and θend

SAM
stay in the same valley around M. (b) The exponentially fast escape from minima found by SGD.
Train loss LDtrain(θ

t+t′

SGD→SAM,t) v.s. the update step t′. Here, t is the switching step, chosen to be
sufficiently large for SGD to converge, and t′ is the number of updates after switching to SAM. The
red line represents the mean over 100 trials with different randomness. (c) SAM converges to a flatter
minimum within the same valley as the one found by SGD. The loss L (top row) / the second-order
finite difference L′′ (bottom row) of the interpolated model θλ v.s. the interpolation coefficient λ.
Here, θλ = (1 − λ)θend

SGD→SAM + λθend
SGD, and L′′(θλ) = (L(θλ+h) + L(θλ−h)− 2L(θλ)) /(2h)2,

where h is fixed to 0.1. This is no barrier in the loss curve, indicating θend
SGD→SAM and θend

SGD stay
within the same valley. L′′(θλ) gradually increases with λ, implying θend

SGD→SAM is flatter than θend
SGD.

This toy example successfully illustrates the two-phase picture after switching to SAM in the late
training phase, but it offers only a basic intuition. In the following, we will formally present our
theoretical results, with each claim rigorously supported by corresponding analysis.

4.1 THEORETICAL GUARANTEES FOR P1 AND P3: LINEAR STABILITY ANALYSIS

In this subsection, we provide theoretical support for two key claims in our two-phase picture
through a linear stability analysis: P1. SAM escapes from the relatively sharp minima found by SGD
exponentially fast; P3. SAM selects a flatter minimum compared to SGD.

During the late phase of training, the model remains close to some global minimum θ⋆ and can be
locally approximated by its linearization:

flin(x;θ) = f(x;θ⋆) + ⟨∇f(x;θ⋆),θ − θ⋆⟩ . (5)

Consequently, we can characterize the local dynamical stability (Strogatz, 2000) of the SAM iterator
near the global minimum on this linearized model.

Similar to the linear stability of SGD (Wu et al., 2022), we define the linear stability of SAM in
Definition 4.1. Note that for a specific optimizer, only linearly stable minima can be selected.

Definition 4.1 (Loss-based linear stability of SAM). A global minimum θ⋆ is said to be lin-
early stable for SAM if there exists a C > 0 such that, when SAM optimizes the loss L(θ) =
1
2n

∑n
i=1(flin(xi;θ)− yi)

2 on the linearized model (Equation (5)), the following condition holds:
E[L(θt)] ≤ CE[L(θ0)],∀t ≥ 0. Here, θ0 could be any point near θ⋆ where the linearization is valid.

Wu et al. (2022) has shown that the linear stability of stochastic algorithms is significantly influenced
by the gradient noise ξ(θ) = ∇ℓξ(θ) − ∇L(θ), where ξ denotes the index of a random sample.
Thus, it is crucial to consider the structural properties of the gradient noise in our analysis.

Gradient noise structure. A series of studies (Zhu et al., 2018; Feng & Tu, 2021; Wu et al., 2020b;
2022; Mori et al., 2022; Wojtowytsch, 2024) have established two key properties of the gradient
noise ξ(θ): (i) its shape is highly anisotropic; (ii) its magnitude is loss dependent. Specifically, by
incorporating both the noise shape and magnitude, Mori et al. (2022) has proposed an approximation
for the gradient noise covariance Σ(θ) = 1

n

∑n
i=1 ξ(θ)ξ(θ)

⊤, suggesting Σ(θ) ∼ 2L(θ)G(θ).

6
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Inspired by this approximation, we assume a weaker alignment property of the noise covariance Σ(θ)
(see Assumption 4.1) in our analysis, which has been theoretically and empirically validated in recent
works (Wu et al., 2022; Wang & Wu, 2023).

Assumption 4.1 (Gradient noise alignment). There exists γ > 0 s.t. Tr(Σ(θ)G(θ))

2L(θ)∥G(θ)∥2
F

≥ γ for all θ.

By analyzing the linear stability of SAM under this gradient noise alignment assumption, we establish
two theorems supporting the two key claims P1 and P3.
Theorem 4.1 (P3. Proof in Appendix C.1.). Let θ⋆ be a global minimum that is lin-
early stable for SAM in Equation (4), and suppose Assumption 4.1 holds. Then we have
∥H(θ⋆)∥2F

(
1 + ρ2γ

B ∥H(θ⋆)∥2F
)
≤ B

η2γ .

Theorem 4.1 characterizes the sharpness of the linearly stable minima for SAM, which is influenced
by the learning rate η, the batch size B, and the perturbation radius ρ. Since only linearly stable
minima can be selected by optimizer, Theorem 4.1 characterizes the sharpness of global minima
selected by SAM. Notably, taking ρ = 0 recovers the corresponding result for SGD (see Table 2).

SAM (Theorem 4.1) SGD (Wu et al., 2022)

Sharpness bound ∥H(θ⋆)∥2F ·
(
1 + ρ2γ

B ∥H(θ⋆)∥2F
)
≤ B

η2γ ∥H(θ⋆)∥2F ≤ B
η2γ

Table 2: Comparison of the sharpness of global minima selected by SAM and SGD.

Support for P3. We compare the bounds on the sharpness of the global minima selected by SAM
and SGD in Table 2. The additional term 1 + ρ2γ ∥H(θ⋆)∥2F > 1 in SAM’s bound impose stricter
requirement on the sharpness for by SAM compared to SGD, which supports our key claim P3 that
SAM tends to select flatter global minima over SGD. This term arises from SAM’s inner update,
i.e., θt+1/2 = θt + ρ∇ℓξt(θt) = θt + ρ∇L(θt) + ρ(∇ℓξt(θt)−∇L(θt)). Intuitively, the ascent
update ρ∇L(θt) tends to increase the loss, while the noise ρ(∇ℓξt(θt)−∇L(θt)) introduces extra
stochasticity. These factors together contribute to the flatter-minima selection by SAM.
Corollary 4.2 (P1. Proof in Appendix C.1.). Let θ⋆ be a global minimum, and suppose Assump-
tion 4.1 holds. If ∥H(θ⋆)∥2F

(
1 + ρ2γ

B ∥H(θ⋆)∥2F
)
> B

η2γ , then θ⋆ is linearly non-stable for SAM

in Equation (4). Indeed, E[L(θt)] ≥ CtE[L(θ0)] holds for all t > 0 with C > 1.

Corollary 4.2, together with Theorem 4.1, characterizes the necessary condition for a global minimum
to be linearly stable for SAM, namely the stability condition of SAM. Furthermore, Corollary 4.2
illustrates that if a global minimum fails to meet the stability condition of SAM, the SAM iterator
will escape from the minimum exponentially fast. Notably, such escape occurs within the low-loss
regions, where the linear approximation in Equation (5) holds. Complementary analysis of dynamics
in the high-loss regions is provided in Proposition 4.1.

Support for P1. Although the sharpness bound for SGD in Table 2 is an upper bound, Wu et al.
(2022) empirically demonstrates that the bound is nearly tight, with SGD solutions approximately
satisfying

∥∥H(θend
SGD)

∥∥2
F
≈ B

η2γ
5. Thus, with the same η and B, the solution found by SGD cannot

satisfy the stability condition of SAM. This leads to our key claim P1 that SAM escapes from the
sharp minima found by SGD exponentially fast, as validated by our experiments in Figure 4 (b).

Comparison with other linear stability analyses of SAM (Shin et al., 2023; Behdin et al., 2023).
These works have focused on the norm-based linear stability, characterized by E[∥θt − θ⋆∥2] ≤
C
∥∥θ0 − θ⋆

∥∥2 ,∀t ≥ 0, which is stricter than our loss-based stability (see Definition 4.1) due to
the presence of degenerate directions in over-parameterized models (see Lemma C.2). Another key
difference is the novel use of the alignment property of gradient noise (see Assumption 4.1) in our
analysis, enabling us to derive a concrete bound on the sharpness of SAM’s solutions.

4.2 THEORETICAL GUARANTEE FOR P2: BEYOND LOCAL ANALYSIS

In this subsection, we provide theoretical support for another key claim in our two-phase picture: P2.
SAM remains within the current valley during escape.

