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Abstract

We study matrix estimation problems arising in reinforcement learning (RL) with
low-rank structure. In low-rank bandits, the matrix to be recovered specifies the
expected arm rewards, and for low-rank Markov Decision Processes (MDPs), it
may for example characterize the transition kernel of the MDP. In both cases, each
entry of the matrix carries important information, and we seek estimation methods
with low entry-wise error. Importantly, these methods further need to accommodate
for inherent correlations in the available data (e.g. for MDPs, the data consists
of system trajectories). We investigate the performance of simple spectral-based
matrix estimation approaches: we show that they efficiently recover the singular
subspaces of the matrix and exhibit nearly-minimal entry-wise error. These new
results on low-rank matrix estimation make it possible to devise reinforcement
learning algorithms that fully exploit the underlying low-rank structure. We provide
two examples of such algorithms: a regret minimization algorithm for low-rank
bandit problems, and a best policy identification algorithm for reward-free RL in
low-rank MDPs. Both algorithms yield state-of-the-art performance guarantees.

1 Introduction

Learning succinct representations of the reward function or of the system state dynamics in bandit
and RL problems is empirically known to significantly accelerate the search for efficient policies [38,
55, 13]. It also comes with interesting theoretical challenges. The design of algorithms learning and
leveraging such representations and with provable performance guarantees has attracted considerable
attention recently, but remains largely open. In particular, significant efforts have been made towards
such design when the representation relies on a low-rank structure. In bandits, assuming such a
structure means that the arm-to-reward function can be characterized by a low-rank matrix [37, 32,
7, 27]. In MDPs, it implies that the reward function, the Q-function or the transition kernels are
represented by low-rank matrices [56, 4, 46, 60, 49]. In turn, the performance of algorithms exploiting
low-rank structures is mainly determined by the accuracy with which we are able to estimate these
matrices.

In this paper, we study matrix estimation problems arising in low-rank bandit and RL problems. Two
major challenges are associated with these problems. (i) The individual entries of the matrix carry
important operational meanings (e.g. in bandits, an entry could correspond to the average reward of
an arm), and we seek estimation methods with low entry-wise error. Such requirement calls for a
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fine-grained analysis, typically much more involved than that needed to only upper bound the spectral
or Frobenius norm of the estimation error [22, 21, 12, 2, 54, 15, 53, 47]. (ii) Our estimation methods
should further accommodate for inherent correlations in the available data (e.g., in MDPs, we have
access to system trajectories, and the data is hence Markovian). We show that, essentially, spectral
methods successfully deal with these challenges.

Contributions. 1) We introduce three matrix estimation problems. The first arises in low-rank
bandits. The second corresponds to scenarios in RL where the learner wishes to estimate the (low-
rank) transition kernel of a Markov chain and to this aim, has access to a generative model. The last
problem is similar but assumes that the learner has access to system trajectories only, a setting referred
to as the forward model in the RL literature. For all problems, we establish strong performance
guarantees for simple spectral-based estimation approaches: these efficiently recover the singular
subspaces of the matrix and exhibit nearly-minimal entry-wise error. To prove these results, we
develop and combine involved leave-one-out arguments and Poisson approximation techniques (to
handle the correlations in the data).

2) We apply the results obtained for our first matrix estimation problem to devise an efficient
regret-minimization algorithm for low-rank bandits. We prove that the algorithm enjoys finite-time
performance guarantees, with a regret at most roughly scaling as (m+ n) log3(T )∆̄/∆2

min where
(m,n) are the reward matrix dimensions, T is the time horizon, ∆̄ is the average of the reward gaps
between the best arm and all other arms, and ∆min is the minimum of these gaps.

3) Finally, we present an algorithm for best policy identification in low-rank MDPs in the reward-
free setting. The results obtained for the second and last matrix estimation problems imply that
our algorithm learns an ϵ-optimal policy for any reward function using only a number of samples
scaling as O(nA/ϵ2) up to logarithmic factors, where n and A denote the number of states and
actions, respectively. This sample complexity is mini-max optimal [28], and illustrates the gain
achieved by leveraging the low-rank structure (without this structure, the sample complexity would
be Ω(n2A/ϵ2)).

Notation. For any matrix A ∈ Rm×n, Ai,: (resp. A:,j) denotes its i-th row (resp. its j-th column),
Amin = min(i,j)Ai,j and Amax = max(i,j)Ai,j . We consider the following norms for matrices:
∥A∥ denotes the spectral norm, ∥A∥1→∞ = maxi∈[m] ∥Ai,:∥1, ∥A∥2→∞ = maxi∈[m] ∥Ai,:∥2, and
finally ∥A∥∞ = max(i,j)∈[m]×[n] |Ai,j |. If the SVD of A is UΣV ⊤, we denote by sgn(A) = UV ⊤

the matrix sign function of A (see Definition 4.1 in [14]). Or×r denotes the set of (r × r) real
orthogonal matrices. For any finite set S, let P(S) be the set of distributions over S. The notation
a(n,m, T ) ≲ b(n,m, T ) (resp. a(n,m, T ) = Θ(b(n,m, T ))) means that there exists a universal
constant C > 0 (resp. c, C > 0) such that a(n,m, T ) ≤ Cb(n,m, T ) (resp. cb(n,m, T ) ≤
a(n,m, T ) ≤ Cb(n,m, T )) for all n,m, T . Finally, we use a∧b = min(a, b) and a∨b = max(a, b).

2 Models and Objectives

Let M ∈ Rm×n be an unknown rank r matrix that we wish to estimate from T noisy observations of
its entries. We consider matrices arising in two types of learning problems with low-rank structure,
namely low-rank bandits and RL. The SVD of M is UΣV ⊤ where the matrices U ∈ Rm×r and
V ∈ Rn×r contain the left and right singular vectors of M , respectively, and Σ = diag(σ1, . . . , σr).
We assume without loss of generality that the singular values have been ordered, i.e., σ1 ≥ . . . ≥ σr.
The accuracy of our estimate M̂ of M will be assessed using the following criteria:

(i) Singular subspace recovery. Let the SVD of M̂ be Û Σ̂V̂ ⊤. To understand how well the
singular subspaces of M are recovered, we will upper bound minO∈Or×r ∥U − ÛO∥2→∞
and minO∈Or×r ∥V − V̂ O∥2→∞ (the minO∈Or×r problem corresponds to the orthogonal
Procrustes problem and its solution aligns Û and U as closely as possible, see Remark 4.1
in [14]).

(ii) Matrix estimation. To assess the accuracy of M̂ , we will upper bound the row-wise error
∥M̂ −M∥1→∞ or ∥M̂ −M∥2→∞, as well as the entry-wise error ∥M̂ −M∥∞ (the spectral
error ∥M̂ −M∥ is easier to deal with and is presented in appendix only).
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We introduce two classical quantities characterizing the heterogeneity and incoherence of the
matrix M [11, 48]. Let κ = σ1/σr, and let µ(U) =

√
m/r∥U∥2→∞ (resp. µ(V ) =√

n/r∥V ∥2→∞) denote the row-incoherence (resp. column-incoherence) parameter of M . Let
µ = max{µ(U), µ(V )}. Next, we specify the matrices M of interest in low-rank bandits and RL,
and the way the data used for their estimation is generated.

Model I: Reward matrices in low-rank bandits. For bandit problems, M corresponds to the
average rewards of various arms. To estimate M , the learner has access to data sequentially generated
as follows. In each round t = 1, . . . , T , an arm (it, jt) ∈ [m] × [n] is randomly selected (say
uniformly at random for simplicity) and the learner observes Mit,jt + ξt, an unbiased sample of
the corresponding entry of M . (ξt)t≥1 is a sequence of zero-mean and bounded random variables.
Specifically, we assume that for all t ≥ 1, |ξt| ≤ c1∥M∥∞ a.s., for some constant c1 > 0.

Model II: Transition matrices in low-rank MDPs. In low-rank MDPs, we encounter Markov
chains whose transition matrices have low rank r (refer to Section 5 for details). Let P ∈ Rn×n
be such a transition matrix. We assume that the corresponding Markov chain is irreducible with
stationary distribution ν. The objective is to estimate P from the data consisting of samples of
transitions of the chain. More precisely, from the data, we will estimate the long-term frequency
matrix M = diag(ν)P (Mij is the limiting proportion of transitions from state i to state j as the
trajectory grows large). Observe that M is of rank r, and that Pi,: =Mi,:/∥Mi,:∥1. To estimate M ,
the learner has access to the data (x1, . . . , xT ) ∈ [n]T generated according to one of the following
two models.

(a) In the generative model, for any t ∈ [T ], if t is odd, xt is selected at random according to
some distribution ν0, and xt+1 is sampled from Pxt,:.

(b) In the forward model, the learner has access to a trajectory (x1, . . . , xT ) of length T of the
Markov chain, where x1 ∼ ν0 and for any t ≥ 1, xt+1 ∼ Pxt,:.

3 Matrix Estimation via Spectral Decomposition

In the three models (Models I, II(a) and II(b)), we first construct a matrix M̃ directly from the data,
and from there, we build our estimate M̂ , typically obtained via spectral decomposition, i.e., by
taking the best rank-r approximation of M̃ . In the remaining of this section, we let Û Σ̂V̂ ⊤ denote
the SVD of M̂ . Next, we describe in more details how M̂ is constructed in the three models, and
analyze the corresponding estimation error.

3.1 Reward matrices

For Model I, for t = 1, . . . , T , we define M̃t =
(
(Mit,jt + ξt)1{(i,j)=(it,jt)}

)
i,j∈[m]×[n]

and

M̃ = nm
T

∑T
t=1 M̃t. Let M̂ denote the best rank-r approximation of M̃ .

Theorem 1. Let δ > 0. We introduce:

B =

√
nm

T

(√
(n+m) log

(
e(n+m)T

δ

)
+ log3/2

(
e(n+m)T

δ

))
.

Assume that T ≥ cµ4κ2r2(n +m) log3 (e(m+ n)T/δ) for some universal constant c > 0. Then
there exists a universal constant C > 0 such that the following inequalities hold with probability at
least 1− δ:

(i) max
(
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

)
≤ C

(µ3κ2r3/2)√
mn(n ∧m)

B,

(ii) ∥M̂ −M∥2→∞ ≤ C
(µ3 κ2r3/2)√

m ∧ n
∥M∥∞B,

(iii) ∥M̂ −M∥∞ ≤ C

(
µ11/2 κ2r1/2 + µ3κr3/2

m+ n√
mn

)
1

(n ∧m)
∥M∥∞B.
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Corollary 2. (Homogeneous reward matrix) When m = Θ(n), κ = Θ(1), µ = Θ(1), ∥M∥∞ =
Θ(1), r = Θ(1), we say that the reward matrix M is homogeneous. In this case, for any δ > 0, when
T ≥ c(n+m) log3

(
e(m+ n)T/δ

)
for some universal constant c > 0, we have with probability at

least 1− δ:

max
(
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

)
≲

1√
T

log3/2
(
(n+m)T

δ

)
,

∥M̂ −M∥2→∞ ≲
(n+m)√

T
log3/2

(
(n+m)T

δ

)
,

∥M̂ −M∥∞ ≲

√
(n+m)

T
log3/2

(
(n+m)T

δ

)
.

For a homogeneous reward matrix, ∥U∥2→∞ = Θ(1/
√
m) and ∥M∥∞ = Θ(1), and hence, from

the above corollary, we obtain estimates whose relative errors (e.g., ∥M̂ −M∥∞/∥M∥∞) scale at
most as

√
m/T up to the logarithmic factor.

We may also compare the results of the above corollary to those of Theorem 4.4 presented in [14].
There, the data consists for each pair (i, j) of a noisy observation Mi,j + Ei,j . The Ei,j’s are
independent across (i, j). This model is simpler than ours and does not include any correlation
in the data. But it roughly corresponds to the case where T = nm in our Model I. Despite
having to deal with correlations, we obtain similar results as those of Theorem 4.4: for example,
∥M̂ −M∥∞ ≲

√
1/(n+m) (up to logarithmic terms) with high probability.

3.2 Transition matrices under the generative model

For Model II(a), the matrix M̃ records the empirical frequencies of the transitions: for any pair of
states (i, j), M̃i,j =

1
⌊T/2⌋

∑⌊T/2⌋
k=1 1{(x2k−1,x2k)=(i,j)}. M̂ is the best rank-r approximation of M̃

and the estimate P̂ of the transition matrix P is obtained normalizing the rows of M̂ : for all i ∈ [n],

P̂i,: =

{
(M̂i,:)+/∥(M̂i,:)+∥1, if ∥(M̂i,:)+∥1 > 0,
1
n1n, if ∥(M̂i,:)+∥1 = 0.

(1)

where (·)+ is the function applying max(0, ·) component-wise and 1n is the n-dimensional vector
of ones. The next theorem is a simplified version and a consequence of a more general and tighter
theorem presented in App. B.2. To simplify the presentation of our results, we define

g(M,T, δ) = n log(n
√
T
δ )max

{
µ6κ6r3,

log(n
√

T
δ )1{∃ℓ:T∥Mℓ,:∥∞≤1}

log(1+ 1
T∥M∥∞

)

}
.

Theorem 3. Let δ > 0. Introduce B = µκ
√

(r∥M∥∞/T ) log(n
√
T/δ). Assume that we have

(ν0)min = mini∈[n](ν0)i > 0. If (a) n ≥ c log2(nT 3/2/δ) and (b) T ≥ cg(M,T, δ) for some
universal constant c > 0, then there exists a universal constant C > 0 such that the following
inequalities hold with probability at least 1− δ:

(i) max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
≤ C

κµ2r

n∥M∥∞
B,

(ii) ∥M̂ −M∥2→∞ ≤ CκB, ∥P̂ − P∥1→∞ ≤ C
κ
√
n

(ν0)min
B,

(iii) ∥M̂ −M∥∞ ≤ C
κµ2r√
n

B,

(iv) ∥P̂ − P∥∞ ≤ C
B

(ν0)min

[√
nκ

∥M∥∞
(ν0)min

+

(
1 +

κB√
n ∥M∥∞

)
κµ2r√
n

]
,

where (iv) holds if in addition T ≥ cn∥M∥∞(ν0)
−2
minrµ

2κ4 log(n
√
T/δ)

Note that in theorem, the condition (a) on n has been introduced just to simplify the expression of B
(refer to App. B.2 for a full statement of the theorem without this condition).
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Corollary 4. (Homogeneous transition matrix) When κ = Θ(1), µ = Θ(1), r = Θ(1), Mmax =
Θ(Mmin), we say that the frequency matrix M is homogeneous. If T ≥ cn log(nT ) for some
universal constant c > 0, then we have with probability at least 1−min{n−2, T−1}:

max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
≲

√
log(nT )

T
,

∥M̂ −M∥2→∞ ≲
1

n

√
log(nT )

T
, ∥M̂ −M∥∞ ≲

1

n

√
log(nT )

nT
,

∥P̂ − P∥1→∞ ≲

√
n log(nT )

T
, ∥P̂ − P∥∞ ≲

√
log(nT )

nT
.

For a homogeneous frequency matrix, ∥U∥2→∞ = Θ(1/
√
n), ∥M∥2→∞ = Θ(1/n

√
n), ∥M∥∞ =

Θ(1/n2), ∥P∥1→∞ = 1, ∥P∥∞ = Θ(1/n). Thus for all these metrics, our estimates achieve a
relative error scaling at most as

√
n/T up to the logarithmic factor.

3.3 Transition matrices under the forward model

For Model II(b), we first split the data into τ subsets of transitions: for k = 1, . . . , τ , the k-th
subset is ((xk, xk+1), (xk+τ , xk+1+τ ), . . . , (xk+(Tτ−1)τ , xk+1+(Tτ−1)τ )) where Tτ = ⌊T/τ⌋. By
separating two transitions in the same subset, we break the inherent correlations in the data if τ is
large enough. Now we let M̃ (k) be the matrix recording the empirical frequencies of the transitions
in the k-th subset: M̃ (k)

i,j = 1
Tτ

∑Tτ−1
l=0 1{(xk+lτ ,xk+1+lτ )=(i,j)} for any pair of states (i, j). Let M̂ (k)

be the best r-rank approximation of M̃ (k). As in (1), we define the corresponding P̂ (k). Finally we
may aggregate these estimates M̂ = 1

τ

∑τ
k=1 M̂

(k) and P̂ = 1
τ

∑τ
k=1 P̂

(k). We present below the
performance analysis for the estimates coming from a single subset; the analysis of the aggregate
estimates easily follows.

For any ε > 0, we define the ε-mixing time of the Markov chain with transition matrix P as
τ(ε) = min{t ≥ 1 : max1≤i≤n

1
2∥P

t
i,: − ν⊤∥1 ≤ ε}, and its mixing time as τ⋆ = τ(1/4). The next

theorem is a simplified version and a consequence of a more general and tighter theorem presented in
App. B.3. To simplify the presentation, we define:

h(M,T, δ) = nτ⋆ log(n
√
T
δ ) log(Tν−1

min)max

{
µ6κ6r3,

log2(n
√

Tτ
δ )1{∃ℓ:Tτ∥Mℓ,:∥∞≤1}

log2(1+ 1
Tτ∥M∥∞

)

}
.