5≈ is not used in any formal proofs. Here, it indicates empirical finding that has not been rigorously proven.
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Sub-quadratic landscape. In high-loss regions, the local linearization in Equation (5) no longer
provides a valid approximation for neural networks, and consequently, the quadratic approximation
of the neural network loss landscape fails to capture its true structure. Beyond the quadratic landscape,
Ma et al. (2022) has introduced the concept of the sub-quadratic landscape: the loss grows slower
than a quadratic function, and the landscape in high-loss regions is significantly flatter than in
low-loss regions. The sub-quadratic landscape has been empirically verified in high-loss regions, and
is able to explain the Edge of Stability phenomenon (Cohen et al., 2021) (also observed in Wu et al.
(2018); Jastrzebski et al. (2020)), which the quadratic landscape cannot account for.

While Section 4.1 focuses on a local analysis near global minima, the analysis here is necessarily
non-local, as SAM might iterate into high-loss regions during escape. In this subsection, we need to
show that SAM remains within the current valley during escape under a sub-quadratic landscape.

Additional setup. For simplicity, we assume a model size of p = 1 and consider the full-batch SAM,
i.e., θt+1 = θt − η∇L(θt + ρ∇L(θt)). This setup is sufficient to illustrate that SAM will remain
within the current valley under a sub-quadratic landscape.
Definition 4.2 (Sub-quadratic landscape for p = 1). Let θ⋆ = 0 be a global minimum of L with
sharpness L′′(0) = a > 0. The valley V = [−c, c] is termed sub-quadratic if for all z, z1, z2 ∈ V , it
holds that zL′(z) ≥ 0 and L′′(|z1|) ≥ L′′(|z2|) if |z1| ≤ |z2|.

Following Theorem 1 in (Ma et al., 2022), we define the sub-quadratic landscape in Definition 4.2.
Specifically, for any 0 < z1 < z2 < c, it holds that L′′(z1) > L′′(z2) and L(z1) < L(z2), indicating
that high-loss regions are flatter than low-loss regions. The same applies for 0 > z1 > z2 > −c.
Proposition 4.1 (P2. Proof in Appendix C.2.). Under Definition 4.2, assume the landscape is
sub-quadratic in the valley V = [−2b, 2b]. Then, for all initialization θ0 ∈ (−b, b), and η, ρ s.t. η <
min
z∈V

b/|L′(z)|, ρ ≤ min{1/a, η, η min
0<|z|<b

|L′(2z)/L′(z)|}, the full-batch SAM (see Equation (10))

will remain within the valley V , i.e., θt ∈ V for all t ∈ N.
Proposition 4.1 shows that under a sub-quadratic landscape, even if SAM escapes the minimum θ⋆

when η > 2/a(1 + aρ) and θ0 ≈ θ⋆, it will still remain within the current valley6. This proposition
holds when η < min

z∈V
b/|L′(z)|, where the upper bound min

z∈V
b/|L′(z)| can be sufficiently large under

highly sub-quadratic landscapes (see Example C.1). Furthermore, this proposition can be extended to
almost all initializations within the valley V . See Proposition C.2.

Support for P2. Proposition 4.1 supports our key claim P2 that SAM remains within the current
valley during escape. Intuitively, as shown in Section 4.1, the low-loss region around the sharp
minimum found by SGD cannot satisfy SAM’s stability condition, causing SAM to escape toward
higher-loss regions; however, under the sub-quadratic landscape, the high-loss regions are much
flatter, which satisfies SAM’s stability condition and prevents it from escaping the current valley. The
experiment in Figure 4 (c) backs up this theoretical claim.

4.3 THEORETICAL GUARANTEE FOR P4: CONVERGENCE ANALYSIS

In this subsection, we provide theoretical support for the final claim in our two-phase picture: P4.
The convergence rate of SAM is significantly fast.

To establish the convergence results for stochastic optimization algorithms, it is often necessary to
make assumptions about the loss landscape and the magnitude of gradient noise ξ(θ).
Assumption 4.2 (Loss landscape: L-smoothness and Polyak–Łojasiewicz). (i) There exists L > 0

s.t. ∥H(θ)∥2 ≤ L for all θ; (ii) There exists µ > 0 s.t. ∥∇L(θ)∥2 ≥ 2µL(θ) for all θ.

Assumption 4.2 are quite standard and is frequently used in the non-convex optimization litera-
ture (Karimi et al., 2016). Specifically, for neural networks, if L(·) is four-times continuously
differentiable, this assumption holds at least near the set of global minima of L (Arora et al., 2022).

Assumption 4.3 (Gradient noise magnitude). There exists σ > 0 s.t. E[∥ξ(θ)∥2] ≤ σ2L(θ),∀θ.

The bounded variance assumption E[∥ξ(θ)∥2] ≤ σ2 is commonly employed in classical optimization
theory (Bubeck et al., 2015). However, as discussed in Section 4.1, recent studies (Mori et al., 2022;

6Multiple valleys exist in the settings of Proposition 4.1 (see Remark C.3 for more details).
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Figure 5: The impact of SAM training proportion on generalization/sharpness when switching
from SAM to SGD. The generalization gap between the models θT

SAM→SGD,t and θT
SAM (top row)/the

sharpness of θT
SAM→SGD,t (bottom row) vs. the SAM training proportion of θT

SAM→SGD,t. Dots represent
the mean over three trials with different random seeds, and error bars indicate standard deviations.
Results on more datasets and architectures can be found in Appendix B.5.

Feng & Tu, 2021; Liu et al., 2021; Wojtowytsch, 2024) have shown that the magnitude of SGD noise
is also bounded by the loss value. Thus, we introduce Assumption 4.3: E[∥ξ(θ)∥2] ≤ σ2L(θ). This
indicates that the noise magnitude diminishes to zero at global minima, contrasting sharply with the
classical bounded variance assumption and closely aligning with real-world scenarios.

Under these assumptions, we present the convergence result for stochastic SAM in Theorem 4.3.

Theorem 4.3 (P4. Proof in Appendix C.3.). Under Assumption 4.2 and 4.3, let {θt}t be
the parameters trained by SAM in Equation (4). If η ≤ min{1/2L, µB/2Lσ2} and ρ ≤
min

{
1/4L, µB/4Lσ2, ηµ2/24L2

}
, then we have E [L(θt)] ≤ (1− ηµ/2)

t L(θ0), ∀t ∈ N.

Support for P4. Theorem 4.3 supports our key claim P4 that the convergence rate of stochas-
tic SAM is significantly fast, and notably faster than the previous result on SAM’s convergence
rate (Andriushchenko & Flammarion, 2022).

Comparison with other convergence results for stochastic SAM (Andriushchenko & Flammarion,
2022; Shin et al., 2023). These works, along with our result, all study the convergence on stochastic
SAM under the standard Assumption 4.2. Andriushchenko & Flammarion (2022) has shown that
stochastic SAM converges under a polynomially fast rate of O(1/t), but this is much slower than our
exponentially fast rate. The difference lies in the assumptions on gradient noise magnitude: they have
used the classical assumption E[∥ξ(θ)∥2] ≤ σ2, whereas we rely on the more realistic Assumption 4.3.
Shin et al. (2023) has also proved that stochastic SAM converges exponentially fast. However, their
analysis is based on an additional interpolation assumption due to over-parameterization.

5 IS SAM NECESSARY IN THE EARLY PHASE OF TRAINING?
Since our main discovery in Section 3, one might question the necessity of using SAM in the early
phase. In this section, we demonstrate that applying SAM during the early phase offers only marginal
benefits for generalization and sharpness compared to full SGD training. Thus, we conjecture that the
optimization algorithm chosen at the end of training is more critical in shaping the final solution’s
properties. Based on this viewpoint, we extend our findings from SAM to Adversarial Training.

Early-phase SAM may offer limited improvements over SGD in generalization and sharpness.
We conduct experiments under various settings to investigate the effect of applying SAM during the
early phase of training, followed by SGD, on generalization and sharpness. Similarly to Section 3, we
use the switching method but switch from SAM to SGD, to obtain the model θT

SAM→SGD,t. In Figure 5,
the generalization gap remains substantial even when trained with SAM for most of the time (e.g.,
t/T = 0.8). A similar trend is observed in the sharpness of θT

SAM→SGD,t. Only full SAM training (i.e.,
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WideResNet-16-8 on CIFAR-10 with Adversarial Training
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Figure 6: AT improves robustness efficiently even when applied only during the final few epochs
of training. (a) Robust/natural error vs. training epochs for models trained with different strategies.
(b) Robust/natural error of θT

SGD→AT vs. the AT training proportion (T − t)/T . Dashed lines denotes
the robust error ErrDperturb , and solid lines denotes the natural error ErrDclean . Blue and green curves
represent models trained solely with SGD and AT, i.e., θT

SGD and θT
AT, respectively. Orange curves

indicate models which switching from SGD to AT at epoch t, i.e., θT
SGD→AT,t. All results are averaged

over five trials with different randomness.

t/T = 1) consistently finds the flat minima. This suggests that applying SAM before SGD could
yield only limited improvements in generalization and sharpness compared to full SGD training.

Together with findings in Section 3, we conjecture that the optimization algorithm chosen in the
late training phase is more critical in determining the final solution’s properties. However, current
findings are based solely on generalization/sharpness—can we extend to other properties?

Extension: Adversarial Training efficiently finds robust minima late in training. Adversarial
Training (AT) (Madry et al., 2018), in which networks are trained on adversarial examples (Szegedy
et al., 2014), significantly improves the robustness of neural networks. Recently, Zhang et al. (2024)
highlighted a duality between SAM and AT: while SAM perturbs the model parameters during
training (see Equation (1)), AT perturbs input samples, with both methods relying on gradients for
perturbations. Here, we pose the question: can our findings on SAM be extended to AT?

Similar to SAM, we discover that applying AT only during the final few epochs yields robustness
comparable to training entirely with AT. With the switching method, which switches from SGD
to AT at epoch t, we obtain the model θT

SGD→AT,t. We evaluate its robustness by classification error
on adversarial examples, termed robust error ErrDperturb(θ), and its performance on clean examples,
referred to as natural error ErrDclean(θ). In Figure 6 (a), the robust error of θT

SGD→AT,t drops sharply
after switching to AT at 180 epoch, matching that of full AT training, while the natural error only
slightly spikes. Additionally, we vary the switching point t to examine how the robustness of θT

SGD→AT,t

changes with the increasing proportion of AT epochs, i.e., (T − t)/T . In Figure 6 (b), the robust error
of θT

AT is comparable to that of models trained entirely with AT (i.e., when (T − t)/T = 1) once the
proportion of AT epochs exceeds 0. These results together confirm that AT efficiently enhances the
robustness of neural networks late in training.

6 CONCLUSION AND LIMITATIONS

In conclusion, we discovered an intriguing phenomenon that SAM efficiently selects flatter minima
over SGD when applied late in training. We provided a theoretical explanation for this by conducting
a two-phase analysis of the learning dynamics after switching to SAM in the late training phase. Our
results suggest that late training dynamics may play an important role in understanding the implicit
bias of optimization algorithms. Since we extended our findings to AT with the switching method, a
natural future direction is to generalize this novel approach to other optimization algorithms.

Limitations. We note that even if our theoretical setup closely reflects real settings, it still relies on
several simplifications, such as assuming a constant perturbation radius ρ and using squared loss.
We also note that our theory only explains the behavior of SAM in the late training phase; it cannot
account for the phenomena observed for early-phase SAM.
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A RELATED WORK

Implicit flat-minima bias. Extensive studies have been dedicated to understanding the implicit
bias in deep learning (Vardi, 2023). One notable example is the flat-minima bias: SGD and its
variants tend to select flat minima (Keskar et al., 2017; Zhang et al., 2017), which often generalize
better (Hochreiter & Schmidhuber, 1997; Jiang et al., 2020). Many works (Ma & Ying, 2021;
Mulayoff et al., 2021; Wu & Su, 2023; Gatmiry et al., 2023; Wen et al., 2023b) have theoretically
justified the superior generalization of flat minima in neural networks. Wu et al. (2018; 2022); Ma &
Ying (2021) have taken a dynamical stability perspective to explain why SGD favors flat minima;
in-depth analysis of SGD dynamics near global minima shows that the SGD noise drives SGD
towards flatter minima (Blanc et al., 2020; Li et al., 2022; Ma et al., 2022; Damian et al., 2021).
Further studies (Jastrzębski et al., 2017; Lyu et al., 2022) have explored how training components,
like learning rate and normalization, influence the flat-minima bias of SGD.

Understandings towards SAM. Inspired by the implicit flat-minima bias of SGD, Foret et al. (2021)
has proposed Sharpness-Aware Minimization (SAM) algorithm. SAM and its variants (Kwon et al.,
2021; Zhuang et al., 2022; Du et al., 2022; Liu et al., 2022; Kim et al., 2022; Mueller et al., 2023;
Becker et al., 2024; Wang et al., 2024) have achieved superior performance across a wide range
tasks (Chen et al., 2022; Kaddour et al., 2022; Bahri et al., 2022). Despite their successes, their
effectiveness remains poorly understood. On the optimization front, Andriushchenko & Flammarion
(2022); Si & Yun (2023); Shin et al. (2023) have studied the convergence properties of stochastic
SAM; Monzio Compagnoni et al. (2023); Kim et al. (2023) have demonstrated that SAM requires
more time to escape saddle points compared to SGD; Long & Bartlett (2024) have analyzed the
edge of stability phenomenon for SAM. On the implicit bias side, Shin et al. (2023); Behdin et al.
(2023) have examined SAM’s flat-minima bias using dynamical stability analysis; Wen et al. (2023a);
Monzio Compagnoni et al. (2023); Bartlett et al. (2023) have studied how SAM moves towards
flat minima; Andriushchenko & Flammarion (2022) has showed that SAM has the low-rank bias;
and Wen et al. (2023b) has revealed that SAM does not only minimize sharpness to achieve better
generalization. Dai et al. (2023) has characterized the role of Normalization in SAM. In comparison,
our work focuses on the dynamics of SAM in the late training phase, a topic largely unattended
in the literature, offering both theoretical and empirical analyses of SAM’s convergence, escape
behavior, and bias toward flatter minima. Additionally, several studies have explored the connection
between SAM and other algorithms: Zhang et al. (2024) explored the duality between SAM and AT;
Zhu et al. (2023) demonstrated the equivalence between average-direction SAM and decentralized
SGD. Another related work is Jia & Su (2020), which introduces a sharpness-regularized training
algorithm with a formulation similar to SAM. Notably, its ablation study demonstrates the algorithm’s
effectiveness when applied in the mid or late training stages. Karakida et al. (2023) has analyzed the
implicit bias of Gradient Regularization (GR), which shares a similar form with SAM, and showed
that GR tends to select solutions in rich regimes.
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B MORE EXPERIMENTAL DETAILS AND RESULTS

B.1 DETAILED EXPERIMENTAL SETTINGS

In this subsection, we introduce the detailed experimental settings.

In this work, we mainly compare the training dynamics of SAM and SGD. In fact, SAM and SGD
share almost identical training settings, with the only difference lying in that SAM introduces an
extra hyper-parameter, perturbation radius ρ. Therefore, we first outline the basic training settings for
training with SGD across different network architectures and datasets.

VGG-16 and ResNet-20 on the CIFAR-10 dataset. We train the VGG-16 (Simonyan & Zisserman,
2015) and the ResNet-20 architecture (He et al., 2016) on the CIFAR-10 dataset (Krizhevsky et al.,
2009), using standard data augmentation and hyperparameters as in the original papers (Simonyan &
Zisserman, 2015; He et al., 2016). Data augmentation techniques include random horizontal flips and
random 32× 32 pixel crops. A weight decay of 5× 10−4 is applied, and the momentum for gradient
update is set to 0.9. The learning rate is initialized at 0.1 and is dropped by 10 times at epoch 807.
The total number of training epochs is 160.