Theorem 5. Let δ > 0. Assume that νmin = mini∈[n] νi > 0 and that τ/(τ⋆ log(Tν−1
min)) ∈ [c1, c2]

for some universal constants c2 > c1 ≥ 2. Introduce:

B = µκ

√
rτ⋆∥M∥∞

T
log

(
n
√
Tτ
δ

)
log

(
T

νmin

)
.

If (a) n ≥ cτ⋆ log3/2(nT 3/2/δ) log1/2(Tν−1
min) and (b) T ≥ ch(M,T, δ) for some universal constant

c > 0, then there exists a universal constant C > 0 such that the following inequalities hold with
probability at least 1− δ:

(i) max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
≤ C

κµ2r

n∥M∥∞
B,

(ii) ∥M̂ −M∥2→∞ ≤ CκB, ∥P̂ − P∥1→∞ ≤ C
κ
√
n

νmin
B,

(iii) ∥M̂ −M∥∞ ≤ C
κµ2r√
n

B,

(iv) ∥P̂ − P∥∞ ≤ C
B
νmin

[√
nκ

∥M∥∞
νmin

+

(
1 +

κB√
n ∥M∥∞

)
κµ2r√
n

]
,

where (iv) holds if in addition T ≥ cn∥M∥∞ν−2
minτ

⋆rµ2κ4 log(n
√
T/δ) log(Tν−1

min).

Note that our guarantees hold when τ roughly scales as τ⋆ log(Tν−1
min). Hence to select τ , one would

need an idea of the latter quantity. It can be estimated typically using τ⋆ν−1
min samples [61] (which
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is small when compared to the constraint T ≥ ch(M,T, δ) as soon as νmin = Ω(1/n)). Further
observe that in the theorem, the condition (a) can be removed (refer to App. B.3 for a full statement
of the theorem without this condition).

Corollary 6. (Homogeneous transition matrices) Assume that M is homogeneous (as defined in
Corollary 4). Let τ = log(Tn). If T ≥ cn log2(nT ) for some universal constant c > 0, then we have
with probability at least 1−min{n−2, T−1}:

max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
≲

1√
T

log(nT ),

∥M̂ −M∥2→∞ ≲
1

n
√
T

log(nT ), ∥M̂ −M∥∞ ≲
1

n
√
nT

log(nT ),

∥P̂ − P∥1→∞ ≲

√
n

T
log(nT ), ∥P̂ − P∥∞ ≲

1√
nT

log(nT ).

As for the generative model, for a homogeneous frequency matrix, our estimates achieve a relative
error scaling at most as

√
n/T up to the logarithmic factor for all metrics. Note that up to a

logarithmic factor, the upper bound for ∥P̂ − P∥1→∞ (and similarly for M̂ ) matches the minimax
lower bound derived in [63].

3.4 Elements of the proofs

The proofs of the three above theorems share similar arguments. We only describe elements of the
proof of Theorem 5, corresponding to the most challenging model. The most difficult result concerns
the singular subspace recovery (the upper bounds (i) in our theorems), and it can be decomposed into
the following three steps. The first two steps are meant to deal with the Markovian nature of the data.
The third step consists in applying a leave-one-out analysis to recover the singular subspaces.

Step 1: Multinomial approximation of Markovian data. We treat the matrix M̃ (k) arising from
one subset of data, and for simplicity, we remove the superscript (k), i.e., M̃ = M̃ (k). Note that
TτM̃ is a matrix recording the numbers of transitions observed in the data for any pair of states:
denote by Ni,j this number for (i, j). We approximate the joint distribution of N = (Ni,j)(i,j) by a
multinomial distribution with n2 components and parameter TτMi,j for component (i, j). Denote by
Z = (Zi,j)(i,j) the corresponding multinomial random variable. Using the mixing property of the
Markov chain and the choice of τ , we establish (see Lemma 21 in App. C) that for any subset Z of
{z ∈ Nn2

:
∑

(i,j) zi,j = Tτ}, we have P[N ∈ Z] ≤ 3P[Z ∈ Z].

Step 2: Towards Poisson random matrices with independent entries. The random matrix Z does
not have independent entries. Independence is however a requirement if we wish to apply the leave-
one-out argument. Consider the random matrix Y whose entries are independent Poisson random
variables with mean TτMi,j for the (i, j)-th entry. We establish the following connection between
the distribution of Z and that of Y : for any Z ⊂ Nn2

, we have P[Z ∈ Z] ≤ e
√
TτP[Y ∈ Z]. Refer

to Lemma 22 in App. C for details.

Step 3: The leave-one-out argument for Poisson matrices. Combining the two first steps provides a
connection between the observation matrix M̃ and a Poisson matrix Y with independent entries. This
allows us to apply a leave-one-out analysis to M̃ as if it had independent entries (replacing M̃ by Y ).
The analysis starts by applying the standard dilation trick (see Section 4.10 in [14]) so as to make
M̃ symmetric. Then, we can decompose the error ∥U − Û(Û⊤U)∥2→∞ (see Lemma 32 in App.
E) into several terms. The most challenging of these terms is ∥(M − M̃)(U − Û(Û⊤U))∥2→∞ =

maxl∈[n] ∥(Ml,: − M̃l,:)(U − Û(Û⊤U))∥2 because of inherent dependence between M − M̃ and
U−Û(Û⊤U). The leave-one-out analysis allows us to decouple this statistical dependency. It consists
in exploiting the row and column independence of matrix M̃ to approximate ∥(Ml,: − M̃l,:)(U −
Û(Û⊤U))∥2 by ∥(Ml,: − M̃l,:)(U − Û (l)((Û (l))⊤U)∥2 where Û (l) is the matrix of eigenvectors of
matrix M̃ (l) obtained by zeroing the l-th row and column of M̃ . By construction, (Ml,: − M̃l,:) and
U − Û (l)((Û (l))⊤U) are independent, which simplifies the analysis. The proof is completed by a
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further appropriate decomposition of this term, combined with concentration inequalities for random
Poisson matrices (see App. D).

4 Regret Minimization in Low-Rank Bandits

Consider a low-rank bandit problem with a homogeneous rank-r reward matrix M . We wish to
devise an algorithm π with low regret. π selects in round t an entry (iπt , j

π
t ) based on previous

observations, and receives as a feedback the noisy reward Miπt ,j
π
t
+ ξt. The regret up to round T

is defined by Rπ(T ) = TMi⋆,j⋆ − E[
∑T
t=1Miπt ,j

π
t
], where (i⋆, j⋆) is an optimal entry. One could

think of a simple Explore-Then-Commit (ETC) algorithm, where in the first phase entries are sampled
uniformly at random, and where in a second phase, the algorithm always selects the highest entry
of M̂ built using the samples gathered in the first phase and obtained by spectral decomposition.
When the length of the first phase is T 2/3(n+m)1/3, the ETC algorithm would yield a regret upper
bounded by O(T 2/3(n+m)1/3) for T = Ω((n+m) log3(n+m)).

To get better regret guarantees, we present SME-AE (Successive Matrix Estimation and Arm
Elimination), an algorithm meant to identify the best entry as quickly as possible with a prescribed
level of certainty. After the SME-AE has returned the estimated best entry, we commit and play
this entry for the remaining rounds. The pseudo-code of SME-AE is presented in Algorithm 1. The
algorithm runs in epochs: in epoch ℓ, it samples Tℓ entries uniformly at random among all entries (in
Tℓ, the constant C just depends on upper bounds of the parameters µ, κ, and ∥M∥∞, refer to App.
G); from these samples, a matrix M̂ (ℓ) is estimated and Aℓ, the set of candidate arms, is pruned. The
pruning procedure is based on the estimated gaps: ∆̂(ℓ)

i,j = M̂
(ℓ)
⋆ − M̂

(ℓ)
i,j where M̂ (ℓ)

⋆ = maxi,j M̂
(ℓ)
i,j .

Algorithm 1: Succesive Matrix Estimation and Arm Elimination (SME-AE)
Input: Arms [m]× [n], confidence level δ
ℓ = 1 ;
A1 = [m]× [n];
while |Aℓ| > 1 do

δℓ = δ/ℓ2;

Tℓ =
⌈
C
(
2ℓ+2

)2
(m+ n) log3

(
22ℓ+4(m+ n)/δℓ

)⌉
;

Sample uniformly at random Tℓ entries from A1: (Mit,jt + ξt)t=1,...,Tℓ
;

Estimate M̂ (ℓ) via spectral decomposition as described in Section 3.1 ;

Aℓ+1 =
{
(i, j) ∈ Aℓ : ∆̂

(ℓ)
i,j ≤ 2−(ℓ+2)

}
; ℓ = ℓ+ 1;

end
Output: Recommend the remaining pair (̂ıτ , ȷ̂τ ) in Aℓ.

The following theorem characterizes the performance of SME-AE and the resulting regret. To
simplify the notation, we introduce the gaps: for any entry (i, j), ∆i,j = (Mi⋆,j⋆ −Mi,j), ∆min =
min(i,j):∆i,j>0 ∆i,j , ∆max = max(i,j) ∆i,j , and ∆̄ =

∑
(i,j) ∆i,j/(mn). We define the function

ψ(n,m, δ) = c(m+n) log(e/∆min)
∆2

min
log3

( e(m+n) log(e/∆min)
∆minδ

)
for some universal constant c > 0.

Theorem 7. (Best entry identification) For any δ ∈ (0, 1), SME-AE(δ) stops at time τ and
recommends arm (̂ıτ , ȷ̂τ ) with the guarantee P

(
(̂ıτ , ȷ̂τ ) = (i⋆, j⋆), τ ≤ ψ(n,m, δ)

)
≥ 1 − δ.

Moreover, for any T ≥ 1 and α > 0, the sample complexity τ of SME-AE(1/Tα) satisfies
E[τ ∧ T ] ≤ ψ(n,m, T−α) + T 1−α.
(Regret) Let T ≥ 1. Consider the algorithm π that first runs SME-AE(1/T 2) and then commits to its
output (̂ıτ , ȷ̂τ ) after τ . We have: Rπ(T ) ≤ ∆̄

(
ψ(n,m, T−2) + 1

)
+ ∆max

T .

The proof of Theorem 7 is given in App. G. Note that the regret upper bounds hold for any time
horizon T ≥ 1, and that it scales as O((m + n) log3(T )∆̄/∆2

min) (up to logarithmic factors in
m,n and 1/∆min). The cubic dependence in log3(T ) is an artifact of our proof techniques. More
precisely, it is due to the Poisson approximation used to obtain entry-wise guarantees. Importantly,
for any time horizon, the regret upper bound only depends on (m+ n) rather than mn (the number
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of arms / entries), and hence, the low-rank structure is efficiently exploited. If we further restrict
our attention to problems with gap ratio ∆max/∆min upper bounded by ζ, our regret upper bound
becomes O(ζ(m+ n) log3(T )/∆min), and can be transformed into the minimax gap-independent
upper bound O(ζ((m+ n)T )1/2 log2(T )), see App. G. Finally note that Ω(((m+ n)T )1/2) is an
obvious minimax regret lower bound for our low-rank bandit problem.

A very similar low-rank bandit problem has been investigated in [7]. There, under similar assumptions
(see Assumption 1 and Definition 1), the authors devise an algorithm with both gap-dependent and
gap-independent regret guarantees. The latter are difficult to compare with ours. Their guarantees
exhibit a better dependence in T and ∆min, but worse in the matrix dimensions n and m. Indeed in
our model, b⋆ in [7] corresponds to ∥M∥2→∞ and scales as

√
n. As a consequence, the upper bounds

in [7] have a dependence in n and m scaling as
√
n(n +m) in the worst case for gap-dependent

guarantees and even nm (through the constant C2 in [7]) for gap-independent guarantees.

5 Representation Learning in Low-Rank MDPs

The results derived for Models II(a) and II(b) are instrumental towards representation learning and
hence towards model-based or reward-free RL in low-rank MDPs. In this section, we provide an
example of application of these results, and mention other examples in Section 7. A low-rank MDP
is defined by (S,A, {P a}a∈A, R, γ) where S, A denote state and action spaces of cardinalities n
and A, respectively, P a denotes the rank-r transition matrix when taking action a, R is the reward
function, and γ is the discount factor. We assume that all rewards are in [0, 1]. The value function
of a policy π : S → A is defined as V πR (x) = E[

∑∞
t=1 γ

t−1R(xπt , πt(x
π
t ))|xπ1 = x] where xπt is the

state visited under π in round t. We denote by π⋆(R) an optimal policy (i.e., with the highest value
function).

Reward-free RL. In the reward-free RL setting (see e.g. [36, 30, 66]), the learner does not receive
any reward signal during the exploration process. The latter is only used to construct estimates
{P̂ a}a∈A of {P a}a∈A. The reward function R is revealed at the end, and the learner may compute
π̂(R) an optimal policy for the MDP (S,A, {P̂ a}a∈A, R, γ). The performance of this model-based
approach is often assessed through Γ = supR ∥V π

⋆(R)
R − V

π̂(R)
R ∥∞. In tabular MDP, to identify an

ϵ-optimal policy for all reward functions, i.e., to ensure that Γ ≤ ϵ, we believe that the number of
samples that have to be collected should be Ω(poly( 1

1−γ )
n2A
ϵ2 ) (the exact degree of the polynomial in

1/(1− γ) has to be determined). This conjecture is based on the sample complexity lower bounds
derived for reward-free RL in episodic tabular MDP [30, 43]. Now for low-rank MDPs, the equivalent
lower bound would be Ω(poly( 1

1−γ )
nA
ϵ2 ) [28] (this minimax lower bound is valid for Block MDPs, a

particular case of low-rank MDPs).

Leveraging our low-rank matrix estimation guarantees, we propose an algorithm matching the
aforementioned sample complexity lower bound (up to logarithmic factors) at least when the frequency
matrices {Ma}a∈A are homogeneous. The algorithm consists of two phases: (1) in the model
estimation phase, it collects A trajectories, each of length T/A, corresponding to the Markov chains
with transition matrices {P a}a∈A. From this data, it uses the spectral decomposition method
described in §3 to build estimates {P̂ a}a∈A. (2) In the planning phase, based on the reward function
R, it computes the best policy π̂(R) for the MDP (S,A, {P̂ a}a∈A, R, γ). The following theorem
summarizes the performance of this algorithm. To simplify the presentation, we only provide the
performance guarantees of the algorithm for homogeneous transition matrices (guarantees for more
general matrices can be derived plugging in the results from Theorem 5).

Theorem 8. Assume that for any a ∈ A, Ma is homogeneous (as defined in Corollary 4). If
T ≥ cnA log2(nAT ) for some universal constant c > 0, then we have with probability at least

1−min{n−2, T−1}: Γ = supR ∥V π
⋆(R)

R − V
π̂(R)
R ∥∞ ≲ 1

(1−γ)2

√
nA
T log(nAT ).

Theorem 8 is a direct consequence of Corollary 6 and of the fact that for any reward function R:
∥V π

⋆(R)
R − V

π̂(R)
R ∥∞ ≤ 2γ

(1−γ)2 maxa∈A ∥P a − P̂ a∥1→∞, see App. A. The theorem implies that if
we wish to guarantee Γ ≤ ϵ, we just need to collect O( nA

ϵ2(1−γ)4 ) samples up to a logarithmic factor.
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This sample complexity is minimax optimal in n, A, and ϵ in view of the lower bound presented in
[28].

6 Related Work

Low-rank matrix estimation. Until recently, the main efforts on low-rank matrix recovery were
focused on guarantees w.r.t. the spectral or Frobenius norms, see e.g. [19] and references therein.
The first matrix estimation and subspace recovery guarantees in ℓ2→∞ and ℓ∞ were established
in [22], [21] via a more involved perturbation analysis than the classical Davis-Kahan bound. An
alternative approach based on a leave-one-out analysis was proposed in [2], and further refined
in [10, 12, 17], see [14] for a survey. Some work have also adapted the techniques beyond the
independent noise assumption [39, 1, 5], but for very specific structural dependence. We deal with a
stronger dependence, and in particular with Markovian data (an important scenario in RL).

The estimation of low-rank transition matrices of Markov chains has been studied in [63, 9] using
spectral methods and in [40, 67] using maximum-likelihood approaches. [63] does not conduct any
fine-grained subspace recovery analysis (such as the leave-one-out), and hence the results pertaining
to the ∥ · ∥1→∞-guarantees are questionable; refer to App. H for a detailed justification. All these
papers do not present entry-wise guarantees.

It is worth mentioning that there exist other methods for matrix estimation that do not rely on spectral
decompositions like ours, yet enjoy entry-wise matrix estimation guarantees [51, 3, 50]. However,
these methods require different assumptions than ours that may be too strong for our purposes, notably
having access to the so-called anchor rows and columns. Moreover, we do not know if these methods
also lead to guarantees for subspace recovery in the norm ∥ · ∥2→∞, nor how to extend those results
to settings with dependent noise.

Low-rank bandits. Low-rank structure in bandits has received a lot of attention recently [35, 37, 32,
57, 41, 7, 34, 27]. Different set-ups have been proposed (refer to App. H for a detailed exposition, in
particular, we discuss how the settings proposed in [32, 7] are equivalent), and regret guarantees in an
instance dependent and minimax sense have been both established.