WideResNet-16-8 on the CIFAR-10 dataset, and WideResNet-28-10 on the CIFAR-100 dataset.
We train the WideResNet-16-8 architecture (Zagoruyko & Komodakis, 2016) on the CIFAR-10
dataset and the WideResNet-28-10 architecture on the CIFAR-100 dataset (Krizhevsky et al., 2009),
following the standard settings as in the original papers (Zagoruyko & Komodakis, 2016). Data
augmentation techniques include random horizontal flips, random 32 × 32 pixel crop, and cutout
regularization (DeVries, 2017). A weight decay of 5 × 10−4 is applied, and the momentum for
gradient update is set to 0.9. The learning rate is initialized at 0.1 and is dropped by 5 times at 60 and
120 epochs. The total number of training epochs is 200.

Then, we specify the extra hyper-parameter for SAM, i.e., the perturbation radius ρ.

Additional setup for SAM, ASAM and USAM. For SAM, the perturbation radius is set to 0.05
across all architectures and datasets, as recommended by Foret et al. (2021). In Appendix B.3, our
findings on SAM generalize to another SAM variant, ASAM (Kwon et al., 2021). For ASAM, the
perturbation radius is set to 2.0, as recommended by Kwon et al. (2021). In Appendix B.4, we further
generalize our findings to USAM (Andriushchenko & Flammarion, 2022) to verify the simplified
SAM update rule used in our theoretical analyses. For USAM, the perturbation radius is set to 0.1.

In Section 5, we also extend our findings to Adversarial Training (AT). AT shares almost the same
settings as SGD as well, except that AT trains neural networks on adversarial examples generated
from the original images. Here, we specify the additional settings for creating adversarial examples.

Additional setup for AT. We considered untargeted PGD attack (Madry et al., 2018) to generate
adversarial examples xAdv from the original image x, with the constraint that

∥∥xAdv − x
∥∥
∞ ≤ ϵ,

where ∥·∥∞ denotes the L∞ norm. Following the standard configurations of Madry et al. (2018), we
set the perturbation limit ϵ to 4/255 and the step size for PGD attack to 2/255.

Additional setup for experiments on ViTs. In Figure 8, we train the ViT-T/S architecture (Doso-
vitskiy et al., 2021) on the CIFAR-100 dataset, following the settings in Mueller et al. (2023). Data
augmentation techniques include random horizontal flips, random 32× 32 pixel crops and AutoAug-
ment. The early phase optimization is done with AdamW Kingma (2014), with a constant learning
rate 1× 10−4. A weight decay of 5× 10−4 is applied, and the batch size is set to 64. The late phase
optimization is done with SAM, with an extra hyperparameter, the perturbation radius, set to 0.1. The
total number of training epochs is 200.

B.2 MORE EXPERIMENTS ON LATE-PHASE SAM

In this subsection, we provide more experimental results under various settings to demonstrate the
effect of SAM on generalization and sharpness when applied during the late phase of training.

7Note that in the original paper, the learning rate is reduced by a factor of 10 at epoch 120 as well. However,
based on our theory in Section 4.1, the learning rate affects the solution sharpness (see Table 2). To fairly
compare the sharpness of solutions found by the switching method, which switches at different epochs, we
remove the learning rate decay during the late phase of training. The same applies for other architectures and
datasets.
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Figure 7: Additional experiments for VGG-16 and ResNet-20 on CIFAR-10: the impact of
SAM training proportion on generalization/sharpness when switching from SGD to SAM. The
generalization gap between the models θT

SGD→SAM,t and θT
SAM (top row) / the sharpness of θT

SGD→SAM,t

(bottom row) vs. the SAM training proportion of θT
SGD→SAM,t. Dots represent the mean over five trials

with different random seeds, and error bars indicate standard deviations.

Generalization gap:         ℒ𝐷test 𝜽Adam→SAM,𝑡
𝑇 − ℒ𝐷test 𝜽SAM
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Figure 8: Additional experiments for ViTs on CIFAR-100: the impact of SAM training pro-
portion on generalization when switching from Adam to SAM. The generalization gap between
the models θT

Adam→SAM,t and θT
SAM vs. the SAM training proportion of θT

Adam→SAM,t. Dots represent the
mean over five trials with different random seeds, and error bars indicate standard deviations.

In Figure 7, we include more experimental results for ResNet-20 and VGG-16 on the CIFAR-10
datasets.

In Figure 8, we include experiment results for ViT-T/S on the CIFAR-100 datasets. Notice that due to
an implementation limitation in PyTorch, computing the gradient twice consecutively for ViTs is not
feasible. Thus, only generalization results are presented. Additionally, as Adam is a more common
practice for training ViTs, we replace SGD with Adam before the switch.

In Figure 9, we include further experimental results using the squared loss. In Figure 9, both the
generalization gap and sharpness follow trends consistent with our previous findings in Figure 3,
thereby bridging the gap between our theoretical and experimental settings.

B.3 EXTENDED EXPERIMENTS ON ASAM

In this subsection, we generalize our findings on SAM to another SAM variant, ASAM (Kwon et al.,
2021). Similar to SAM, we find that applying ASAM during the late training phase, after initial
training with SGD, achieves generalization ability and solution sharpness comparable to full ASAM
training. Still, we apply the switching method to investigate the effect of the late-phase ASAM
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Figure 9: Additional experiments using squared loss: the impact of SAM training proportion on
generalization when switching from SGD to SAM. The generalization gap between the models
θT

SGD→SAM,t and θT
SAM vs. the USAM training proportion of θT

SGD→SAM,t. Dots represent the mean over
three trials with different random seeds, and error bars indicate standard deviations.
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Figure 10: The impact of ASAM training proportion on generalization/sharpness when switching
from SGD to ASAM. The generalization gap between the models θT

SGD→ASAM,t and θT
ASAM (top row) /

the sharpness of θT
SGD→ASAM,t (bottom row) vs. the ASAM training proportion of θT

SGD→ASAM,t. Dots
represent the mean over three trials with different random seeds, and error bars indicate standard
deviations.
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Figure 11: The impact of USAM training proportion on generalization when switching from
SGD to USAM. The generalization gap between the models θT

SGD→USAM,t and θT
USAM vs. the USAM

training proportion of θT
SGD→USAM,t. Dots represent the mean over three trials with different random

seeds, and error bars indicate standard deviations.

across various architectures and datasets. We use the switching method, which switches from SGD
to ASAM, to obtain the model θT

SGD→ASAM,t. We also train a baseline model, i.e., θT
SGD→SAM,t. We

vary the switching point t while keeping T fixed to adjust the proportion of ASAM training and
study its impact on the generalization gap between θT

ASAM and θT
SGD→ASAM,t, as well as the sharpness

of θT
SGD→ASAM,t. As shown in Figure 10, both the generalization gap and the sharpness drop once the

ASAM training proportion exceeds zero, implying that ASAM, even when applied only during the
last few epochs, achieves comparable generalization performance and solution sharpness as training
entirely with ASAM. These results further highlight the importance of studying the implicit bias of
different optimization algorithms towards the end of training.

B.4 EXTENDED EXPERIMENTS ON USAM

In this subsection, we generalize our findings on SAM to another SAM variant, USAM (An-
driushchenko & Flammarion, 2022), to further justify the simplification made on the SAM update
rule in our theoretical analysis. With a small modification to Equation (3) , the update rule of USAM
with stochastic gradients is:

θt+1 = θt − η∇Lξt

(
θt + ρ∇Lξt(θ

t)
)
. (6)

Consistently with the main paper, we measure how the generalization gap between θT
SGD→USAM,t

and θT
USAM, as well as the sharpness of θT

SGD→USAM,t, changes as the USAM training proportion
T−t
T increases. In Figure 11, both the generalization gap and sharpness drop sharply once the USAM

training proportion exceeds zero. This finding validates the effectiveness of USAM in capturing
the main behavior of SAM, further bridging the gap between our theoretical results and empirical
findings.

B.5 MORE EXPERIMENTS ON EARLY-PHASE SAM

In this subsection, we provide more experimental results to demonstrate the effect of SAM on
generalization and sharpness when applied during the early phase of training.

The effect of early-phase SAM on the generalization ability. In Figure 12, we include more
experimental results for ResNet-20 and VGG-16 on the CIFAR-10 datasets. Similar to our results
in Figure 5, the generalization gap between θT

SAM→SGD,t and θT
SAM remains substantial until the SAM

training proportion exceeds 0.6. The same applies for the sharpness of θT
SAM→SGD,t. These results

further validate that applying SAM only during the early phase offers limited improvements on
generalization and sharpness of the final solution compared to full SAM training.
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Figure 12: Additional experiments for VGG-16 and ResNet-20 on CIFAR-10: the impact of
SAM training proportion on generalization/sharpness when switching from SAM to SGD. The
generalization gap between the models θT

SAM→SGD,t and θT
SAM (top row)/the sharpness of θT

SAM→SGD,t

(bottom row) vs. the SAM training proportion of θT
SAM→SGD,t. Dots represent the mean over five trials

with different random seeds, and error bars indicate standard deviations.
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Figure 13: The impact of (early-phase) SAM on the sharpness evolution. The sharpness evolution
curves for fully-connected nets on CIFAR-10 5k subset trained with different strategies. The blue and
purple baseline curves represents training entirely with GD and (full-batch) SAM, respectively. The
red, green and orange curves represent the switching method, which switches from GD to (full-batch)
SAM at different switching point t, with t ∈ {2000, 5000, 10000}. A constant learning rate η = 0.01
(2/η = 200) is used for both GD and (full-batch) SAM.

The effect of early-phase SAM on the sharpness evolution. Other than focusing on the sharpness
of the final solution, we are also interested in the effect of early-phase SAM on the evolution process
of the sharpness.

Furthermore, we explore how sharpness at the iterator evolves when switching from SAM to (S)GD.
Recent works (Cohen et al., 2021; Ahn et al., 2022) have shown that when training neural networks
with Gradient Descent (GD), the sharpness ∥H(θ)∥2 tends to increase monotonically until it arrives
at 2/η, where η is the learning rate. This is commonly known as the Edge of Stability (EoS)
phenomenon8. Specifically, we follow the setup of Cohen et al. (2021), measuring sharpness
evolution for models trained with the switching method, which switches from (full-batch) SAM9

to GD, as well as models trained entirely with GD and SAM. In Figure 13, we observe the EoS
phenomenon for models trained entirely with GD. However, for models trained entirely with SAM,
sharpness initially decreases, then slightly increases before converging to a value much smaller than
2/η. As for models trained using the switching method, sharpness evolution mirrors that of full SAM
training up to the switching point t. After t, the sharpness rapidly increases and then oscillates around

8Despite Long & Bartlett (2024) noted an “edge of stability” for SAM, here, the Edge of Stability phenomenon
refers specifically to GD.

9In this experiment, we adopt the SAM with full-batch gradient for fair comparison with GD.
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WideResNet-16-8 on CIFAR-10: f 𝛼, 𝛽 = ℒ𝐷test 𝜽SGD→SAM,𝑡
𝑇 + 𝛼𝜹target + 𝛽𝜹random

1st Random vector 𝜹random,1 2nd Random vector 𝜹random,2 3rd Random vector 𝜹random,3
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𝑇 (𝛼 = 1, 𝛽 = 0): 𝜽SGD
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Figure 14: A 2D visualization of the loss landscape around SGD and SGD-to-SAM solutions. The
orange dot (α = 1, β = 0) denotes the SGD solution, and the orange triangle denotes (α = 0, β = 0)
denotes the solution obtained by switching from SGD to SAM. The contour plot represents the loss
landscape, with darker regions indicating lower loss. The random vectors are sampled three times.
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Figure 15: The impact of perturbation radius on generalization when switching from SAM to
SGD. The test loss (left) / test error (right) of the model θT

SAM→SGD,t vs. the SAM training proportion.
Different perturbation radius ρ ∈ {0.02, 0.05, 0.1, 0.15, 0.2} are chosen for SAM. Dots represent the
mean over five trials with different random seeds, and error bars indicate standard deviations.

2/η, regardless of how late the switch occurs. This implies that early-phase SAM cannot prevent the
emergence of the EoS phenomenon. Once switching to GD, the iterator immediately escapes the
flat minima found by SAM, resulting in relatively sharper minima. Together with our findings in
Figures 5 and 12, we firmly say that early-phase SAM has a limited impact on both generalization
and sharpness of the final solution.

B.6 OTHER EXPERIMENTS

A 2D visualization of loss landscape Other than the 1D interpolation in Figure 4 (c), we provide
2D visualization of the loss landscape, using the approach proposed by Li et al. (2018). In this
setup, we center the visualization at θT

SGD→SAM,t and select two directions: δtarget and δrandom.
Specifically, δtarget = θT

SGD − θT
SGD→SAM,t, pointing towards the SGD solution, and δrandom is a

random direction sampled from N (0, Ip) , with layer-wise normalization (Li et al., 2018) applied.
We then plot the loss landscape as a function f(α, β) = L(θT

SGD→SAM,t +αδtarget + βδrandom). In
Figure 14, it is clear that θT

SGD→SAM,t and θT
SGD stay within the same valley. Moreover, the contours

around θT
SGD→SAM,t are wider compared to θT

SGD, indicating θT
SGD→SAM,t corresponds to a flatter

minimum. This two-dimensional approach provides additional insights into the structure of the loss
landscape and further supports our two key claims P2 and P3.

The effect of perturbation radius on generalization when switching from SAM to SGD In our
theory (see Table 2), the perturbation radius ρ influences the sharpness of the global minima selected
by SAM. Specifically, a larger perturbation radius leads to the selection of flatter global minima. In
contrast, SGD’s behavior is independent of the perturbation radius. However, as discussed in our
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Figure 16: Extending Figure 4 (c) to include more update steps. Train/test loss LD(θ
t+t′

SGD→SAM,t)

v.s. the update step t′. Here, t is the switching step, chosen to be sufficiently large for SGD to
converge, and t′ is the number of updates after switching to SAM. The red line represents the mean
over 100 trials with different randomness.

conjecture in Section 5, the properties of the final solutions are primarily shaped by the optimization
method chosen in the late training phase. Consequently, when switching from SAM to SGD, the
generalization properties of the final solution are expected to be independent of the perturbation
radius, as SGD dominate in the final stage of training.

To further explore this, we have conducted experiments to investigate the effect of perturbation radius
on generalization when switching from SAM to SGD. Specifically, we varied the perturbation radius
ρ ∈ {0.02, 0.05, 0.1, 0.15, 0.2} for SAM and measured how the test loss and error of θT

SAM→SGD,t

change as the SAM training proportion t
T increases. In Figure 15, we observe no significant

differences in test loss or error across different ρ values, even when training with SAM for most of the
time (e.g., t

T = 0.8). Notably, only full SAM training (i.e., t
T = 1) shows a pronounced dependence

on ρ, where a larger perturbation radius leads to better generalization. These findings align with our
expectation that the perturbation radius has minimal impact on generalization when transitioning
from SAM to SGD, further validating our theoretical results in Section 4 and conjecture in Section 5.

Extending Figure 4 (c) to include more update steps. In Figure 16, we observe that the training
loss initially increases exponentially fast and then gradually decreases, consistent with our theoretical
predictions.
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C PROOFS IN SECTION 4

In our theoretical analysis of Stochastic SAM, defined in Equation (4), we adopt the technical
simplification in Appendix C.2 of Andriushchenko & Flammarion (2022), which assumes that
the inner noise and outer noise are independent. Specifically, we analyze the following variant
of Equation (4):

θt+1 = θt − ηLξ2t
(θt + ρ∇Lξ1t

(θt)) (7)

where ξ1t and ξ2t are two independent stochastic mini-batches of data of size B.

C.1 PROOF OF THEOREM 4.1 AND COROLLARY 4.2

For simplicity, we denote the two-step update rules of SAM defined in Equation (7) as:

θt+1/2 = θt + ρ∇Lξ1t
(θt),

θt+1 = θt − η∇Lξ2t
(θt+1/2).

For B-batch gradient noise, denoted by ξB(θ) := Lξ(θ)−∇L(θ), we have:

E[ξB(θ)ξB(θ)⊤] =
1

B
E[ξ(θ)ξ(θ)⊤] =

1

B
Σ(θ), (8)

where ξ are the sample indices in a mini-batch and ξ(θ) is the 1-batch gradient noise, used in
Assumption 4.1.