Typically minimax regret guarantees in bandits scale as
√
T , but the scaling in dimension may

defer when dealing with a low rank structure [32, 34, 7]. In [32], the authors also leverage spectral
methods. They reduce the problem to a linear bandit of dimension nm but where only roughly n+m
dimensions are relevant. This entails that a regret lower bound of order (n +m)

√
T is inevitable.

Actually, in their reduction to linear bandits, they only use a subspace recovery in Frobenius norm,
which perhaps explains the scaling (n+m)3/2 in their regret guarantees. It is worth noting that in
[34], the authors manage to improve upon the work [32] and obtain a scaling order (m+ n) in the
regret. Our algorithm leverages entry-wise guarantees which rely on a stronger subspace recovery
guarantee. This allows us to obtain a scaling

√
n+m in the regret. The work of [27] is yet another

closely related work to ours. There, the authors propose an algorithm achieving a regret of order
polylog(n+m)

√
T for a contextual bandit problem with low rank structure. However, their result

only holds for rank 1 and their observation setup is different than ours because in their setting, the
learner observes m entries per round while in ours the learner only observes one entry per round. In
[7], the authors use matrix estimation with nuclear norm penalization to estimate the matrix M . Their
regret guarantees are already discussed in §4.

Some instance-dependent guarantees with logarithmic regret for low rank bandits have been
established in [35, 37, 57]. However, these results suffer what may be qualified as serious limitations.
Indeed, [35, 57] provide instance dependent regret guarantees but only consider low-rank bandits
with rank 1, and the regret bounds of [35] are expressed in terms of the so-called column and row
gaps (see their Theorem 1) which are distinct from the standard gap notions. [37] extend the results
in [35] to rank r with the limitation that they require stronger assumptions than ours. Moreover, the
computational complexity of their algorithm depends exponentially on the rank r; they require a
search over spaces of size

(
m
r

)
and

(
n
r

)
. Our proposed algorithm does not suffer from such limitations.

We wish to highlight that our entry-wise guarantees for matrix estimation are the key enabling tool
that led us to the design and analysis of our proposed algorithm. In fact, the need for such guarantees
arises naturally in the analysis of gap-dependent regret bounds (see Appendix G.1). Therefore, we
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believe that such guarantees can pave the way towards better, faster, and efficient algorithms for
bandits with low-rank structure.

Low-rank Reinforcement Learning. RL with low rank structure has been recently extensively
studied but always in the function approximation framework [29, 18, 20, 44, 24, 65, 56, 4, 46, 59, 60,
49]. There, the transition probabilities can be written as ϕ(x, a)⊤µ(x′) where the unknown feature
functions ϕ(x, a), µ(x′) ∈ Rr belong to some specific class F of functions. The major issue with
algorithms proposed in this literature is that they rely on strong computational oracles (e.g., ERM,
MLE), see [33, 25, 64] for detailed discussions. In contrast, we do not assume that the transition
matrices are constructed based on a given restricted class of functions, and our algorithms do not
rely on any oracle and are computationally efficient. In [51, 50], the authors also depart from the
function approximation framework. There, they consider a low rank structure different than ours.
Their matrix estimation method enjoys an entry-wise guarantee, but requires to identify a subset of
rows and columns spanning the range of the full matrix. Moreover, their results are only limited the
generative models, which allows to actually rely on independent data samples.

7 Conclusion and Perspectives

In this paper, we have established that spectral methods efficiently recover low-rank matrices even in
correlated noise. We have investigated noise correlations that naturally arise in RL, and have managed
to prove that spectral methods yield nearly-minimal entry-wise error. Our results for low-rank matrix
estimation have been applied to design efficient algorithms in low-rank RL problems and to analyze
their performance. We believe that these results may find many more applications in low-rank RL.
They can be applied (i) to reward-free RL in episodic MDPs (this setting is easier than that presented
in §5 since successive episodes are independent); (ii) to scenarios corresponding to offline RL [62]
where the data consists of a single trajectory generated under a given behavior policy (from this data,
we can extract the transitions (x, a, x′) where a given action a is involved and apply the spectral
method to learn P̂ a); (iii) to traditional RL where the reward function R has to be learnt (learning
R is a problem that lies in some sense between the inference problems in our Models I and II); (iv)
to model-free RL where we would directly learn the Q function as done in [52] under a generative
model; (v) to low-rank RL problems with continuous state spaces (this can be done if the transition
probabilities are smooth in the states, and by combining our methods to an appropriate discretization
of the state space).
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A Preliminaries

In this section, we present a few results that are used throughout our analysis.

A.1 Matrix norms

Lemma 9. Let A ∈ Rn×m, B ∈ Rm×r. Then:

∥AB∥2→∞ ≤ ∥A∥1→∞∥B∥2→∞, (2)
∥AB∥2→∞ ≤ ∥A∥2→∞∥B∥, (3)

∥AB∥∞ ≤ ∥A∥2→∞∥B⊤∥2→∞. (4)

Proof. The proof of the lemma directly follows from Hölder’s inequality (see for example Proposition
6.5 in [12]).

A.2 Mixing time

Lemma 10. (Lemma 5 in [63]) Let τ(ε) be the ε-mixing time of an irreducible Markov chain. Then
if ε ≤ δ < 1/2,

τ(ε) ≤ τ(δ)

(
1 +

⌈
log(δ/ε)

log(1/(2δ))

⌉)
.

A.3 Value difference lemmas

The following lemmas are used in Section 5 to prove Theorem 8. Recall the definition of value
function of a policy π: V πR (x) = E[

∑∞
t=1 γ

t−1R(xπt , πt(x
π
t ))|xπ1 = x]. The (state, action) value

function of π is also defined as: for any state x ∈ S and action a ∈ A,

QπR(x, a) = R(x, a) + γEx′∼P (·|x,a)[V
π
R (x′)].

We denote by Q̂πR the (state, action) value function of π in the MDP where P is replaced by its
estimate P̂ , and let π̂(R) be the optimal policy for this MDP.
Lemma 11. We have that

∥V π
⋆(R)

R − V
π̂(R)
R ∥∞ ≤ 2 sup

π
∥QπR − Q̂πR∥∞

Proof. We remove the subscript R to simplify the notation. For any s, we have

V π
⋆

(s)− V π̂(s) = Qπ
⋆

(s, π⋆(s))−Qπ̂(s, π̂(s)) = [Qπ
⋆

(s, π⋆(s))− Q̂π
⋆

(s, π⋆(s))]

+ [Q̂π̂(s, π̂(s))−Qπ̂(s, π̂(s))] + [Q̂π
⋆

(s, π⋆(s))− Q̂π̂(s, π̂(s))]

≤ 2 sup
π

∥Qπ − Q̂π∥∞,

since Q̂π
⋆

(s, π⋆(s)) ≤ Q̂π̂(s, π̂(s)) by definition of π̂.

Lemma 12. (Proposition 2.1 in [3]) For all policies π:

∥QπR − Q̂πR∥∞ ≤ γ

(1− γ)2
max
a∈A

∥P a − P̂ a∥1→∞

Combining the two lemmas, we get:

∥V π
⋆(R)

R − V
π̂(R)
R ∥∞ ≤ 2γ

(1− γ)2
max
a∈A

∥P a − P̂ a∥1→∞.

This inequality is used in the proof of Theorem 8.
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B Statement and proofs of the main results

In this appendix, we present the proofs of the main theorems. In Subsection §B.1, we provide the
proof of Theorem 1 and Corollary 2. In Subsection §B.2, we give a complete, non-simplified version
of Theorem 3 from which one can deduce Theorem 3 and Corollary 4 given in the main text. Finally,
in Subsection §B.3, we present a complete, non-simplified version of Theorem 5 and from the latter,
deduce Theorem 5 and Corollary 6.

B.1 Reward matrix estimation – Model I

In this subsection, we present the proofs of Theorem 1. The proof of Corollary 2 is in fact immediate
from Theorem 1.

Proof of Theorem 1. Proof of (i). Recall the results from Lemma 30: for all δ ∈ (0, 1), if

B =

√
nm

T

(√
(n+m) log

(
e(n+m)T

δ

)
+ log3/2

(
e(n+m)T

δ

))
, (5)

then for all T ≥ c1(µ
4κ2r2 + 1)(m+ n) log3

(
e2(m+ n)T/δ

)
, the event

max(∥U − Û(Û⊤U)∥, ∥V − V̂ (V̂ ⊤V )∥) ≤ C1
∥M∥∥M∥∞
σr(M)2

max(∥V ∥2→∞∥U∥2→∞)B

holds with probability at least 1 − δ for some universal constants c1, C1 > 0. To obtain
the form presented in Theorem 1, we simply recall the definitions κ = ∥M∥/σr(M), µ =

max(
√
m/r∥U∥2→∞,

√
n/r∥V ∥2→∞) and the bound ∥M∥∞/σr(M) ≤ (µ2κr)/

√
mn from

Lemma 17. We then substitute in the upper bound above. Note that µ, κ and r are larger than
1 by definition.

Proof of (ii). To establish the desired bound, we use the decomposition error established in Lemma 34.
Namely, under the event that ∥M̃ −M∥ ≤ c1σr(M) for some universal constant c1 > 0 sufficiently
small, there exists a universal constant c2 > 0 such that

∥M̂ −M∥2→∞ ≤ c2σ1(M)

[
∥U − Û(Û⊤U)∥2→∞ + µ

√
r

m

∥M̃ −M∥
σr(M)

]
. (6)

Hence, we only need high probability bounds on ∥U − Û(Û⊤U)∥2→∞ which we established in (i),
and on ∥M̃ −M∥ which we also established in Proposition 26 under the compound Poisson entries
model described (15). We can extend the latter result under our observation model using the Poisson
approximation Lemma 20, and finally write that for all δ ∈ (0, 1), using the same definition of B as
above in (5), for all for all T ≥ c3 log

3 ((n+m)/δ), the following statement

∥M̃ −M∥
σr(M)

≤ C3∥M∥∞
σr(M)

B (7)

holds with probability at least 1− δ, for some universal constants c3, C3 > 0 large enough. Note that
under the condition T ≥ c4µ

4κ2r2 log3 (e(n+m)/δ) for some universal constant c4 large enough,
the high probability statement in (7) holds and in addition we also have ∥M̃−M∥ ≤ c1σr(M). There,
we used the result of Lemma 17. The statement (ii) in Theorem 1 is obtained by first substituting in
(6), the upper bound we get in (i) and that we get in (7), and then, using σ1(M) ≤

√
mn∥M∥∞ and

the bound ∥M∥∞/σr(M) ≤ (µ2κr)/
√
mn from Lemma 17.

Proof of (iii). To establish the desired bound, we use the decomposition error established in Lemma
36. Namely, under the event that ∥M̃ − M∥ ≤ c1σr(M) for some universal constant c1 > 0
sufficiently small, there exists a universal constant c2 > 0 such that

∥M̂ −M∥∞ ≤ c2∥M∥2→∞

(
∥M − M̃∥
σr(M)

∥V ∥2→∞ + ∥V − V̂ WV̂ ∥2→∞

)
+ c2∥M − M̂∥2→∞(∥V ∥2→∞ + ∥V − V̂ WV̂ ∥2→∞). (8)
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To upper bound the above error, we need to control: (a) ∥V − V̂ WV̂ ∥2→∞, which we have
already done in (i); (b) ∥M − M̃∥, which follows from Lemma 20 as established in the proof
of (ii) (see the high probability statement (7)); and (c) ∥M − M̂∥2→∞, which again we have
already done in (ii). The statement (iii) in Theorem 1 follows from first substituting in (8), the
upper bounds we get from (a), (b) and (c), and then using ∥M∥∞/σr(M) ≤ (µ2κr)/

√
mn,

µ = max(
√
m/r∥U∥2→∞,

√
n/r∥V ∥2→∞), and the basic inequality ∥M∥2→∞ ≤

√
m∥M∥∞ ≤√

m+ n∥M∥∞.

B.2 Transition matrix estimation under the generative model – Model II(a)

In this subsection, we present a complete, non-simplified version of Theorem 3, from which one can
deduce Theorem 3 and Corollary 4 given in the main text.

First, let us define the function gδ : Rn×n → R+ as

gδ(M) = 1{∃ℓ:∥Mℓ,:∥∞≤1} log
(ne
δ

)
log−1

(
1 +

1

∥M∥∞

)
+ 1{∀ℓ:∥Mℓ,:∥∞>1} log

(
∥M∥∞ ne

δ

)√
∥M∥∞. (9)

We also use the following notation:
A = 1√

T

√
∥M∥1→∞ + ∥M⊤∥1→∞,

B′ = µκ
√

r
n

(
A+ 1

T gδ/
√
T (TM) log

(
n
√
T
δ

))
+

√
r∥M∥∞

T log
(
n
√
T
δ

)
.

We first recall a standard result quantifying how well M̃ approximates M .

Lemma 13. ∀δ ∈ (0, 1), w.p. at least 1− δ, ∥M̃ −M∥ ≤ CA+ C
T gδ/

√
T (TM)

√
log(n

√
T
δ ).

Proof. The lemma follows directly from Lemma 22 (replacing Tτ by T ) and Lemma 28.

Theorem 14. Assume that (ν0)min = mini∈[n](ν0)i > 0. For any δ > 0, if ∥M̃ −M∥ ≤ cσr(M),
gδ/

√
T (TM) log(n

√
T/δ) ≤ cTσr(M) and ∥M∥∞ log(n

√
T/δ) ≤ cTσ2

r(M) for some universal
constant c > 0, then there exists a universal constant C > 0 such that with probability at least 1− δ
holds:

(i) max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
≤ C B′

σr(M) ,

(ii) ∥M̂ −M∥2→∞ ≤ CκB′, ∥P̂ − P∥1→∞ ≤ C κ
√
n

(ν0)min
B′,

(iii) ∥M̂ −M∥∞ ≤ C
(

∥M∥2→∞+κB′

σr(M) + κµ
√

r
n

)
B′,

(iv) ∥P̂ − P∥∞ ≤ C B′

(ν0)min

[√
nκ ∥M∥∞

(ν0)min
+ ∥M∥2→∞+κB′

σr(M) + κµ
√

r
n

]
,

where (iv) holds if in addition ∥M̂ −M∥1→∞ ≤ 1
2 (ν0)min.

Proof. The first statement of the theorem follows from Lemma 22 (with T instead of Tτ ), Lemmas
28 and 32. The remaining bounds are consequences of (i) and of the results presented in Appendix
F.

Proof of Theorem 3. Theorem 3 follows from Lemma 13 and Theorem 14 by simplifying the term
B′ using B given in Theorem 3. As a result of this simplification, as well as of the assumptions given
in statement of Theorem 14, we obtain bounds on n, T required in Theorem 3. Furthermore, we use
simple inequalities (check Lemma 17) to rewrite all terms depending on M as functions of ∥M∥∞
and (ν0)min.

Remark 1. It is worth noting that Corollary 4 is a corollary of Theorem 14, and that the lower bound
on n required in Theorem 3 is not required for this corollary. Moreover, results presented in this
corollary are valid for almost all T ≥ cn log(nT ) - in the case when T ≍ [n2−ϵ, n2] for arbitrarily
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small ϵ > 0, bounds in Corollary 4 contain additional log term, which is an artifact of our analysis
(and splitting concentration into cases T ≲ n2 and T ≳ n2). This discontinuity in the range of T
can be resolved, but at the price of a reduced readability.

B.3 Transition matrix estimation under the forward model – Model II(b)

In this subsection, we present a complete, non-simplified version of Theorem 5, from which one can
deduce Theorem 5 and Corollary 6 given in the main text.

Again, we use function the funcion gδ defined in (9), and we introduce:

B′ = µκ

√
r

n

(√
∥ν∥∞τ⋆

T
log
(ne
δ

)
log(Tν−1

min) +
τ⋆

T
gδ/

√
Tτ
(TτM) log

(
n
√
Tτ
δ

)
log(Tν−1

min)

)

+

√
rτ⋆∥M∥∞

T
log

(
n
√
Tτ
δ

)
log(Tν−1

min).

Our analysis starts from the following lemma stating how well M̃ approximates M .
Lemma 15. (Lemma 7 in [63]) For τ ≥ 2τ⋆ log(Tν−1

min) and for any δ ∈ (0, 1), we have with

probability at least 1− δ: ∥M̃ −M∥ ≤ C
√

∥ν∥∞τ
T log

(
ne
δ

)
+ C τ

T log
(
ne
δ

)
.

Theorem 16. Assume that νmin = mini∈[n] νi > 0 and that τ/(τ⋆ log(Tν−1
min)) ∈ [c1, c2]

for some universal constants c2 > c1 ≥ 2. For any δ > 0, if ∥M̃ − M∥ ≤ cσr(M),
gδ/

√
T (TτM) log(n

√
Tτ/δ) ≤ cTτσr(M) and ∥M∥∞ log(n

√
Tτ/δ) ≤ cTτσ

2
r(M) for some

universal constant c > 0, then there exists a universal constant C > 0 such that with probability at
least 1− δ,

(i) max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
≤ C B′

σr(M) ,

(ii) ∥M̂ −M∥2→∞ ≤ CκB′, ∥P̂ − P∥1→∞ ≤ C κ
√
n

νmin
B′,

(iii) ∥M̂ −M∥∞ ≤ C
(

∥M∥2→∞+κB′

σr(M) + κµ
√

r
n

)
B′,

(iv) ∥P̂ − P∥∞ ≤ C B′

νmin

[√
nκ∥M∥∞

νmin
+ ∥M∥2→∞+κB′

σr(M) + κµ
√

r
n

]
,

where (iv) holds if in addition ∥M̂ −M∥1→∞ ≤ 1
2νmin.