For the linearized model ( Equation (5)), it holds that:

L(θ) = 1

2
(θ − θ⋆)⊤H(θ⋆)(θ − θ⋆).

Without loss of generality, we can let θ⋆ = 0. For simplicity, we denote G := H(θ⋆).

Next, according to the definition of linear stability (Definition 4.1), we consider the dynamics of
stochastic SAM on the linearized model.

First, we have the following estimate for E
[
L(θt+1)

]
:

E
[
L(θt+1)

]
=
1

2
E
[
(θt − η∇Lξ2t

(θt+1/2))⊤G(θt − η∇Lξ2t
(θt+1/2))

]
=
1

2
E
[
(θt − η∇L(θt+1/2)− ηξB(θt+1/2))⊤G(θt − η∇L(θt+1/2)− ηξB(θt+1/2))

]
=
1

2
E
[
(θt − η∇L(θt+1/2)⊤G(θt − η∇L(θt+1/2)

]
+ 0

+
1

2
η2E

[
ξB(θt+1/2)

⊤
GξB(θt+1/2)

]
(8)
=
1

2
E
[
(θt − η∇L(θt+1/2)⊤G(θt − η∇L(θt+1/2)

]
+
η2

2B
E
[
Tr
(
Σ(θt+1/2)G)

)]
Assumption 4.1

≥ 0 +
η2γ ∥G∥2F

B
E
[
L(θt+1/2)

]
=
η2γ ∥G∥2F

B
E
[
L(θt+1/2)

]
.

Remark C.1 (Clarifications on E). The expectation E is taken with respect to the random variables
{ξ1t , ξ2t }t (t ≥ 0), which are the indices of independently random examples sampled from Dtrain.

Remark C.2 (ξB(θt+1/2) and θt − η∇L(θt+1/2) are uncorrelated). Observing that θt −
η∇L(θt+1/2) = ϕ(ξ11 , ξ

2
1 , · · · , ξ1t ) and θt+1/2 = ψ(ξ11 , ξ

2
1 , · · · , ξ1t ), we can use the law of total

expectation to derive

E[
〈
ξB(θt+1/2),θt − η∇L(θt+1/2)

〉
]
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=Eξ11 ,ξ
2
1 ,··· ,ξ1t

[
Eξ2t

[ 〈
∇Lξ2t

(θt+1/2)−∇L(θt+1/2),θt − η∇L(θt+1/2)
〉 ∣∣ξ11 , ξ21 , · · · , ξ1t ]]

=Eξ11 ,ξ
2
1 ,··· ,ξ1t

[
Eξ2t

[ 〈
∇Lξ2t

(ψ(ξ11 , ξ
2
1 , · · · , ξ1t ))−∇L(ψ(ξ11 , ξ21 , · · · , ξ1t )), ϕ(ξ11 , ξ21 , · · · , ξ1t )

〉 ∣∣∣ξ11 , ξ21 , · · · , ξ1t ]]
=Eξ11 ,ξ

2
1 ,··· ,ξ1t [0] = 0.

Then we estimate the lower bound for E
[
L(θt+1/2)

]
:

E
[
L(θt+1/2)

]
=
1

2
E
[
(θt − ρ∇Lξ1t

(θt))⊤G(θt + ρ∇Lξ1t
(θt))

]
=
1

2
E
[
(θt + ρ∇L(θt) + ρξB(θt))⊤G(θt + ρ∇L(θt) + ρξB(θt))

]
=
1

2
E
[
(θt + ρ∇L(θt))⊤G(θt + ρ∇L(θt))

]
+

1

2
ρ2E

[
ξB(θt)

⊤
GξB(θt)

]
(8)
=
1

2
E
[
(θt + ρ∇L(θt))⊤G(θt + ρ∇L(θt))

]
+
ρ2

2B
E
[
Tr
(
Σ(θt)G

)]
Assumption 4.1

≥ 1

2
E
[
(θt + ρ∇L(θt))⊤G(θt + ρ∇L(θt))

]
+
ρ2γ ∥G∥2F

B
E
[
L(θt)

]
=
1

2
E
[
θt⊤(I + ρG)G(I + ρG)θt

]
+
ρ2γ ∥G∥2F

B
E
[
L(θt)

]
(♣)

≥ 1

2
E
[
θt⊤Gθt

]
+
ρ2γ ∥G∥2F

B
E
[
L(θt)

]
=

(
1 +

ρ2γ ∥G∥2F
B

)
E
[
L(θt)

]
,

where (♣) holds due to (I + ρG)G(I + ρG) = G+ 2ρG2 + ρ2G3 ⪰ G.

By combining these two estimates, we obtain:

E
[
L(θt+1)

]
≥
η2γ ∥G∥2F

B

(
1 +

ρ2γ ∥G∥2F
B

)
E
[
L(θt)

]
Hence, if θ⋆ is linear stable for stochastic SAM, it must hold:

η2γ ∥G∥2F
B

(
1 +

ρ2γ ∥G∥2F
B

)
≤ 1, (9)

which completes the proof of Theorem 4.1.

Furthermore, if the condition (9) can not be satisfied, i.e., η2γ∥G∥2
F

B

(
1 +

ρ2γ∥G∥2
F

B

)
> 1, then the

exponentially fast escape holds:

E
[
L(θt)

]
≥ CtE

[
L(θ0)

]
,

where C =
η2γ∥G∥2

F

B

(
1 +

ρ2γ∥G∥2
F

B

)
> 1. This complete the proof of Corollary 4.2.

C.2 PROOF OF PROPOSITION 4.1

As we mentioned in Section 4.2, this proposition focus on a model size of p = 1 and consider the
full-batch SAM, i.e.,

θt+1 = θt − η∇L(θt + ρ∇L(θt)). (10)
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Proof of Proposition 4.1.
First, we define the hitting time:

T := inf
{
t ∈ N : |θt+1| ≥ b

}
.

We aim to prove that T does not exists, which implies that θt ∈ (−b, b) ⊂ V holds for all t ∈ N.

Assuming T exists, then one of the following three cases must hold:

• Case I: θT = 0. In this case, L′(θT ) = 0, which implies that θT+1 = 0. This contradicts the
definition of T .

• Case II: 0 < θT < b. By the sub-quadratic property and ρ ≤ 1/a, for the inner update
θT+1/2 := θT + ρL′(θT ), we have:

0 < θT < θT+1/2 = θT + ρ

∫ θT

0

L′′(z)dz < θT + ρaθT ≤ 2θT < 2b.

Consequently, we estimate the two-sided bounds for θT+1:

– The lower bound for θT+1:

θT+1 =θT − ηL′(θT+1/2) > 0− η sup
z∈(0,2b)

L′(z)

≥0− η max
z∈(−2b,2b)

L′(z) > −b.

– The upper bound for θT+1:

θT+1 =θT − ηL′(θT+1/2) < θT + ρL′(θT )− ηL′(θT+1/2)

(♠)
< θT + ηL′(θT+1/2)− ηL′(θT+1/2) = θT < b.

To justify (♠), we prove ρ < ηL′(θT+1/2)
L′(θT )

when L′(θT ) > 0 (noticing θTL′(θT ) ≥ 0 by

sub-quadratic property) Since θT < θT+1/2 < 2θT , we aconsider two scenarios:

* If
∫ 2θT

θT+1/2 L′′(z)dz ≤ 0, then

L′(θT+1/2)

L′(θT )
=

L′(2θT )−
∫ 2θT

θT+1/2 L′′(z)dz
L′(θT )

≥ L′(2θT )

L′(θT )
.

Using the condition ρ < η min
0<|z|<b

∣∣∣L′(2z)
L′(z)

∣∣∣, we obtain ρ < ηL′(θT+1/2)
L′(θT )

.

* If
∫ 2θT

θT+1/2 L′′(z)dz > 0, then since the sub-quaratic property L′′(|z1|) ≥ L′′(|z2|)
for |z1| ≤ |z2|, we have L′′(θT+1/2) > 0. Thus, L′′(z) ≥ L′′(θT+1/2) > 0 for
θT < z < θT+1/2, implying:

L′(θT+1/2) = L′(θT ) +

∫ θT+1/2

θT

L′′(z)dz > L′(θT ).