Proof. The first statement of the theorem follows from Lemmas 21, 22 and 32, whereas the next four
bounds follow from (i) and the bounds presented in Appendix F.

As for the generative model, Theorem 5 is a direct consequence of Theorem 16, and it is obtained by
simplifying the term B′ to B. Corollary 6 is also easily derived from Theorem 16.

B.4 An additional lemma

Lemma 17. Let M be matrix and m × n matrix with rank r, incoherence parameter µ > 0, and
condition number κ > 0. Then, we have

∥M∥∞ ≤ σ1(M)
µ2r√
nm

≤ σr(M)
µ2κr√
nm

.

Proof of Lemma 17. For all (i, j) ∈ [m]× [n], we have

|Mi,j | =

∣∣∣∣∣
r∑
ℓ=1

σℓ(M)ui,ℓvj,ℓ

∣∣∣∣∣ ≤ σ1(M)

r∑
ℓ=1

|ui,ℓvj,ℓ|

≤ σ1(M)∥U∥2→∞∥V ∥2→∞ ≤ σ1(M)
µr√
nm

≤ σr(M)
µκr√
nm

.

The first inequality follows from the triangular inequality and the fact that σ1(M) ≥ σ2(M) ≥ · · · ≥
σr(M). The second inequality follows from Cauchy-Schwarz inequality. The last inequalities follow
by definition of the incoherence parameter and of the condition number.
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C Comparison inequalities and the Poisson approximation argument

In this section, we state and prove the results related to the Poisson approximations used to handle
the noise correlations in the data. We start by presenting some of the key tools behind the Poisson
approximation argument. This argument comes in the form of comparison inequalities. The latter are
applied and specified first to Model I (reward matrix estimation), and then to Model II (transition
matrix estimation).

C.1 Preliminaries on Poisson approximation

The Poisson approximation argument comes in the form of an inequality, which is presented in Lemma
19. However, the key idea behind the argument is, roughly speaking, the equality in distribution
between a multinomial distribution with t trials and n outcomes, and the joint distribution of n in
dependent Poisson random variables with properly chosen parameters, conditioned on some particular
event. This equality of distribution is powerful for our purposes precisely because of the independence
between the Poisson random variables. Below, we present Lemma 18 that represents this idea.

Lemma 18. (Heterogeneous analogue of Theorem 5.2 in [45]) Let Y (t)
i ∼ Poisson(tpi), i =

1, . . . , n, be independent random variables with
∑n
i=1 pi = 1. Moreover, let (Z(t)

1 , Z
(t)
2 , . . . , Z

(t)
n ) ∼

Multinomial(t, (p1, . . . , pn)). Then distribution of (Y (t)
1 , . . . , Y

(t)
n ) conditioned on

∑n
i=1 Y

(t)
i = s

is the same as (Z(s)
1 , . . . , Z

(s)
n ) irrespective of t.

Proof. The proof follows similar steps as the proof of Theorem 5.2 in [45], but we provide it here for
the sake of completeness. First, note that from the definition of multinomial distributions:

P((Z(s)
1 , . . . , Z(s)

n ) = (a1, . . . , an)) =
s!

a1! · · · an!
pa11 · · · pann (10)

if
∑n
i=1 ai = s, and 0 otherwise. Since the sum of Poisson random variables is a Poisson random

variable with parameter equal to the sum of parameters of the initial random variables, we get that the
random variable

∑n
i=1 Y

(t)
i ∼ Poisson(

∑n
i=1 tpi) = Poisson(t). Hence we have:

P

(
(Y

(t)
1 , . . . , Y (t)

n ) = (a1, . . . , an)

∣∣∣∣∣
n∑
i=1

Y
(t)
i = s

)
=

P((Y (t)
1 , . . . , Y

(t)
n ) = (a1, . . . , an))

P(
∑n
i=1 Y

(t)
i = s)

=
s!

exp(−t)ts
n∏
i=1

(tpi)
ai exp(−tpi)
ai!

=
s!

a1! · · · an!
pa11 · · · pann (11)

where in the last step we used the independence of Y (t)
i ’s and

∑n
i=1 ai = s. Note that equations (10)

and (11) are exactly the same, which concludes the proof.

Lemma 19. Consider the setting of Lemma 18 and let f : Rp → R+ be any non-negative function.
Then:

E
[
f(Z

(t)
1 , . . . , Z(t)

p )
]
≤ e

√
tE
[
f(Y

(t)
1 , . . . , Y (t)

p )
]

Proof. The proof is essentially the same as that of Theorem 5.7 in [45] with the exception that we
use Lemma 18 instead of Theorem 5.6 in [45] and we repeat it here for the sake of completeness.

E[f(Y (t)
1 , . . . , Y (t)

p )] =

∞∑
k=0

E

[
f(Y

(t)
1 , . . . , Y (t)

p )
∣∣∣ p∑
i=1

Y
(t)
i = k

]
P

(
p∑
i=1

Y
(t)
i = k

)

≥ E

[
f(Y

(t)
1 , . . . , Y (t)

p )
∣∣∣ p∑
i=1

Y
(t)
i = t

]
P

(
p∑
i=1

Y
(t)
i = t

)

= E[f(Z(t)
1 , . . . , Z(t)

p )]P

(
p∑
i=1

Y
(t)
i = t

)
(12)
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where in the second line we used non-negativeness of f , and in the last line we used Lemma 18. Now,
since

∑p
i=1 Y

(t)
i is a Poisson random variable with mean t we have P(

∑p
i=1 Y

(t)
i = t) = tt exp(−t)

t!

and using simple inequality t! < e
√
t( te )

t we can rewrite inequality (12) as follows:

E[f(Y (t)
1 , . . . , Y (t)

p )] ≥ E[f(Z(t)
1 , . . . , Z(t)

p )]
1

e
√
t

(13)

which gives statement of the lemma.

C.2 Poisson approximation for reward matrices – Model I

We recall from Section 4 that the definition of the empirical reward matrix M̃ is given as follows

∀(i, j) ∈ [n]× [m], M̃i,j =
nm

T

T∑
t=1

(Mit,jt + ξt)1{(it,jt)=(i,j)} (14)

where (it, jt) are sampled uniformly at random from [n] × [m]. Due to independence between
(i1, j1), . . . , (iT , jT ) and ξ1, . . . , ξT , we note that the observation model (14) is equivalent in
distribution to the following one

∀(i, j) ∈ [n]× [m], M̃i,j =
nm

T

Zi,j∑
t=1

(Mi,j + ξ′i,j,t)

where we for all (i, j) ∈ [n]× [j], (ξ′i,j,t)t≥1 is a sequence of i.i.d. random variables copies, say of
ξ1, and

Zi,j =

T∑
t=1

1{(it,jt)=(i,j)}.

Observe that Z = (Zi,j)(i,j) is a multinomial random variable whose parameters are defined by the
fact that for all t ∈ [T ], P((it, jt) = (i, j)) = 1/nm). We denote P the joint probability of the entries
of Z and sequences (ξi,j,t)t≥1, (i, j) ∈ [n]× [m].

Compound Poisson random matrix model. We define a random matrix Y ∈ Rn×m generated by
a Poisson model as follows:

Yi,j ∼ Poisson (T/nm) , (i, j) ∈ [n]× [m]

and denote P′ the joint probability of the entries of Y and the sequences (ξ′i,j,t)t≥1, for (i, j) ∈
[n]× [m]. We may then consider the matrix model

Xi,j =

Yi,j∑
t=1

(Mi,j + ξ′i,j,t). (15)

We note that the entries of the matrix X are distributed according to compound Poisson distributions.
Below, we precise the Poisson approximation argument for the reward matrix model.
Lemma 20 (Poisson Approximation). Let (Ω,F ,P) (resp. (Ω,F ,P′)) be the probability space under
the matrix-plus-noise model (14) (resp. (15)). Then for any event E ∈ F , we have

P (E) ≤ e
√
T P′ (E) .

Proof of Lemma 20. For convenience, we denote X = ((ξi,j,t)t≥1)i,j∈[n]×[m]. We set f(Z,X) =
1{E}. Thanks to Lemma 19, given that Z is independent of X , we have

E [f(Z,X)|X] ≤ e
√
TE [f(Y,X)|X] .

We further take the expectation on X and write

P(E) = E [f(Z,X)] ≤ e
√
TE [f(Y,X)] = e

√
T P′(E).
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C.3 Approximations for transition matrices – Model II

We restrict our attention to the forward model, Model II(b). The results for the generative model
are simpler and can be easily deduced from those for the forward model. Recall from Section 3.3
definition of matrix M̃ (k) and in the following discussion we fix value of k ∈ [τ ]. Define a matrix
N = TτM̃

(k) and note that it is equal to:

Ni,j =

Tτ−1∑
l=0

1{(xk+lτ ,xk+1+lτ )=(i,j)}, i, j = 1, 2, . . . , n (16)

Furthermore, let P1 be joint probability distribution of entries of N .

C.3.1 Multinomial approximation

Here we define a matrix Z ∈ Rn×n with entries:

Zi,j =

Tτ−1∑
t=0

1{(it,jt)=(i,j)}, i, j = 1, 2, . . . , n, (17)

where P((it, jt) = (i, j)) = νiPi,j independently over i, j ∈ [n] and t ∈ [Tτ ]. Denote by P2 joint
probability distribution of entries of Z. Then we have:

Lemma 21. Let N and Z be matrices obtained under the models (16) and (17), respectively. Then,
for any subset Z of {z ∈ Nn2

:
∑

(i,j) zi,j = Tτ}, we have P(N ∈ Z) ≤ 3P(Z ∈ Z).

Proof. Note that by subsampling as explained in Section 3.3, for each k we obtain a Markov chain
with transition kernel

Pτ ((y, y
′)|(x, x′)) = P τ (y|x′)P (y′|y)

and initial distribution ν(k)0 (x, x′) = ν
(k)
0 (x)P (x′|x) with

ν
(1)
0 (x) = ν0(x) and ν

(k)
0 (x) =

∑
y∈[n]

ν0(y)P
k−1(x|y) for k = 2, . . . , τ.

Moreover, all chains share the same stationary distribution given by Π ∈ Rn×n with Πx,x′ =
ν(x)P (x′|x), x, x′ ∈ [n]. Now, recall definition of τ from Theorem 5 and note that according to
Lemma 10 with δ = 1

4 and ε = νmin/(eT ) we have τ(ε) ≤ τ and thus:

max
1≤i≤n

∥P τi,: − ν⊤∥1 ≤ νmin

eT
. (18)

Now, let z = (zi,j)
n
i,j=1 ∈ {z ∈ Nn2

:
∑
i,j zi,j = Tτ} be a tuple of fixed integers. Define a set:

S(z) := {(a2l+1, a2l+2)
Tτ−1
l=0 ∈ ([n]× [n])Tτ :

Tτ−1∑
l=0

1{(a2l+1,a2l+2)=(i,j)} = zi,j ,∀i, j ∈ [n]}

and note that |S(z)| = Tτ !(
∏n
i,j=1 zi,j !)

−1. By definition of Markovian and multinomial models, we
have:

P(N = z) =
∑

ν
(k)
0 (xk−1, xk)

Tτ−1∏
l=1

Pτ ((xk−1+lτ , xk+lτ )|(xk−1+(l−1)τ , xk+(l−1)τ ))

where the sum is over (xk−1+lτ , xk+lτ )
Tτ−1
l=0 ∈ S(z), and

P(Z = z) =
Tτ !∏n

i,j=1 zi,j !

n∏
i,j=1

Π
zi,j
i,j .
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Now we fix arbitrarily one of the summands in the expression for P(N = z) and note that:∣∣∣ν(k)0 (xk−1, xk)

Tτ−1∏
l=1

Pτ ((xk−1+lτ , xk+lτ )|(xk−1+(l−1)τ , xk+(l−1)τ ))−
n∏

i,j=1

Π
zi,j
i,j

∣∣∣
=

(
Tτ−1∏
l=0

P (xk+lτ |xk−1+lτ )

)∣∣∣ν(k)0 (xk−1)

Tτ−1∏
l=1

P τ (xk−1+lτ |xk+(l−1)τ )−
Tτ−1∏
l=0

ν(xk−1+lτ )
∣∣∣

≤

(
Tτ−1∏
l=0

P (xk+lτ |xk−1+lτ )

)(
Tτ−1∏
l=0

(ν(xk−1+lτ ) + ϵ)−
Tτ−1∏
l=0

ν(xk−1+lτ )

)

≤

 n∏
i,j=1

Π
zi,j
i,j

 Tτ∑
j=1

(
ϵ

νmin

)j (
Tτ
j

)
≤

 n∏
i,j=1

Π
zi,j
i,j

 Tτ∑
j=1

(
eTτ ϵ

jνmin

)j
≤ 2

 n∏
i,j=1

Π
zi,j
i,j


where in first inequality we used Equation (18), where we then used the bound on binomial coefficients(
Tτ

j

)
≤ (eTτ/j)

j , and where in the last inequality, we used definition of ϵ. Since this upper bound
holds irrespective of the summand, we deduce that:

|P(N = z)− P(Z = z)| ≤ 2
Tτ !∏n

i,j=1 zi,j !

 n∏
i,j=1

Π
zi,j
i,j

 = 2P(Z = z).

Now, let Z be any subset of {z ∈ Nn2

:
∑

(i,j) zi,j = Tτ}. Then we have:

P(N ∈ Z) =
∑
z∈Z

P(N = z) ≤ 3
∑
z∈Z

P(Z = z) = 3P(Z ∈ Z)

as claimed in the lemma.

C.3.2 Poisson approximation

We define a matrix Y ∈ Rn×n generated by the Poisson model as follows:

Yi,j ∼ Poisson(TτMi,j), i, j = 1, 2, . . . , n. (19)

We show that rare random events occur with approximately equal probability for the Poisson and
multinomial models:
Lemma 22. Let Z and Y be matrices obtained under the models (17) and (19), respectively. Then
for any Z ⊂ Nn2

, we have P(Z ∈ Z) ≤ e
√
TτP(Y ∈ Z).

Proof. Proof of the lemma is a straightforward consequence of Lemma 19 with parameters Tτ , n2
and f = 1{Z}.

25



D Concentration of matrices with Poisson and compound Poisson entries

As mentioned in Appendix C, our analysis relies on a Poisson approximation argument. As a result,
we will require tight concentration bounds for random matrices with entries distributed according
to compound Poisson distributions (when estimating the reward matrix) and Poisson distributions
(when estimating the transition matrices). In §D.1, we present a few simple facts about Poisson and
compound Poisson random variables, together with some other useful tools. In §D.2, we present two
concentration results, required for the model with compound Poisson entries. Similarly, in §D.3, we
present two concentration results, required for the model with Poisson entries. These concentration
results will be extensively used in the forthcoming analysis for the subspace recovery.

It is worth noting that our results in §D.3 are sharper than those in §D.2 thanks to Bennett’s inequality.
As a consequence, our results for estimating the reward matrix exhibit a dependence in log3(n+m)
while in the estimation of the transitions, our results exhibit a dependence in log2(n) and even log(n)
in some regimes.

D.1 Preliminaries

We first present Theorem 23, which can be seen as a version of matrix Bernstein inequality. The
theorem is borrowed from [26] and relies on a truncation trick. The proofs of our concentration
results in §D.2 and §D.3 rely on this theorem.
Theorem 23. (Proposition A.3 in [26]) Let {Zt}Tt=1 be a sequence of m× n independent zero-mean
real random matrices. Suppose that for all 1 ≤ t ≤ T ,

(i) P (∥Zt∥ ≥ β) ≤ p, and (ii)
∥∥E[Zt1{∥Zt∥>β}]

∥∥ ≤ q, (20)

hold for some quantities p ∈ (0, 1), and q ≥ 0. Furthermore, assume there exists v ≥ 0, such that

(iii) max

{∥∥∥∥∥
T∑
t=1

E
[
ZtZ

⊤
t

]∥∥∥∥∥ ,
∥∥∥∥∥
T∑
t=1

E
[
Z⊤
t Zt

]∥∥∥∥∥
}

≤ v. (21)

Then, for all u > 0,

P

(∥∥∥∥∥
T∑
t=1

Zt

∥∥∥∥∥ ≥ Tq + u

)
≤ Tp+ (n+m) exp

(
− u2/2

v + βu/3

)
. (22)

To apply Theorem 23, we need control of the tails of the entries of the random matrix we study. In
the case of Poisson entries, we will simply use the following standard fact about Poisson random
variables. It is a simple consequence of Bennett’s inequality [8].
Lemma 24. Let Y be a Poisson random variable with mean λ. Then for, all θ ∈ R, we have
E[eθY ] ≤ exp(λ(eθ − 1)). Furthermore, we have for all u > 0

P(|Y − λ| > u) ≤ 2 exp (−λh(u/λ)) ≤ 2 exp

(
− u2/2

λ+ u/3

)
,

where h(u) = (1 + u) log(1 + u)− u.

In the case of compound Poisson entries, we do not have any result similar to Bennett’s inequality.
Instead, we derive a Bernstein-type concentration result on these random variables.
Lemma 25. Let (ξt)t≥1 be a sequence of zero-mean, σ2-subgaussian, i.i.d. random variables. Let
Y be a Poisson random variables with mean λ. Let M be a positive constant. Then, the moment
generating function of the compound Poisson random variable Z =

∑Y
i=1(M + ξi) satisfies the

following:

∀u > 0, P(|Z − λM | > u) ≤ 2 exp

(
−min

(
u2

16eλL2
,
u

4L

))
,

E
[
|Z − λM |2

]
≤ 18λL2,

where L = max(M,σ).
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Proof of Lemma 25. First, we upper bound the moment generating function of
∑Y
i=10(M + ξi). Let

θ > 0, we have

IZ(θ) ≜ E
[
eθ(

∑Y
i=1(M+ξi))

]
≤
√

E [e2θMY ]E[e2θ
∑Y

i=0 ξi ]

≤ exp

(
λ(e2θM − 1)

2

)√
E[e2θ

∑Y
i=0 ξi ]

≤ exp

(
λ

2

(
(2θM)2e2θM + 2θM

))√
E[e2θ

∑Y
i=0 ξi ],

where in the first inequality, we use Cauchy-Schwarz inequality, in the second inequality, we use
the well known bound on the moment generating function of a Poisson random variable (if Y is a
Poisson random variable with mean λ, then for all θ > 0, E[eθY ] ≤ exp(λ(eθ − 1))), and in the last
inequality, we use the elementary fact that ex − 1 ≤ x2ex + x for all x ∈ R. Next, we have

E
[
e2θ

∑Y
i=1 ξi

]
= E

[ ∞∑
k=1

1{Y=k} exp

(
2θ

k∑
i=1

ξi

)]

=
∞∑
k=1

P(Y = k)E

[
exp

(
2θ

k∑
i=1

ξi

)]

≤
∞∑
k=1

P(Y = k) exp(2kθ2σ2)

≤ exp
(
λ(e2θ

2σ2

− 1)
)

≤ exp
(
λ
(
2θ2σ2e2θ

2σ2
))

,

where we use the fact that the ξi are σ2-subgaussian r.v., and the elementary inequality ex
2−1 ≤ x2ex

2

for all x ∈ R. We conclude that for all θ > 0,

IZ(θ) ≤ exp
(
λ
(
2θ2M2e2θM + 2θ2σ2e2θ

2σ2
)
+ λθM

)
.

Next, we introduce L = max(M,σ). Then, for all α > 0, we deduce that

IZ(θ) ≤ exp
(
2λθ2L2

(
eα + eα

2
)
+ λθM

)
, ∀|θ| ≤ α

2L
.

By Markov inequality, and fixing α = 1, we have

P(Z − λM > u) ≤ inf
|θ|≤1/(2L)

IZ(θ)e
−λθM−θu ≤ exp

(
−min

(
u2

16eλL2
,
u

4L

))
.

Similarly, we have

P(λM − Z > u) ≤ exp

(
−min

(
u2

16eλL2
,
u

4L

))
.

The final tail bound follows from a union bound. Finally, straightforward computations yield an
upper bound on E[|λM − Z|2]. Indeed, we have

E[|λM − Z|2] ≤ 2E[|Y − λ|2]M2 + 2E

( Y∑
i=1

ξi

)2
 ≤ 2λM2 + 16λσ2 ≤ 18λL2.

D.2 Random matrices with compound Poisson entries

We list below the two main concentration results that we need for the forthcoming analysis. In
Proposition 26, we provide a high probability guarantee on the error between the empirical mean
reward matrix and the true matrix in operator norm. In Proposition 27, we establish another
concentration result that will be instrumental in the subspace recovery analysis. The proofs of
the two results are similar with slight differences and they both rely on Theorem 23. The proofs are
presented at the end of this subsection.
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Proposition 26. Under the random matrix model (15) with compound Poisson entries, for all
δ ∈ (0, 1), for all T ≥ 13(n+m) log3 ((n+m)/δ), the following statement

∥M̃ −M∥ ≤ 36
√
2L

√
nm

T

(√
(n+m) log

(
n+m

δ

)
+ log3/2

(
n+m

δ

))
holds with probability at least 1− δ, where L = max(∥M∥∞, σ).
Proposition 27. Let A be a m × 2r nonrandom matrix, and B be a n × 2r nonrandom matrix.
Then, under the random matrix model (15) with compound Poisson entries, and denoting L =
max(∥M∥∞, σ), we have:

(i) for all ℓ ∈ [m], for all δ ∈ (0, 1), for all T ≥ m log3(en/δ), the following event

∥(M̃ℓ,: −Mℓ,:)A∥ ≤ 73
√
2L∥A∥2→∞

√
nm

T

(√
n log

(en
δ

)
+ log3/2

(en
δ

))
(23)

holds with probability at least 1− δ;

(ii) for all k ∈ [n], for all δ ∈ (0, 1), for all T ≥ n log3(em/δ), the following event

∥(M̃:,k −M:,k)
⊤B∥ ≤ 73

√
2L∥B∥2→∞

√
nm

T

(√
m log

(em
δ

)
+ log3/2

(em
δ

))
(24)

holds with probability at least 1− δ.

Proof of Proposition 26. To simplify the notation, introduce the matrices Zi,j = (M̃i,j −Mi,j)eie
⊤
j ,

for all (i, j) ∈ [m]× [n], λ = T/mn, and L = max(∥M∥∞, σ). We remark that we can write

M̃ −M =
∑

(i,j)∈[m]×[n]

Zi,j .

Starting from the above expression, we will apply Theorem 23 to obtain the desired result. First,
we note that for all (i, j) ∈ [m] × [n], ∥Zi,j∥ = |M̃i,j −Mi,j | and M̃i,j −Mi,j is a centered and
normalized compound Poisson random variable. Thus, we have by Lemma 25, for all δ ∈ (0, 1),
P(∥Zi,j∥ > β) ≤ δ/(2n2m2), where we define

β = 4Lmax

(√
e

λ
log

(
4n2m2

δ

)
,
1

λ
log

(
4n2m2

δ

))
,

≤ 4Lmax

(√
4e

λ
log

(
n+m

δ

)
,
4

λ
log

(
n+m

δ

))
.

Moreover, we have

E
[
∥Zi,j∥1{∥Zi,j]∥>β}

]
≤
√
E [∥Zi,j∥2]E

[
1{∥Zi,j]∥>β}

]
≤
√
E[|M̃i,j −Mi,j |2]P(∥Zi,j∥ > β)

≤
√

9L2δ

λn2m2
,

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows
from the expression of Zi,j , and the third inequality follows from Lemma 25. Next, we have∥∥∥∥∥∥

∑
(i,j)∈[m]×[n]

E
[
Zi,jZ

⊤
i,j

]∥∥∥∥∥∥ =

∣∣∣∣∣∣
∑
i∈[m]

∑
j∈[n]

E
[(
M̃i,j −Mi,j

)2] eie
⊤
i

∣∣∣∣∣∣
= max
i∈[m]

∑
j∈[n]

E
[(
M̃i,j −Mi,j

)2]

≤ 18nL2

λ
.
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By symmetry, we obtain similarly∥∥∥∥∥∥
∑

(i,j)∈[m]×[n]

E
[
Z⊤
i,jZi,j

]∥∥∥∥∥∥ ≤ 18mL2

λ
.

Let us set v = 18(n ∧m)L2/λ. We conclude using Theorem 23 that, for all u > 0,

P

(
∥M̃ −M∥ >

√
9L2δ

λ
+ u

)
≤ δ

2(nm)
+ (n+m) exp

(
− u2/2

v + βu/3

)
≤ δ

2(nm)
+ (n+m) exp

(
−1

4
min

(
u2

v
,
3u

β

))
.

We re-parametrize by choosing δ = 2(n+m) exp(−(1/4)min(u2/v, 3u/β)), and write

P

(
∥M̃ −M∥ > 3L

√
δ√
λ

+ u

)
≤ δ (25)

with

u = max

(√
4v log

(
2(n+m)

δ

)
,
4β

3
log

(
2(n+m

δ

))

≤ max

(√
8v log

(
n+m

δ

)
,
8β

3
log

(
n+m

δ

))
.

By inspecting the definition of β and v, we note that under the condition

λ =
T

nm
≥ 45

34
1

n ∧m
log3

(
n+m

δ

)
(26)

then

u ≤ max

(√
8v log

(
n+m

δ

)
,
16L

√
2e

3
√
λ

log3/2
(
2(n+m)

δ

))

≤ L√
λ
max

(√
3242(n ∧m) log

(
n+m

δ

)
,
422

√
e

3
log

(
n+m

δ

))
.

After using the upper bound on u in (25), and after upper bounding δ by 1, we obtain, under the
condition (26),

∥M̃ −M∥ > L√
λ

(
3 + 12

√
2(n+m) log

(
n+m

δ

)
+

43
√
e

3
log3/2

(
n+m

δ

))

>
L√
λ

(
36

√
2(n+m) log

(
n+m

δ

)
+ 36 log3/2

(
n+m

δ

))

>
36
√
2L√
λ

(√
(n+m) log

(
n+m

δ

)
+ log3/2

(
n+m

δ

))
with probability at most δ. Noting that a stricter condition than (26) is

T ≥ 13(n+m) log3
(
n+m

δ

)
,

we complete the proof.
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Proof of Proposition 27. To simplify the notation, let us denoteZj = (M̃ℓ,j−Mℓ,j)Aj,:, λ = mn/T ,
and L = max(∥M∥∞, σ). We remark that we can write

(M̃ℓ,: −Mℓ,:)A =
∑
j∈[n]

(M̃ℓ,j −Mℓ,j)Aj,: =
∑
j∈[n]

Zj .

Starting from the above expression, we will apply 23 to obtain the desired result. First, we note that for
all j ∈ [n], ∥Zj∥ = |M̃ℓ,j −Mℓ,j |∥Aj,:∥, and M̃ℓ,j −Mℓ,j is a centered and normalized compound
Poisson random variable. Thus, we have by Lemma 25, for all δ ∈ (0, 1), P (∥Zj∥ > ∥A∥2→∞β) ≤
P (∥Zj∥ > ∥Aj,:∥β) ≤ δ/(2n2), where we define

β = 4Lmax

(√
e

λ
log

(
4n2

δ

)
,
1

λ
log

(
4n2

δ

))

≤ 4Lmax

(√
2e

λ
log
(en
δ

)
,
2

λ
log
(en
δ

))
.

Moreover, we have

E
[
∥Zj∥1{∥Zj∥>∥A∥2→∞β}

]
≤
√

E[∥Zj∥2]P (∥Zj∥ > ∥A∥2→∞β)

≤ ∥A∥2→∞

√
E[∥M̃ℓ,: −Mℓ,:∥2]δ

2n2

≤ ∥A∥2→∞

√
9L2δ

λn2
,

where in the first inequality, we use Cauchy-Schwarz inequality, and in the third inequality, the result
of Lemma 25 to upper bound the variances. Next, we have∥∥∥∥∥∥E

∑
j∈[n]

ZjZ
⊤
j

∥∥∥∥∥∥ ≤
∑
j∈[n]

E
[
(M̃ℓ,j −Mℓ,j)

2
]
∥Aj,:∥2

≤ 18L2∥A∥2F
λ

≤ 18L2n∥A∥22→∞
λ

,

where we simply used the expressions of Zj , j ∈ [n], the triangular inequality, and Lemma 25 to
upper bound the variances. Similarly, we have∥∥∥∥∥∥E

∑
j∈[n]

Z⊤
j Zj

∥∥∥∥∥∥ ≤ 18L2n∥A∥22→∞
λ

.

We set v = 18L2n∥A∥22→∞/λ. Now we are ready to apply Theorem 23. We get:

P

(
∥(M̃ℓ,: −Mℓ,:)A∥ > ∥A∥2→∞

√
9L2δ

λ
+ u

)
≤ δ

2n
+ n exp

(
−1

4
min

(
u2

v
,

3u

∥A∥2→∞β

))
.

We re-parametrize by choosing δ = 2n exp(−(1/4)min(u2/v, 3u/(∥A∥2→∞β))) and we write

P

(
∥(M̃ℓ,: −Mℓ,:)A∥ > ∥A∥2→∞

√
9L2δ

λ
+ u

)
≤ δ

with

u = max

(√
4v log

(
2n

δ

)
,
4∥A∥2→∞β

3
log

(
2n

δ

))

≤ max

(√
4v log

(en
δ

)
,
4∥A∥2→∞β

3
log
(en
δ

))
.
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By inspecting the definition of β and v, we note that when the condition

λ =
T

mn
≥ 43

34
1

n
log3

(en
δ

)
(27)

holds, then

u ≤ max

(√
4v log

(en
δ

)
,
16
√
2eL∥A∥2→∞

3
√
λ

log3/2
(en
δ

))

≤ L∥A∥2→∞√
λ

max

(√
2332n log

(en
δ

)
,
16
√
2e

3
log3/2

(en
δ

))

≤ 36
√
2L∥A∥2→∞√

λ
max

(√
n log

(en
δ

)
, log3/2

(en
δ

))
. (28)

After using the upper bound in (28), and upper bounding δ by 1, we obtain that, under the condition
(27),

∥(M̃ℓ,: −Mℓ,:)A∥ >
73
√
2L∥A∥2→∞√

λ

(√
n log

(en
δ

)
+ log3/2

(en
δ

))
holds with probability at most δ. We can also refine the condition (27) as follows

T ≥ m log3
(en
δ

)
.

This concludes the proof of the statement (23) in the proposition. The statement (24) follows similarly.
Therefore, we omit it.

D.3 Random matrices with Poisson entries

Recall from Section B.2, the definition of the function gδ from (9) and that A =
1√
T

√
∥M∥1→∞ + ∥M⊤∥1→∞. First we show the following lemma that provides an upper bound of

the spectral norm. This lemma is used to derive Lemma 13.
Lemma 28. Let Y ∈ Rn×n be a matrix with independent entries Yi,j ∼ T−1Poisson(TMij),
i, j ∈ [n], and let 0 ≤ δ ≤ 1. Then, w.p. at least 1− δ, ∥Y −M∥ ≤ CA+ C

T gδ(TM)
√
log(neδ ).

Proof. The proof follows from that of Lemma 29 and that of Lemma 4 in [42], which is based on
a spectral bound from [6]. We use that the random variables |Yi,j −Mi,j | concentrate well around
L = L11{∃ℓ:T∥Mℓ,:∥∞≤1} + L21{∀ℓ:T∥Mℓ,:∥∞>1} where L1 = 4T−1 log−1(1 + (T∥M∥∞)−1 ∧
nδ−1) log(neδ ) and L2 = 4

√
T−1∥M∥∞ log

(
T∥M∥∞ ne

δ

)
using exactly the same argument as in

the first step of Lemma 29. Moreover, we use upper bound on |E[(Yi,j −Mi,j)1{|Yi,j−Mi,j |<L}]|
derived in the second step of Lemma 29.

We also derive upper bounds in the ℓ2→∞ norm. These bounds are used in the analysis of the singular
subspace recovery in Lemma 32, and therefore in the proofs of Theorems 3 and 5.
Lemma 29. Let Y ∈ Rn×n be a matrix with independent entries Yi,j ∼ T−1Poisson(TMij),
i, j ∈ [n], for an arbitrary integer T > 0. Let 0 ≤ δ ≤ 1. Then, for any 1 ≤ l ≤ n and any matrix
A ∈ Rn×p, with p ≤ n, and independent of Yl,: we have, if T∥Ml,:∥∞ ≤ 1,

∥(Yl,: −Ml,:)A∥ ≲∥A∥F

√
∥Ml,:∥∞ log

(
ne
δ

)
√
T

+ ∥A∥2→∞
log2

(
ne
δ

)
T log(1 + (T∥Ml,:∥∞)−1 ∧ nδ−1))

else if T∥Ml,:∥∞ > 1,

∥(Yl,: −Ml,:)A∥ ≲∥A∥F

√
∥Ml,:∥∞ log

(
ne
δ

)
√
T

+ ∥A∥2→∞

√
∥Ml,:∥∞√

T
log
(
T∥Ml,:∥∞

ne

δ

)
log
(ne
δ

)
with probability at least 1− δ/n.
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Proof of Lemma 29. The lemma is an application of the truncated matrix Bernstein theorem i.e.
Theorem 23. In this theorem, T corresponds to n in Lemma 29, n in Theorem 23 corresponds to 1 in
Lemma 29, and m in Theorem 23 corresponds to n in Lemma 29. First note that for any l, we have
(Yl,:−Ml,:)A =

∑n
i=1(Yl,i−Ml,i)Ai,:. Moreover, since each of these n summands are independent,

zero-mean random vectors, we can identify Zi’s from Theorem 23 with (Yl,i −Ml,i)Ai,: ∈ R1×n

for i ∈ [n]. To apply Theorem 23, we need to verify its assumptions. This is done below.