Using the condition ρ < η, we obtain ρ < η < ηL′(θT+1/2)
L′(θT )

.

Therefore, we have shown ρ < ηL′(θT+1/2)
L′(θT )

, implying (♠).

Thus, we obtain |θT+1| < b, which contradicts the definition of T .

• Case III: −b < θT < 0. The proof for this case is extremely similar to the proof for Case II.
This case is also contradicts the definition of T .

Thus, we have proved that T does not exist, which implies i.e., θt ∈ (−b, b) ⊂ V,∀t ∈ N.
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The next result provides an example for the highly sub-quadratic landscape. Intuitively, it means that
the decay of L′′(|z|) is extremely fast.
Example C.1 (highly sub-quadratic landscape). Let L(0) = L′(0) = 0, L′′(0) = a, and

L′′(z) =

{
a− |z|

ϵ , |z| < aϵ

0, else in [−2b, 2b]
,

where 0 < ϵ≪ 1 is a constant to reflect the sub-quadratic degree.

Notice that this example satisfies Definition 4.2. Moreover, it is straightforward that

L′(z) =

{
z
(
a− |z|

2ϵ

)
, |z| < aϵ

aϵ
2 , else in [−2b, 2b]

.

Additionally, we can calculate the upper bounds for η and ρ in Proposition 4.1:

η ≤ min
|z|≤2b

b

|L′(z)|
=

2b

ϵa
,

ρ ≤ min

{
1

a
, min
|z|≤b

∣∣∣∣L′(2z)

L′(z)

∣∣∣∣} = min

{
1

a
, 2

}
.

One can see that in the highly sub-quadratic case, i.e., 0 < ϵ ≪ 1, the upper bound for η goes to
+∞.

In addition, we prove Proposition C.1, which illustrates that SAM will escape the current valley
under a quadratic landscape. This result stands in stark contrast to Proposition 4.1 for sub-quadratic
landscape, which further confirms our adaptation of the sub-quadratic landscape.
Proposition C.1 (Non-local escape behaviour under a quadratic landscape.). Assume the landscape
in the valley Vb = (−2b, 2b) be quadratic, i.e., L(z) = az2/2. Then, for all initialization θ0 ∈
Vb\{0}, and η, ρ s.t. η > 2

a(1+aρ) , full-batch SAM will escape from the valley Vb, i.e., there exists
T > 0 s.t. θT /∈ Vb.

Proof of Proposition C.1. By a straightforward calculation, we have

θt+1 = θt − ηa
(
θt + ρ · aθt

)
= (1− ηa(1 + aρ))θt.

If η > 2
a(1+aρ) , then |θt| ≥ |1 − ηa(1 + aρ)|t|θ0|, where |1 − ηa(1 + aρ)| > 1. This means that

there exists T > 0 s.t. θT /∈ Vb.

Remark C.3 (multiple valleys in Proposition 4.1). Proposition 4.1 assumes the landscape is sub-
quadratic within the valley V = [−2b, 2b], but it does not impose any assumptions about the landscape
outside V . Therefore, additional valleys can exist in (−∞,−2b) ∪ (2b,+∞). For example, consider

L(θ) = 1− cos

(
πθ

2b

)
,

which satisfies the sub-quadratic property within V = [−2b, 2b]. This loss function has infinitely
many valleys:

[2(2k − 1)b, 2(2k + 1)b], k ∈ Z.
By Proposition 4.1, SAM remains in the current valley V = [−2b, 2b] and cannot enter into other
valleys.
Proposition C.2 (Extension of Proposition 4.1). Under Definition 4.2, assume the landscape is
sub-quadratic in the valley V = [−2b, 2b]. Then, for any ϵ ∈ (0, 1) and all initialization θ0 ∈ (−(2−

ϵ)b, (2−ϵ)b), and η, ρ s.t. η < min
z∈V

(2−ϵ)b/|L′(z)|, ρ ≤ min

{
ϵ

a(2−ϵ) , η, η min
0<|z|<(2−ϵ)b

∣∣∣L′( 2
2−ϵ z)

L′(z)

∣∣∣},

the full-batch SAM will remain within the valley V , i.e., θt ∈ V for all t ∈ N.

Notice that Proposition C.2 generalizes Proposition 4.1 to almost all initializations within the valley
(−2b, 2b). By choosing sufficiently small ϵ, the result effectively applies to all initializations within
(−2b, 2b).
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Proof of Proposition C.2. This proof is highly similar to that of Proposition 4.1. First, we define the
hitting time:

T := inf
{
t ∈ N : |θt+1| ≥ (2− ϵ)b

}
.

We aim to prove that T does not exists, which implies that θt ∈ (−(2− ϵ)b, (2− ϵ)b) ⊂ V holds for
all t ∈ N.

Assuming T exists, then one of the following three cases must hold:

• Case I: θT = 0. In this case, L′(θT ) = 0, which implies that θT+1 = 0. This contradicts the
definition of T .

• Case II: 0 < θT < (2− ϵ)b. By the sub-quadratic property and ρ ≤ ϵ
a(2−ϵ) , for the inner update

θT+1/2 := θT + ρL′(θT ), we have:

0 < θT < θT+1/2 = θT + ρ

∫ θT

0

L′′(z)dz < θT + ρaθT ≤ 2

2− ϵ
θT < 2b.

Consequently, we estimate the two-sided bounds for θT+1:

– The lower bound for θT+1:

θT+1 =θT − ηL′(θT+1/2) > 0− η sup
z∈(0,2b)

L′(z)

≥0− η max
z∈(−2b,2b)

L′(z) ≥ −(2− ϵ)b.

– The upper bound for θT+1:

θT+1 =θT − ηL′(θT+1/2) < θT + ρL′(θT )− ηL′(θT+1/2)

(♯)
<θT + ηL′(θT+1/2)− ηL′(θT+1/2) = θT < (2− ϵ)b.

To justify (♯), we prove ρ < ηL′(θT+1/2)
L′(θT )

when L′(θT ) > 0 (noticing θTL′(θT ) ≥ 0 by

sub-quadratic property) Since θT < θT+1/2 < 2
2−ϵθ

T , we consider two scenarios:

* If
∫ 2

2−ϵ θ
T

θT+1/2 L′′(z)dz ≤ 0, then

L′(θT+1/2)

L′(θT )
=

L′( 2
2−ϵθ

T )−
∫ 2

2−ϵ θ
T

θT+1/2 L′′(z)dz
L′(θT )

≥
L′( 2

2−ϵθ
T )

L′(θT )
.

Using the condition ρ < η min
0<|z|<(2−ϵ)b

∣∣∣L′( 2
2−ϵ z)

L′(z)

∣∣∣, we obtain ρ < ηL′(θT+1/2)
L′(θT )

.

* If
∫ 2

2−ϵ θ
T

θT+1/2 L′′(z)dz > 0, then since the sub-quaratic property L′′(|z1|) ≥ L′′(|z2|)
for |z1| ≤ |z2|, we have L′′(θT+1/2) > 0. Thus, L′′(z) ≥ L′′(θT+1/2) > 0 for
θT < z < θT+1/2, implying:

L′(θT+1/2) = L′(θT ) +

∫ θT+1/2

θT

L′′(z)dz > L′(θT ).

Using the condition ρ < η, we obtain ρ < η < ηL′(θT+1/2)
L′(θT )

.

Therefore, we have shown ρ < ηL′(θT+1/2)
L′(θT )

, implying (♯).

Thus, we obtain |θT+1| < b, which contradicts the definition of T .

• Case III: −b < θT < 0. The proof for this case is extremely similar to the proof for Case II.
This case is also contradicts the definition of T .

Thus, we have proved that T does not exist, which implies i.e., θt ∈ (−b, b) ⊂ V,∀t ∈ N.
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C.3 PROOF OF THEOREM 4.3

For simplicity, we denote the two-step update rules of SAM defined in Equation (7) as:

θt+1/2 = θt + ρ∇Lξ1t
(θt),

θt+1 = θt − η∇Lξ2t
(θt+1/2).