Step 1: Showing (i) in (20) First, recall Bennett’s concentration inequality from Lemma 24, which
in our case implies that for any i, j ∈ [n]:

P(|Yi,j −Mi,j | ≥ tMi,j) ≤ 2 exp (−h(t)TMi,j) . (29)

Note that ∥Zi∥ in Theorem 23 in our case corresponds to:

∥(Yl,i −Ml,i)Ai,:∥ = |Yl,i −Ml,i|∥Ai,:∥ ≤ |Yl,i −Ml,i|∥A∥2→∞.

We consider two different cases:

1. T∥Ml,:∥∞ ≤ 1: We let β1 = 4T−1∥A∥2→∞ log−1(1 + (T∥Ml,:∥∞)−1 ∧ nδ−1) log(neδ ) and
note that h(t) ≥ 1

2 t log t for t ≥ 1. Thus, from Equation (29), we have:

P
(
|Yl,i −Ml,i| ≥

β1
∥A∥2→∞

)
≤ 2 exp

(
− 2 log(

ne

δ
) log−1(1 + (T∥Ml,:∥∞)−1 ∧ nδ−1)

· log
(

4 log(neδ )

T∥Ml,:∥∞ log(1 + (T∥Ml,:∥∞)−1 ∧ nδ−1)

))
≤ δ

2n2
.

where, in the second inequality, we show using simple algebra that log−1(1 + (T∥Ml,:∥∞)−1 ∧
nδ−1) log

(
4 log(ne

δ )

T∥Ml,:∥∞ log(1+(T∥Ml,:∥∞)−1∧nδ−1)

)
≥ 1 for δ ≤ 1 and T∥Ml,:∥∞ ≤ 1.

2. T∥Ml,:∥∞ > 1: Here we define β2 := 4∥A∥2→∞
√
T−1∥Ml,:∥∞ log

(
T∥Ml,:∥∞ ne

δ

)
. Then,

according to Equation (29) and the approximation h(t) ≥ min{t2/4, t} for t ≥ 0, we have:

P
(
|Yl,i −Ml,i| ≥

β2
∥A∥2→∞

)
≤ 2 exp

(
− 4min

{
log2(T∥Ml,:∥∞

ne

δ
),
√
T∥Ml,:∥∞ log(T∥Ml,:∥∞

ne

δ
)

})
≤ 2 exp

(
− 4 log(T∥Ml,:∥∞

ne

δ
)

)
≤ 1

2T∥Ml,:∥∞
δ

n2
.

where, in the second inequality, we used that δ ≤ 1 and T∥Ml,:∥∞ > 1. Finally, we define β =

β11{T∥Ml,:∥∞≤1} + β21{T∥Ml,:∥∞>1} and p = δ
2n1{T∥Ml,:∥∞≤1} + 1

2T∥Ml,:∥∞
δ
n1{T∥Ml,:∥∞>1}

(since we took union bound over i ∈ [n]).

Step 2: Showing (ii) in (20) In our case the l.h.s. corresponds to ∥E[(Yl,i −
Ml,i)Ai,:1{∥(Yl,i−Ml,i)Ai,:∥>β}]∥ = ∥E[(Yl,i−Ml,i)Ai,:1{∥(Yl,i−Ml,i)Ai,:∥≤β}]∥ which can be upper
bounded by ∥A∥2→∞|E[(Yl,i − Ml,i)1{|Yl,i−Ml,i|≤ β

∥Ai,:∥
}]|. For some integers κmin, κmax, let

Yl,i ∈ 1
T [κmin, κmax] be interval of Yl,i for which indicator 1{|Yl,i−Ml,i|≤ β

∥Ai,:∥
} is active and note

that this is a superset of interval for which 1{|Yl,i−Ml,i|≤ β
∥A∥2→∞

} is active. Then from the definition
of Poisson random variables and the bounds derived previously, we obtain:∣∣∣E[(Yl,i −Ml,i)1{|Yl,i−Ml,i|≤ β

∥Ai,:∥
}]
∣∣∣ = 1

T

∣∣∣ κmax∑
k=κmin

(k − TMl,i)
exp(−TMl,i)(TMl,i)

k

k!

∣∣∣
=Ml,i

∣∣∣ κmax−1∑
k=κmin−1

exp(−TMl,i)(TMl,i)
k

k!
−

κmax∑
k=κmin

exp(−TMl,i)(TMl,i)
k

k!

∣∣∣
≤Ml,i(P(TYl,i = κmin − 1) + P(TYl,i = κmax)) ≤

2δ

Tn2
min{T∥Ml,:∥∞, 1},
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where we assumed that κmin ≥ 1, otherwise we keep just the second probability term above. Thus,
using previous two inequalities, we have:

∥E[(Yl,i −Ml,i)Ai,:1{∥(Yl,i−Ml,i)Ai,:∥>β}]∥ ≤ ∥A∥2→∞
2δ

Tn2
min{T∥Ml,:∥∞, 1}

Step 3: Showing (iii) in (21) Using our definition Zi = (Yl,i −Ml,i)Ai,: ∈ R1×n, we have that

ZiZ
⊤
i = (Yl,i −Ml,i)

2∥Ai,:∥2,
Z⊤
i Zi = (Yl,i −Ml,i)

2A⊤
i,:Ai,:.

Since A and Yl,: are independent, we have:

∥
n∑
i=1

E[ZiZ⊤
i ]∥ =

n∑
i=1

E[ZiZ⊤
i ] =

n∑
i=1

∥Ai,:∥2E(Yl,i −Ml,i)
2 ≤ ∥A∥2F max

i
E(Yl,i −Ml,i)

2

and

∥
n∑
i=1

E[Z⊤
i Zi]∥ = ∥

n∑
i=1

E(Yl,i −Ml,i)
2A⊤

i,:Ai,:∥ ≤
n∑
i=1

E(Yl,i −Ml,i)
2∥A⊤

i,:Ai,:∥

≤ ∥A∥2F max
i

E(Yl,i −Ml,i)
2.

Now note that for Yl,i ∼ T−1Poisson(TMl,i), Var(Yl,i) = E(Yl,i −Ml,i)
2 = T−1Ml,i. Thus, by

setting v = T−1∥A∥2F ∥Ml,:∥∞, we get (iii).

Plugging in all obtained quantities into Equation (22) finishes proof of the lemma.
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E Singular subspace recovery via the leave-one-out argument

In this section, we present Lemma 30 and Lemma 32 providing sharp guarantees for the singular
subspace recovery in two-to-infinity norm. Obtaining such guarantees is not trivial and requires
the use of a rather technical analysis, namely the leave-one-out technique [2, 14]. However, such
technique heavily relies on independence between entries of the observed random matrix. We use the
Poisson approximation argument to address this, which in turn requires to reproduce the leave-one-out
analysis under a different random matrix observation models (see (15) and (19)).

We wish to highlight that Farias et al. [23], like us, have also used the leave-one-out argument to
obtain entry-wise guarantees for matrix estimation with sub-exponential noise. In our case, we use
this argument as a sub-step of our analysis after performing the Poisson approximation. However, we
believe that, our final results are richer, more precise and actually needed for our RL applications.
Indeed, we are able to obtain guarantees in the norms ∥ · ∥2→∞ and ∥ · ∥1→∞ (these are not provided
in [23]). Moreover, the entry-wise guarantees in [23] are only expressed in terms of the matrix
dimensions m and n. Our guarantees on the other hand exhibit dependencies on the dimensions
m,n, the number of observation T and the confidence level δ. Having guarantees with an explicit
dependence for all T ≥ 1 and δ ∈ (0, 1) is crucial in the design of our algorithm for low-rank bandits.

E.1 Subspace recovery for reward matrices

Lemma 30. Let δ ∈ (0, 1). Define:

B =

√
nm

T

(√
(n+m) log

(
e(n+m)T

δ

)
+ log3/2

(
e(n+m)T

δ

))
.

For all T ≥ c(µ4κ2r2 + 1)(m+ n) log3
(
e2(m+ n)T/δ

)
, the event

max(∥U − Û(Û⊤U)∥, ∥V − V̂ (V̂ ⊤V )∥) ≤ C
∥M∥∥M∥∞
σr(M)2

max(∥V ∥2→∞∥U∥2→∞)B

holds with probability at least 1− δ, for some universal constants c, C > 0.

Proof of Lemma 30. The proof follows similar steps as that of Theorem 4.2 in [14], which is based
on the leave-one-out analysis.

Step 1: Dilation trick. In order to apply the leave-one-out analysis, we first use a dilation trick [58]
to reduce the problem to that of symmetric matrices. Define:

S =

[
0 M
M⊤ 0

]
and note that for matrix M with SVD M = UΣV ⊤, we have:

S =
1√
2

[
U U
V −V

] [
Σ 0
0 −Σ

]
1√
2

[
U U
V −V

]⊤
:= QDQ⊤.

We define, in a similar way, S̃ using M̃ , and let Q̂ ∈ R(n+m)×2r be the matrix of eigenvectors of the
best 2r-rank approximation of S̃. Note that:

∥Q− Q̂(Q̂⊤Q)∥2→∞ = max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
. (30)

To keep the notation simple, we will define WQ̂ = Q̂⊤Q. Further note that

∥S̃ − S∥ = ∥M̃ −M∥, σ1(S) = σ1(M), and σ2r(S) = σr(M). (31)

We start the analysis under the model (15) and assume that M̃ has independent entries with compound
Poisson distributions. We will eventually invoke the Poisson approximation argument via Lemma 20
to deduce the final result.
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Step 2: Error decomposition. We apply the decomposition in Lemma 33 to obtain:

∥Q− Q̂WQ̂∥2→∞ ≤ 1

σ2r(S)

(
4∥S̃Q∥2→∞∥E∥

σ2r(S)
+ ∥EQ∥2→∞ + 2∥S̃(Q− Q̂WQ̂)∥2→∞

)
,

where we set E = S̃ − S. We observe that when ∥E∥ ≤ σ2r(S)/2, then

∥Q− Q̂WQ̂∥2→∞ ≤ 1

σ2r(S)

(
4∥SQ∥2→∞∥E∥

σ2r(S)
+ 3∥EQ∥2→∞ + 2∥S̃(Q− Q̂WQ̂)∥2→∞

)
.

(32)

Furthermore, we also have

∥S̃(Q− Q̂WQ̂)∥2→∞ ≤ ∥E(Q− Q̂WQ̂)∥2→∞ + ∥S(Q− Q̂WQ̂)∥2→∞

≤ ∥E(Q− Q̂WQ̂)∥2→∞ + ∥SQ∥2→∞∥ sin(Q, Q̂)∥2

≤ ∥E(Q− Q̂WQ̂)∥2→∞ +
∥SQ∥2→∞∥E∥2

σ2r(S)2

≤ ∥E(Q− Q̂WQ̂)∥2→∞ +
∥SQ∥2→∞∥E∥

2σ2r(S)
,

where the first inequality follows from the triangular inequality, the second inequality follows
by the relation between the two-to-infinity norm and the sin theorem (see e.g., [12]). The third
inequality follows from Davis-Kahan’s theorem. The fourth inequality follows under the condition
∥E∥ ≤ σ2r(S)/2. We finally obtain

∥Q− Q̂WQ̂∥2→∞ ≤ 1

σ2r(S)

(
5∥SQ∥2→∞∥E∥

σ2r(S)
+ 3∥EQ∥2→∞ + 2∥E(Q− Q̂WQ̂)∥2→∞

)
.

(33)

Note that in the above inequality, we can control ∥E∥ using Proposition 26 and ∥EQ∥2→∞ using
Proposition 27. However, the term ∥E(Q − Q̂WQ̂)∥2→∞ is not easy to control because E and

(Q − Q̂WQ̂) are dependent on each other in a non-trivial way. To control this term, we use the
leave-one-out analysis.

Step 3: Leave-one-out analysis. We define a matrix S̃(ℓ) ∈ R(n+m)×(n+m) as follows:

S̃
(ℓ)
i,j =

{
S̃i,j , if i ̸= ℓ or j ̸= ℓ

Si,j , otherwise

Then define Q̂(ℓ) ∈ Rn×2r as a matrix of eigenvectors corresponding to the 2r greatest (in absolute
value) eigenvalues of matrix S̃(ℓ). Define WŨ(ℓ) accordingly. We have

∥E(Q− Q̂WQ̂)∥2→∞ ≤ max
ℓ∈[n+m]

∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥2 + ∥E∥2∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F .

We have by Proposition 26 that

P (∥E∥ ≲ ∥M∥∞G) ≥ 1− δ

provided that

(C1) T ≥ c1
mn

m+ n
log3

(
e(m+ n)

δ

)
and where we define

G =

√
mn

T

(√
(m+ n) log

(
e(m+ n)

δ

)
+ log3/2

(
e(m+ n)

δ

))
.

Let us now introduce the event E1 as follows

E1 = {∥E∥ ≤ ∥M∥∞G} .
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Note that if the following condition holds

(C2) T ≥ c2(µκr)
2

(
(m+ n) log

(
e(m+ n)

δ

)
+ log3

(
e(m+ n)

δ

))
for c2 large enough then 16∥E∥ ≤ σr(M). Hence, under the event E1, using Lemma 31, we have

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F ≤
16∥Eℓ,:Q̂(ℓ)WQ̂(ℓ)∥2 + 16∥E∥∥Q̂WQ̂∥2→∞

σ2r(M)
,

which further gives by triangular inequality

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F ≤
16∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥2

σr(M)

+
16
(
∥Eℓ,:Q∥2 + ∥E∥∥Q− Q̂WQ̂∥2→∞ + ∥E∥∥Q∥2→∞

)
σr(M)

.

Now, by Proposition 27,

P
(
∥Eℓ,:(Q−Q(ℓ)WQ̂(ℓ))∥2 ≲ ∥M∥∞∥Q−Q(ℓ)WQ̂(ℓ)∥2→∞G

)
≥ 1− δ

as long as the same condition (C1) holds with c1 large enough. So let us introduce the event

E2 =
{
∥Eℓ,:(Q−Q(ℓ)WQ̂(ℓ))∥2 ≲ ∥M∥∞∥Q−Q(ℓ)WQ̂(ℓ)∥2→∞G

}
.

We further upper bound under the event E1 ∩ E2,

∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥2 ≲ ∥M∥∞
(
∥Q− Q̂WQ̂∥2→∞ + ∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F

)
G.

Note that, under the condition (C2) with c2 large enough, we can also obtain

16∥M∥∞
σr(M)

G ≤ 1

2

which entails that

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F ≤
32∥M∥∞∥Q− Q̂WQ̂∥2→∞

σr(M)
G

+
32(∥Eℓ,:Q∥+ ∥E∥∥Q− Q̂WQ̂∥2→∞ + ∥E∥∥Q∥2→∞)

σr(M)
.

To simplify the notation, let us define the three errors as

x = ∥Q− Q̂WQ̂∥2→∞,

y = ∥EQ∥2→∞ ≥ ∥Eℓ,:Q∥2,
z = ∥E∥∥Q∥2→∞.

We have

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F ≲

(
∥M∥∞G
σr(M)

+
∥E∥
σr(M)

)
x+

1

σr(M)
(y + z).

By plugging the above in the previous inequality, we get

∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥2 ≲ ∥M∥∞G
((

1 +
∥M∥∞G
σr(M)

+
∥E∥
σr(M)

)
x+

1

σr(M)
(y + z)

)
which entails finally

∥E(Q− Q̂WQ̂)∥2→∞ ≲

(
∥E∥
σr(M)

+
G∥M∥∞
σ1(M)

)
(y + z)

+ (∥E∥+ G∥M∥∞)

(
1 +

G∥M∥∞
σr(M)

+
∥E∥
σr(M)

)
x. (34)
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Step 4: Putting everything together. Combining the inequalities (33) and (34) gives

x ≤ C1

(
∥E∥
σr(M)

+
∥M∥∞G
σr(M)

)(
1 +

∥M∥∞G
σr(M)

+
∥E∥
σr(M)

)
x

+
C2

σr(M)

(
1 +

∥E∥
σr(M)

+
G∥M∥∞
σr(M)

)
y

+
C3

σr(M)

(
∥M∥
σr(M)

+
∥E∥
σr(M)

+
G∥M∥∞
σr(M)

)
z.

Under the events E1 and E2 and provided that the conditions (C1) and (C2) hold, for c1 and c2 are
large enough, we have

C1

(
∥E∥
σr(M)

+
∥M∥∞G
σr(M)

)(
1 +

∥M∥∞G
σr(M)

+
∥E∥
σr(M)

)
≤ 1

2
,(

1 +
∥E∥
σr(M)

+
G∥M∥
σr(M)

)
≤ 3,(

∥M∥
σr(M)

+
∥E∥
σr(M)

+
G∥M∥∞
σr(M)

)
≤
(

∥M∥
σr(M)

+ 2

)
.

Thus, we obtain

x ≤ 1

σr(M)

(
y +

∥M∥
σr(M)

z

)
.

We note that, under a similar conditions as before , we also have by Proposition 26 and Proposition
27 that

y ≲ ∥M∥∞∥Q∥2→∞G
z ≲ ∥M∥∞∥Q∥2→∞G

with probability at least 1− δ. Thus, we conclude after further simplifications that for some C > 0
large enough, we have

P
(
∥Q− Q̂WQ̂∥2→∞ ≤ C

∥M∥∥M∥∞
σr(M)2

∥Q∥2→∞G
)

≥ 1− δ

provided

T ≥ c(µ4κ2r2 + 1)(m+ n) log3
(
e(m+ n)

δ

)
,

with

G(n,m, T, δ) =
√
nm

T

(√
(n+m) log

(
e(n+m)

δ

)
+ log3/2

(
e(n+m)

δ

))
.

Step 5: Poisson approximation. To conclude, we now invoke Lemma 20 which entails that under
the true model (14), we have

P
(
∥Q− Q̂WQ̂∥2→∞ > C

∥M∥∥M∥∞
σr(M)2

∥Q∥2→∞G(n,m, T, δ)
)

≤ e
√
Tδ

provided T ≥ c(µ4κ2r2 +1)(m+ n) log3 (e(m+ n)/δ). By re-parametrizing with δ′ = e
√
Tδ, we

obtain

P
(
∥Q− Q̂WQ̂∥2→∞ > C

∥M∥∥M∥∞
σr(M)2

∥Q∥2→∞G(n,m, T, δ′/e
√
T )

)
≤ δ′,

again provided that T ≥ c(µ4κ2r2+1)(m+n) log3
(
e2(m+ n)

√
T/δ′

)
. Recalling that ∥Q∥2→∞ =

max(∥V ∥2→∞, ∥U∥2→∞), we immediately obtain the final result.
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Lemma 31. Under the notation used in the proof of Lemma 30, provided the condition ∥E∥ ≤
σ2r(S)/16, the following inequality holds:

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F ≤
16∥Eℓ,:Q̂(ℓ)WQ̂(ℓ)∥2 + 16∥E∥∥Q̂WQ̂∥2→∞

σ2r(S)

Proof of Lemma 31. We have

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F ≤ ∥Q̂Q̂⊤ − Q̂(ℓ)(Q̂(ℓ))⊤∥F ∥Q∥ ≤ 2∥(S̃ − S̃(ℓ))Q̂(ℓ)∥F
|σ2r(S̃(ℓ))− σ2r+1(S̃(ℓ))|

where the first inequality follows the elementary fact that ∥AB∥F ≤ ∥A∥F ∥B∥, and the second
inequality follows by Davis-Kahan. Now, by Weyl’s inequality, we have for all k ∈ [n + m],
|σk(S̃(ℓ))− σk(S)| ≤ ∥E(ℓ)∥ ≤ ∥E∥, where the error matrix E(ℓ) = S̃ℓ − S, and more precisely is
defined as follows:

E
(ℓ)
i,j =

{
Ei,j if i ̸= ℓ or j ̸= ℓ,

0 otherwise.

The crude inequality ∥E(ℓ)∥ ≤ ∥E∥ follows from the fact that ∥E(ℓ)∥ is equal to the operator norm
of a submatrix of E which will always be smaller than ∥E∥. Therefore, under the condition that
∥E∥ ≤ σ2r(S)/4, we have |σ2r(S̃(ℓ))− σ2r+1(S̃

(ℓ))| ≥ σ2r(S)/2. In summary, we obtain that

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F ≤ 4∥(S̃ − S̃(ℓ))Q̂(ℓ)∥F
σ2r(S)

.

Now, we further have by triangular inequality and by definition of S̃(ℓ):

∥(S̃ − S̃(ℓ))Q̂(ℓ)∥F = ∥(eℓEℓ,: + (E:,ℓ − Eℓ,ℓeℓ)e
⊤
ℓ )Q̂

(ℓ)∥F
≤ ∥Eℓ,:Q̂(ℓ)∥2 + ∥E:,ℓ − Eℓ,ℓeℓ∥2∥Q̂(ℓ)∥2→∞

≤ ∥Eℓ,:Q̂(ℓ)∥2 + ∥E∥2∥Q̂(ℓ)∥2→∞

≤ ∥Eℓ,:Q̂(ℓ)∥2 + 2∥E∥2∥Q̂(ℓ)(Q̂(ℓ))⊤Q∥2→∞

where the last inequality follows under the condition that ∥E∥ ≤ 2σ2r(S). Indeed, we have
under such condition that ∥Q̂(ℓ)∥2→∞ = ∥Q̂(ℓ)(Q̂(ℓ))⊤Q∥2→∞ + ∥Q̂(ℓ)(sgn((Q̂(ℓ))⊤Q⊤) −
(Q̂(ℓ))⊤Q)∥2→∞, and by Davis-Kahan’s inequality ∥sgn((Q̂(ℓ))⊤Q⊤)− (Q̂(ℓ))⊤Q∥ ≤ 2∥E(ℓ)∥2

(σ2r(S))2
≤

2∥E∥2

(σ2r(S))2
≤ 1

2 . Similarly, we also have ∥Eℓ,:Q̂(ℓ)∥2 ≤ 2∥Eℓ,:Q̂(ℓ)(Q̂(ℓ))⊤Q∥2.

Hence, we obtain:

∥(S̃ − S̃(ℓ))Q̂(ℓ)∥F ≤ 2∥Eℓ,:Q̂(ℓ)WQ̂(ℓ)∥2 + 2∥E∥(∥Q̂WQ̂∥2→∞ + ∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥2→∞)

Which entails under the condition that ∥E∥ ≤ σ2r(S)/16 that

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F ≤
8∥Eℓ,:Q̂(ℓ)WQ̂(ℓ)∥2 + 8∥E∥∥Q̂WQ̂∥2→∞

σ2r(S)
+

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥2→∞

2

After rearranging, we obtain

∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F ≤
16∥Eℓ,:Q̂(ℓ)WQ̂(ℓ)∥2 + 16∥E∥∥Q̂WQ̂∥2→∞

σ2r(S)

E.2 Subspace recovery for transition matrices

Lemma 32. Let Y ∈ Rn×n be a matrix of independent Poisson entries with Yi,j ∼
1
T Poisson(TMi,j), and let Û , V̂ be the matrices of left and right singular vectors of best r-rank
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approximation of Y . Let gδ be the function defined in (9). Conditioned on the events where
∥Y −M∥ ≤ c1σr(M), gδ(TM) log(ne/δ) ≤ c2Tσr(M),

√
∥M∥∞ log(ne/δ) ≤ c3

√
Tσr(M) for

some sufficiently small universal constants c1, c2, c3 > 0, we have, with probability at least 1− δ,

max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
≲

1

σr(M)

[
µ

√
r

n

(
σ1(M)

σr(M)
∥Y −M∥+ 1

T
gδ(TM) log

(ne
δ

))
+

√
r∥M∥∞

T
log
(ne
δ

)]
.

Proof. The proof follows similar steps as the proof of Theorem 4.2 in [14]. In order to apply the
leave-one-out technique, we first repeat the symmetric dilation trick as in Step 1 of proof of Lemma
30. We define

S =

[
0 M
M⊤ 0

]
(35)

and note that for matrix M with SVD M = UΣV ⊤, we have:

S =
1√
2

[
U U
V −V

] [
Σ 0
0 −Σ

]
1√
2

[
U U
V −V

]⊤
:= QDQ⊤.

We define S̃ as the symmetrized version of matrix Y , and let Q̂ ∈ Rn×2r be the matrix of eigenvectors
of the best 2r-rank approximation of S̃. Note that:

∥Q− Q̂(Q̂⊤Q)∥2→∞ = max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
.

We will also repeatedly use the properties (31). To keep the notation simple, define WQ̂ = Q̂⊤Q.
Thus, proving Lemma 32 is equivalent to showing:

∥Q− Q̂WQ̂∥2→∞

≲
1

σr(M)

[
∥Q∥2→∞(

σ1(M)

σr(M)
∥S̃ − S∥+ 1

T
gδ(TM) log

(ne
δ

)
) +

√
r∥M∥∞

T
log
(ne
δ

)]
with high probability. Define E = S̃ − S. Now, as in Lemma 33, we have:

∥Q− Q̂WQ̂∥2→∞ ≤ 1

σr(M)

(
4∥S̃Q∥2→∞∥E∥

σr(M)
+ ∥EQ∥2→∞ + 2∥S̃(Q− Q̂WQ̂)∥2→∞

)
(36)

under the assumption that ∥E∥ ≤ c1σr(M). Indeed, it is straightforward to show the same bounds
as in Lemma 4.14 in [14] - note that the boundedness assumption is not used in these lemmas. We
bound the three terms in Equation (36) as follows:

1. To bound the first term, we use:

∥S̃Q∥2→∞ ≤ ∥SQ∥2→∞ + ∥EQ∥2→∞ ≤ ∥Q∥2→∞∥S∥+ ∥EQ∥2→∞ (37)

where we first used the triangle inequality and then ∥SQ∥2→∞ = ∥QD∥2→∞ ≤ ∥Q∥2→∞∥S∥.

2. For the second term, according to Lemma 29, we obtain with probability at least 1− δ:

∥EQ∥2→∞ ≲
1

T

[
∥Q∥F

√
T∥M∥∞ log(ne/δ) + gδ(TM) log(ne/δ)∥Q∥2→∞

]
. (38)

Moreover, we will use ∥Q∥F ≤
√
2r and ∥Q∥2→∞ ≤ µ

√
r
n , which follow from the low-rank and

incoherence assumptions.

3. Finally, regarding the last term in Equation (36), we split it using the triangle inequality as follows:

∥S̃(Q− Q̂WQ̂)∥2→∞ ≤ ∥S(Q− Q̂WQ̂)∥2→∞ + ∥E(Q− Q̂WQ̂)∥2→∞,

and from Step 3 of proof of Theorem 4.2 in [14] we have:

∥S(Q− Q̂WQ̂)∥2→∞ ≤ ∥Q∥2→∞∥S∥∥Q⊤(Q− Q̂WQ̂)∥ ≲ ∥Q∥2→∞∥S∥ ∥E∥2

σ2
r(M)

, (39)
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where we used ∥Q⊤(Q − Q̂WQ̂)∥ = ∥ sinΘ(Q, Q̂)∥2. The remaining of the proof consists in

bounding ∥E(Q − Q̂WQ̂)∥2→∞ = maxℓ=1,...,n ∥Eℓ,:(Q − Q̂WQ̂)∥. First note that the matrix

Q− Q̂WQ̂ depends on E and thus we cannot apply Lemma 29 immediately. Instead, we will use the

leave-one-out method, and define a matrix S̃(ℓ) ∈ Rn×n as follows:

S̃
(ℓ)
i,j =

{
S̃i,j , if i ̸= ℓ or j ̸= ℓ

Si,j , otherwise

Then define Q̂(ℓ) ∈ Rn×2r as a matrix of eigenvectors corresponding to 2r greatest (in absolute
value) eigenvalues of matrix S̃(ℓ). Define WQ̂(ℓ) accordingly. Then we have:

∥E(Q− Q̂WQ̂)∥2→∞ ≤ 2 max
1≤ℓ≤n

{
∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥, ∥Eℓ,:(Q̂(ℓ)WQ̂(ℓ) − Q̂WQ̂)∥

}
. (40)

(3a) Since Eℓ,: is statistically independent of Q− Q̂(ℓ)WQ̂(ℓ) , the first term from (40) can be bounded
according to Lemma 29 for any 1 ≤ ℓ ≤ n as follows:

∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥ ≲
1

T

[
∥Q− Q̂(ℓ)WQ̂(ℓ)∥F

√
T∥M∥∞ log

(ne
δ

)
+ gδ(TM) log

(ne
δ

)
∥Q− Q̂(ℓ)WQ̂(ℓ)∥2→∞

]
with probability at least 1− δ. After applying the triangle inequality to the second term and using
∥ · ∥2→∞ ≤ ∥ · ∥F , we get:

∥Q− Q̂(ℓ)WQ̂(ℓ)∥2→∞ ≤ ∥Q− Q̂WQ̂∥2→∞ + ∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F . (41)

Thus, combining the last two inequalities yields:

∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥

≲ ∥Q− Q̂WQ̂∥F
√
T−1∥M∥∞ log

(ne
δ

)
+ T−1gδ(TM) log

(ne
δ

)
∥Q− Q̂WQ̂∥2→∞

+ ∥Q̂WQ̂ − Q̂(ℓ)WQ̂(ℓ)∥F
(√

T−1∥M∥∞ log
(ne
δ

)
+ T−1gδ(TM) log

(ne
δ

))
(42)

for all 1 ≤ ℓ ≤ n.

(3b) The second term from (40) can be bounded very roughly as follows:

∥Eℓ,:(Q̂(ℓ)WQ̂(ℓ) − Q̂WQ̂))∥ ≤ ∥E∥∥Q̂(ℓ)WQ̂(ℓ) − Q̂WQ̂∥F . (43)

Similar to the Step 2.2 in the proof of Theorem 4.2 in [14], we have:

∥Q̂(ℓ)WQ̂(ℓ) − Q̂WQ̂∥F ≤ 16

σr(M)
(∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥+ ∥EQ∥2→∞

+ ∥E∥∥Q− Q̂(ℓ)WQ̂(ℓ)∥2→∞ + ∥E∥∥Q∥2→∞).

Applying again the inequality (41) and moving the term ∥Q̂(ℓ)WQ̂(ℓ) − Q̂WQ̂∥F to the left side of
inequality, we get under assumption ∥E∥ ≤ c1σr(M) that:

∥Q̂(ℓ)WQ̂(ℓ) − Q̂WQ̂∥F ≲
1

σr(M)
(∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥+ ∥EQ∥2→∞

+ ∥E∥∥Q− Q̂WQ̂∥2→∞ + ∥E∥∥Q∥2→∞). (44)

After substitution of the results from (37), (38), (39), (40), (42), (43) and (44) into Equation (36) and
using assumptions stated in the lemma, we obtain the statement of the lemma.
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E.3 Error decomposition in the two-to-infinity norm

Below, we present a decomposition for the error of subspace recovery in the norm ∥ · ∥2→∞. We
borrow this result from [14] and provide its proof for completeness.

Lemma 33 (Lemma 4.16 in [14]). Let S, S̃ ∈ Rn×n be symmetric matrices and assume that S and
S̃ are of rank r. Let Q, Q̂ ∈ On×r be the corresponding r singular vectors of S and S̃, respectively.
Denote E = S̃ − S. Under the condition ∥E∥ ≤ σr(S)/2, we have:

∥Q− Q̂Q̂⊤Q∥2→∞ ≤ 4∥S̃Q∥2→∞∥E∥
(σr(S))2

+
∥EQ∥2→∞

σr(S)
+

2∥S̃(Q− Q̂Q̂⊤Q)∥2→∞

σr(S)

Proof of Lemma 33. Since S is a symmetric matrix of rank r, by SVD we write S = QΣQ⊤, where
the matrix Σ = diag(σ1(S), . . . , σr(S)). For ease of notations, let us further denote W = Q̂Q⊤. We
have

∥Q− Q̂Q̂⊤Q∥2→∞ = ∥SQΣ−1 − Q̂W∥2→∞

≤ ∥S̃QΣ−1 − Q̂W∥2→∞ + ∥EQΣ−1∥2→∞

≤ ∥S̃Q− Q̂WΣ∥2→∞

σr(S)
+

∥EQ∥2→∞

σr(S)

Now, we focus on the term ∥S̃Q− Q̂WΣ∥2→∞. To that end, we first establish the identity

Q̂WΣ = Q̂Q̂⊤QΣ

= Q̂Q̂⊤SQ

= Q̂Q̂⊤ŜQ+ Q̂Q̂⊤EQ

= Q̂Σ̂Q̂⊤Q+ Q̂Q̂⊤EQ

= S̃Q̂Q̂⊤Q+ Q̂Q̂⊤EQ

where we use the identities SQ = QΣ, Q̂⊤S̃ = Σ̂Q̂⊤, and Q̂Σ̂Q̂⊤ = S̃Q̂Q̂⊤. Then, we observe that

∥S̃Q− Q̂WΣ∥2→∞ = ∥S̃Q− S̃Q̂Q̂⊤Q+ Q̂Q̂⊤EQ∥2→∞

≤ ∥S̃(Q− Q̂Q̂⊤Q)∥2→∞ + ∥Q̂Q̂⊤EQ∥2→∞

Next, we note that when ∥E∥ ≤ σr(S)/2, we have

∥Q̂Q̂⊤EQ∥2→∞ = ∥S̃Q̂Σ̂−1Q̂⊤EQ∥2→∞

≤ ∥S̃Q̂∥2→∞∥Σ̂−1∥∥Q̂⊤∥∥E∥∥Q∥

≤ ∥S̃Q̂sgn(Q̂⊤Q)∥2→∞∥E∥
σr(S̃)

.