Then we list a few useful properties under the condition of Theorem 4.3.
Lemma C.1. Suppose Assumption 4.2. Then we have:

2µL(θ) ≤ ∥∇L(θ)∥2 ≤ 2L2

µ
L(θ), ∀θ. (11)

Proof of Lemma C.1. The upper bound is a direct corollary of PL and smoothness. Please refer to
Lemma B.6 in Arora et al. (2022) and Lemma 5 in Ahn et al. (2023) for proof details.

The smoothness in Assumption 4.2 also implies the classical quadratic upper bound for the
loss (Bubeck et al., 2015):

L(θ + v) ≤ L(θ) + ⟨∇L(θ),v⟩+ L

2
∥v∥2 , ∀θ,v. (12)

Additionally, Assumption 4.3 holds for the gradient noise ξ(θ) with batch size 1. Thus, for B-batch
gradient noise, denoted by ξB(θ), we have E[ξB(θ)ξB(θ)⊤] = 1

BE[ξ(θ)ξ(θ)⊤], implying:

E
[∥∥ξB(θ)∥∥2] ≤ σ2

B
L(θ), ∀θ. (13)

For the learning rate η and the permutation radius ρ, we choose then as follows:

η ≤ min

{
1

2L
,
µB

2Lσ2

}
, ρ ≤ min

{
1

4L
,
µB

4Lσ2
,
ηµ2

24L2

}
. (14)

C.3.1 PROOF OF THEOREM 4.3

For L(θt+1/2), it has the quadratic upper bound:

L(θt+1/2) = L
(
θt + ρ∇Lξ1t

(θt)
)
= L

(
θt + ρ∇L(θt) + ρξB(θt)

)
(12)
≤L

(
θt + ρ∇L(θt)

)
+
〈
∇L

(
θt + ρ∇L(θt)

)
, ρξ(θt)

〉
+
ρ2L

2

∥∥ξB(θt)
∥∥2
2
.

Taking the expectation, we obtain the upper bound of E[L(θt+1/2)]:

E
[
L(θt+1/2)

]
≤ E

[
L
(
θt + ρ∇L(θt)

)]
+
ρ2L

2
E
[∥∥ξB(θt)

∥∥2]
(13)
≤E

[
L
(
θt + ρ∇L(θt)

)]
+
ρ2L

2

σ2

B
E
[
L(θt)

]
(12)
≤E

[
L
(
θt
)
+ ρ

∥∥∇L(θt)
∥∥2 + ρ2L

2

∥∥∇L(θt)
∥∥2]+ ρ2L

2

σ2

B
E
[
L(θt)

]
(11)
≤
(
1 +

ρ(2 + ρL)L2

µ
+
ρ2Lσ2

2B

)
E
[
L(θt)

]
(14)
≤
(
1 +

6ρL2

µ

)
E
[
L(θt)

]
≤
(
1 +

ηµ

4

)
E
[
L(θt)

]
≤ 5

4
E
[
L(θt)

]
.

In the similar way, for L(θt+1), it has the quadratic upper bound:

L(θt+1) = L
(
θt − η∇Lξ2t

(θt+1/2)
)
= L

(
θt − η∇L(θt+1/2)− ηξB(θt+1/2)

)
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(12)
≤L

(
θt − η∇L(θt+1/2)

)
−
〈
∇L

(
θt − η∇L(θt+1/2)

)
, ηξ(θt+1/2)

〉
+
η2L

2

∥∥∥ξB(θt+1/2)
∥∥∥2
2
.

Taking the expectation, we obtain the upper bound of E[L(θt+1)]:

E
[
L(θt+1)

]
≤ E

[
L
(
θt − η∇L(θt+1/2)

)]
+
η2L

2
E
[∥∥∥ξB(θt+1/2)

∥∥∥2]
(13)
≤E

[
L
(
θt − η∇L(θt+1/2)

)]
+
η2L

2

σ2

B
E
[
L(θt+1/2)

]
(12)
≤E

[
L
(
θt
)
− η

〈
∇L(θt),∇L(θt+1/2)

〉
+
η2L

2

∥∥∥∇L(θt+1/2)
∥∥∥2]+ η2L

2

σ2

B
E
[
L(θt+1/2)

]
(11)
≤E

[
L
(
θt
)
− η

〈
∇L(θt),∇L(θt+1/2)

〉]
+

(
η2Lµ+

η2Lσ2

2B

)
E
[
L(θt+1/2)

]
(14)
≤E

[
L
(
θt
)
− η

〈
∇L(θt),∇L(θt+1/2)

〉]
+

3ηµ

4
E
[
L(θt+1/2)

]
≤E

[
L
(
θt
)
− η

∥∥∇L(θt)
∥∥2 + η

∥∥∇L(θt)
∥∥∥∥∥∇L(θt+1/2)−∇L(θt)

∥∥∥]+ 3ηµ

4
E
[
L(θt+1/2)

]
(11)
≤E

[
L
(
θt
)
− η

∥∥∇L(θt)
∥∥2 + ηρL

∥∥∇L(θt)
∥∥2]+ 3ηµ

4
E
[
L(θt+1/2)

]
(14)
≤E

[
L
(
θt
)
− 3η

4

∥∥∇L(θt)
∥∥2]+ 3ηµ

4
E
[
L(θt+1/2)

]
(14)
≤
(
1− 3ηµ

2

)
E
[
L(θt)

]
+

3ηµ

4
E
[
L(θt+1/2)

]
.

Finally, by combining our estimates for E
[
L(θt+1)

]
and E

[
L(θt+1/2)

]
, we obtain:

E
[
L(θt+1)

]
≤
(
1− 3ηµ

2

)
E
[
L(θt)

]
+

3ηµ

4
E
[
L(θt+1/2)

]
.

≤
(
1− 3ηµ

2

)
E
[
L(θt)

]
+

3ηµ

4
· 5
4
E
[
L(θt)

]
≤
(
1− ηµ

2

)
E
[
L(θt)

]
,

which implies the convergence rate:

E
[
L(θt)

]
≤
(
1− ηµ

2

)t
E
[
L(θ0)

]
, ∀t ∈ N.

C.4 COMPARISON BETWEEN TWO DEFINITIONS ON LINEAR STABILITY

Definition C.1 (Norm/loss-based linear stability). For an update rule θt+1 = θt + F (θt; ξt),

• (Norm-based linear stability) A global minimum θ⋆ is said to be linearly stable if there exists a
C > 0 such that it holds for SAM on the linearized model (Equation (5)) that E[∥θt − θ⋆∥2] ≤
CE[

∥∥θ0 − θ⋆
∥∥2],∀t ≥ 0.

• (Loss-based linear stability) A global minimum θ⋆ is said to be linearly stable if there exists
a C > 0 such that it holds for SAM on the linearized model (Equation (5)) that E[L(θt)] ≤
CE[L(θ0)],∀t ≥ 0.

Lemma C.2. The following two-fold results holds:

• (L1). If θ⋆ is norm-based linearly stable, then it must be loss-based linearly stable.

• (L2). There exists an update rule and a G(θ⋆), such that the converse of (L1) does not hold.
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Proof of Lemma C.2.
For (L1), it is straightforward by

L(θt) =
1

2
(θ − θ⋆)⊤G(θ⋆)(θ − θ⋆) ≤ ∥G(θ⋆)∥

∥∥θt − θ⋆
∥∥2 .

Thus, the norm-based linear stability can imply the loss-based linear stability.

For (L2), we only need to consider an example containing degenerated directions. Specifically, let

L(θ) =
1

2
θ21 + 0 · θ22,

with θ⋆ = 0.

Consider an update rule only occurs on θ2:

θt+1
1 = θt1; θt+1

2 = θt2 + ζt, ζt ∼ N (0, 1),

starting from θ0 = (1, 1)⊤. Then it is loss-base linearly stable due to

L(θt) =
1

2
(θt1)

2 + 0 =
1

2
(θt1)

2 ≡ L(θ0).

However, it is norm-base linearly nonstable:

E
[∥∥θt

∥∥2] = 1 + E
[
|θt2|2

]
= 1 + E

∣∣∣∣∣1 +
t−1∑
s=0

ζs

∣∣∣∣∣
2
 = 2 + t→ +∞ when t→ +∞.
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