At this point, we try to bound ∥S̃Q̂∥2→∞ and σr(S̃), under the condition ∥E∥ ≤ σr(S)/2. First,
we can easily see by Weyl’s inequality we have |σr(S̃) − σr(S)| ≤ ∥E∥, which entails under the
assumed condition that σr(S̃) ≥ σr(S)/2. Next, we observe:

∥S̃Q̂∥2→∞ = ∥S̃Q̂sgn(Q̂⊤Q)∥2→∞

≤ ∥S̃Q̂Q̂⊤Q∥2→∞ + ∥S̃Q̂∥2→∞∥sgn(Q̂⊤Q)− Q̂⊤Q∥

≤ ∥S̃Q̂Q̂⊤Q∥2→∞ +
2∥S̃Q̂∥2→∞∥E∥2

σr(S)2

≤ ∥S̃Q̂Q̂⊤Q∥2→∞ +
∥S̃Q̂∥2→∞

2
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where we used the Davis-Kahan’s inequality and properties of the sgn(·), to upper bound
∥sgn(Q̂⊤Q)− Q̂⊤Q∥ ≤ ∥ sin(Q̂,Q)∥2 ≤ 2∥E∥2/(σr(S))2. Thus, leading to:

∥S̃Q̂∥2→∞ ≤ 2∥S̃Q̂Q̂⊤Q∥2→∞

Moving forward we obtain:

∥Q̂Q̂⊤EQ∥2→∞ ≤ 4∥S̃Q̂Q̂⊤Q∥2→∞∥E∥
σr(S)

≤
4
(
∥S̃(Q̂Q̂⊤Q−Q)∥2→∞ + ∥S̃Q∥2→∞

)
∥E∥

σr(S)

≤ 2∥S̃(Q̂Q̂⊤Q−Q)∥2→∞ +
4
(
∥S̃Q∥2→∞

)
∥E∥

σr(S)

Now, putting everything together we conclude that:

∥Q− Q̂Q̂⊤Q∥2→∞ ≤ 2∥S̃(Q̂Q̂⊤Q−Q)∥2→∞

σr(S)
+

4∥S̃Q∥2→∞∥E∥
(σr(S))2

+
∥EQ∥2→∞

σr(S)
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F Row-wise and entry-wise matrix estimation errors

In this appendix, we provide a series of results about quantifying the matrix estimation error using
different norms. It is important to note that all these results require a control of the error in the
two-to-infinity norm, which in turn requires a subspace recovery guarantee in the two-to-infinity norm.
Lemmas 35 and 37 are specific to our analysis for the estimation of the transition matrices. Lemmas
34 and 36 are common to the analysis of both the estimation of reward matrices and transition
matrices. The results presented in this appendix are used in the proofs of the main results, presented
in Appendix B.

F.1 Bounding ∥M − M̂∥2→∞

Lemma 34. Let M,M̂ be as in §2. Assume that there exists a sufficiently small universal constant
c1 > 0 such that ∥M − M̃∥ ≤ c1σr(M). Then, there exists a universal constant c2 > 0 such that

∥M̂ −M∥2→∞ ≤ c2σ1(M)

[
∥U − Û(Û⊤U)∥2→∞ + ∥U∥2→∞

∥M̃ −M∥
σr(M)

]
.

Proof. We start by using definition of M̂ as a projection of matrix M̃ , and then use the triangle
inequality and the inequality (3) to obtain:

∥M̂ −M∥2→∞ = ∥ΠÛM̃ −ΠUM∥2→∞

= ∥(ΠÛ −ΠU )(M̃ −M) + ΠU (M̃ −M) + (ΠÛ −ΠU )M∥2→∞

≤ ∥(ΠÛ −ΠU )(M̃ −M)∥2→∞ + ∥ΠU (M̃ −M)∥2→∞ + ∥(ΠÛ −ΠU )M∥2→∞

≤ ∥ΠÛ −ΠU∥2→∞(∥M̃ −M∥+ ∥M∥) + ∥ΠU∥2→∞∥M̃ −M∥. (45)

Moreover, we note that ∥ΠU∥2→∞ = ∥U∥2→∞ (refer to Proposition 6.6 in [12]). In the remaining
of the proof, we upper bound ∥ΠÛ −ΠU∥2→∞ from (45). For any orthogonal matrix R ∈ Or×r, we
have

∥ΠÛ −ΠU∥2→∞ = ∥Û Û⊤ − UU⊤∥2→∞

= ∥ÛRR⊤Û⊤ − UR⊤Û⊤ + UR⊤Û⊤ − UU⊤∥2→∞

≤ ∥ÛRR⊤Û⊤ − UR⊤Û⊤∥2→∞ + ∥UR⊤Û⊤ − UU⊤∥2→∞

≤ ∥ÛR− U∥2→∞∥R⊤Û⊤∥+ ∥U∥2→∞∥R⊤Û⊤ − U⊤∥
≤ ∥U − ÛR∥2→∞ + ∥U∥2→∞∥U − ÛR∥. (46)

Recall the definition of sgn function given in the notation presented in §1 and choose the matrix R as
R = sgn(Û⊤U). For this choice of R we have according to Davis-Kahan’s theorem (Corollary 2.8
in [14]):

∥U − ÛR∥ ≤
√
2∥ sinΘ(Û , U)∥ ≤ 2∥M − M̃∥

σr(M)
. (47)

Define the matrix WÛ = Û⊤U . We use the facts that

∥U − ÛR∥2→∞ ≤ ∥U − ÛWÛ∥2→∞ + ∥Û∥2→∞∥WÛ −R∥ (48)

and that WÛ is very close to R according to the proof of Lemma 4.15 in [14] to show:

∥WÛ −R∥ = ∥Û⊤U − sgn(Û⊤U)∥ = ∥ sinΘ(Û , U)∥2 ≤ 2∥M − M̃∥2

σ2
r(F )

. (49)

We also have σi(R) = 1 for i ∈ [r] and according to Weyl’s inequality σmin(WÛ ) ≥ σmin(R) −
∥WÛ −R∥ = 1−∥WÛ −R∥. Combining these results under assumption ∥M − M̃∥ < σr(M)/

√
2

we obtain:

∥W−1

Û
∥ =

1

σmin(WÛ )
≤ 1

1− ∥WÛ −R∥
≤ 1

1− 2∥M−M̃∥2

σ2
r(M)

.
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Thus:

∥Û∥2→∞ ≤ ∥ÛWÛ∥2→∞∥W−1

Û
∥ ≤ 1

1− 2∥M−M̃∥2

σ2
r(M)

(∥U∥2→∞ + ∥U − ÛWÛ∥2→∞). (50)

Combining Equations (48), (49), (50) we get:

∥U − ÛR∥2→∞ ≤ 1

1− 2∥M−M̃∥2

σ2
r(M)

(∥U − ÛWÛ∥2→∞ +
2∥M − M̃∥2

σ2
r(M)

∥U∥2→∞)

and combining the last equality with (46) and (47), we have

∥ΠÛ −ΠU∥2→∞ ≤
∥U − ÛWÛ∥2→∞

1− 2∥M−M̃∥2

σ2
r(M)

+

 2∥M−M̃∥2

σ2
r(M)

1− 2∥M−M̃∥2

σ2
r(M)

+
2∥M − M̃∥
σr(M)

 ∥U∥2→∞. (51)

Finally, substituting the obtained bound into Equation (45) and using assumption ∥M − M̃∥ ≤
c1σr(M) for simplification, we obtain the statement of the lemma.

F.2 Bounding ∥P − P̂∥1→∞

Lemma 35. Let P, P̂ be as in Model II in §2. We have:

∥P̂ − P∥1→∞ ≤ 2

√
n∥M̂ −M∥2→∞

minj∈[n] ∥Mj,:∥1
.

Proof. Starting with the definition of P̂ , we get:

∥P̂ − P∥1→∞ = max
i∈[n]

∥P̂i,: − Pi,:∥1 = max
i∈[n]

∥∥∥∥∥ (M̂i,:)+

∥(M̂i,:)+∥1
− Mi,:

∥Mi,:∥1

∥∥∥∥∥
1

≤ 2max
i∈[n]

∥M̂i,: −Mi,:∥1
∥Mi,:∥1

≤ 2

√
nmaxi∈[n] ∥M̂i,: −Mi,:∥

minj∈[n] ∥Mj,:∥1
,

where the first inequality follows from Lemma 2 in [63] and the second by equivalence of norms.
Moreover, note that the above inequality holds even in the case when ∥(M̂i,:)+∥1 = 0 (and thus
P̂i,: =

1
n1n), but the bound is vacuous in this case.

F.3 Bounding ∥M − M̂∥∞

Lemma 36. Let M,M̂ be as in §2. Assume that there exists a sufficiently small universal constant
c1 > 0 such that ∥M − M̃∥ ≤ c1σr(M). Then, there exists a universal constant c2 > 0 such that

∥M̂ −M∥∞ ≤ c2∥M∥2→∞

(
∥M − M̃∥
σr(M)

∥V ∥2→∞ + ∥V − V̂ WV̂ ∥2→∞

)
+ c2∥M − M̂∥2→∞(∥V ∥2→∞ + ∥V − V̂ WV̂ ∥2→∞).

Proof. Similarly to the decomposition leading to Equation (45), we can upper bound the infinity
norm error easily from the following decomposition:

∥M̂ −M∥∞ = ∥M̂ΠV̂ −MΠV ∥∞
≤ ∥M̂∥2→∞∥ΠV̂ −ΠV ∥2→∞ + ∥M̂ −M∥2→∞∥ΠV ∥2→∞

≤ (∥M̂ −M∥2→∞ + ∥M∥2→∞)∥ΠV̂ −ΠV ∥2→∞ + ∥M̂ −M∥2→∞∥V ∥2→∞,
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where we used the inequality (4) together with the triangle inequalities and the fact that projection
matrices are symmetric. To bound ∥ΠV̂ −ΠV ∥2→∞, we use the same approach as that used in (51)
(just replacing U by V ), and we obtain:

∥ΠV̂ −ΠV ∥2→∞ ≤
∥V − V̂ WV̂ ∥2→∞

1− 2∥M−M̃∥2

σ2
r(M)

+

 2∥M−M̃∥2

σ2
r(M)

1− 2∥M−M̃∥2

σ2
r(M)

+
2∥M − M̃∥
σr(M)

 ∥V ∥2→∞.

F.4 Bounding ∥P − P̂∥∞

Lemma 37. Let P, P̂ be as in Model II in §2. Assume that D = mini∈[n] ∥Mi,:∥1 > 0. If
∥M̂ −M∥1→∞ ≤ 1

2D, then

∥P̂ − P∥∞ ≤ 2
∥M̂ −M∥∞

D
+ 2

√
n∥M∥∞
D2

∥M̂ −M∥2→∞.

Proof. First note that for any i ∈ [n]:∣∣∣∥(M̂i,:)+∥1 − ∥Mi,:∥1
∣∣∣ ≤ ∥(M̂i,:)+ −Mi,:∥1 ≤ ∥M̂i,: −Mi,:∥1 ≤ ∥Mi,:∥1

2
, (52)

where the first inequality follows from the reverse triangle inequality, the second from |max(0, x)−
y| ≤ |x − y| for all y > 0 and x ∈ R, and the last inequality follows from the assumption in the
lemma. This implies that ∥(M̂i,:)+∥1 > 0 for all i ∈ [n], which further implies that P̂ is defined by:
for all i ∈ [n],

P̂i,: = (M̂i,:)+/∥(M̂i,:)+∥1. (53)

Furthermore, we have for all i, j = 1, . . . , n,

|P̂i,j − Pi,j | =

∣∣∣∣∣ (M̂i,j)+

∥(M̂i,:)+∥1
− Mi,j

∥Mi,:∥1

∣∣∣∣∣ ≤
∣∣∣∣∣ M̂i,j

∥(M̂i,:)+∥1
− Mi,j

∥Mi,:∥1

∣∣∣∣∣
≤ 1

∥Mi,:∥1

∣∣∣M̂i,j −Mi,j

∣∣∣+ |M̂i,j |

∣∣∣∣∣ 1

∥(M̂i,:)+∥1
− 1

∥Mi,:∥1

∣∣∣∣∣
=

1

∥Mi,:∥1

∣∣∣M̂i,j −Mi,j

∣∣∣+ |M̂i,j |
∥Mi,:∥1

∣∣∣∣∣∣ 1

1 +
∥(M̂i,:)+∥1−∥Mi,:∥1

∥Mi,:∥1

− 1

∣∣∣∣∣∣
=

1

∥Mi,:∥1

∣∣∣M̂i,j −Mi,j

∣∣∣+ |M̂i,j |
∥Mi,:∥1

φ

(
∥(M̂i,:)+∥1 − ∥Mi,:∥1

∥Mi,:∥1

)
where we define φ(x) = |x/(1 + x)| for all x ∈ R\{−1}. Note that if |x| < 1/2, then φ(x) ≤ 2|x|,
which combined with (52) gives

|P̂i,j − Pi,j | ≤
1

∥Mi,:∥1

∣∣∣M̂i,j −Mi,j

∣∣∣+ 2|M̂i,j |
∥Mi,:∥1

∣∣∣∣∣∥(M̂i,:)+∥1 − ∥Mi,:∥1
∥Mi,:∥1

∣∣∣∣∣
≤ 1

∥Mi,:∥1

∣∣∣M̂i,j −Mi,j

∣∣∣+ 2

∥Mi,:∥21

(∣∣∣M̂i,j −Mi,j

∣∣∣+ |Mi,j |
)
∥M̂i,: −Mi,:∥1.

Using the assumption ∥M̂ −M∥1→∞ ≤ 1
2 mini∈[n] ∥Mi,:∥1 again, we can group first two terms,

and then use ∥M̂ −M∥1→∞ ≤
√
n∥M̂ −M∥2→∞ to get the statement of the lemma.

45



G Low-rank bandits: proofs of results from Section 4

G.1 Gap-dependent guarantees

Proof of Theorem 7. First, we prove the result corresponding the best entry identification problem.
We proceed in several steps.

Step 1: entry-wise concentration. We can easily verify that for all ℓ ≥ 1, for all (i, j) ∈ [m]× [n],
we have

|∆̂(ℓ)
i,j −∆i,j | ≤ 2∥M̂ (ℓ) −M⋆∥∞.

Therefore, applying Theorem 1, we have, for δ > 0, and Tℓ ≥ c1(m+n) log3((e2(m+n)(mn)/δℓ),

P

(
|∆̂i,j −∆i,j | > 2C1

√
e(m+ n)

Tℓ
log3

(
e(m+ n)mnTℓ

δℓ

))
≤ δℓ
mn

for some c1, C1 > 0 sufficiently large. In particular, we can choose C1 = C(µ11/2κ2r1/2 +
µ3κr3/2(m+n)/

√
mn), and c1 = cµ4κ2r2, but under a homogeneous reward matrix these constants

are Θ(1). Thus, by a union bound and always under the same conditions, we have

P

(
max

(i,j)∈[m]×[n]
|∆̂i,j −∆i,j | > 2C1

√
e(m+ n)

Tℓ
log3

(
e(m+ n)mnTℓ

δℓ

))
≤ δℓ.

Next, we wish to choose Tℓ so that we have

P
(
max
i,j

|∆̂i,j −∆i,j | ≤ 2−(ℓ+2)

)
≥ 1− δℓ. (54)

Note that in order for the above guarantee to hold, it is sufficient to have:

Tℓ ≥ c1(m+ n) log3
(
e2(m+ n)(mn)

δℓ

)
,

Tℓ ≥ 2
√
eC2

1 (m+ n)22(ℓ−2) log3
(
e(m+ n)(mn)

δℓ

)
.

This can be achieved if we choose

Tℓ =

⌈
C32

2(ℓ−2)(m+ n) log3
(
22(ℓ−2)(m+ n)

δℓ

)⌉
, (55)

for some positive constant C3 > 0 large enough which can be determined explicitly and only depend
on c1, C1. Indeed, this can be deduced from the basic fact that if T 1/3

ℓ ≥ 2a log(2a) + 2b, then
T

1/3
ℓ ≥ a log(T

1/3
ℓ ) + b. We spare the reader these tedious calculations and only argue that such C3

exists and can be computed explicitly.

Step 2: Good events. We define Sℓ =
{
(i, j) ∈ [n]× [m] : ∆i,j ≤ 2−ℓ

}
and the good events under

which we correctly find the best entry as

Eℓ = {Aℓ+1 ⊆ Sℓ+1} ∩ {(i⋆, j⋆) ∈ Aℓ+1}.

We show that the good event Eℓ happens with high probability conditionally on E1, . . . , Eℓ−1. Observe
that by independence of the entries sampled at epoch ℓ from those of the previous epochs, we have
based on (54)

P
(
max
i,j

|∆̂i,j −∆i,j | ≤ 2−(ℓ+2)
∣∣∣Eℓ−1, . . . , E1

)
≥ 1− δℓ

Now, conditionally on Eℓ−1, . . . , E1, under the event that maxi,j |∆̂i,j −∆i,j | ≤ 2−(ℓ+2), if (i, j) ∈
Scℓ+1 ∩ Aℓ+1 then

∆̂
(ℓ)
i,j ≥ ∆i,j − 2−(ℓ+2) > 2−(ℓ+1) − 2−(ℓ+2) = 2−(ℓ+2).
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Thus, we have

P
(
Aℓ+1 ⊆ Sℓ+1

∣∣∣Eℓ−1, . . . , E1
)
≥ P

(
max
i,j

|∆̂i,j −∆i,j | ≤ 2−(ℓ+2)
∣∣∣Eℓ−1, . . . , E1

)
≥ 1− δℓ.

Furthermore, note that under the event maxi,j |∆̂i,j−∆i,j | ≤ 2−(ℓ+2), we clearly have that ∆̂i⋆,j⋆ ≤
2−(ℓ+2) and since (i⋆, j⋆) ∈ Aℓ conditionally on Eℓ−1 we conclude that

P
(
Eℓ
∣∣∣Eℓ−1, . . . , E1

)
≥ P

(
max
i,j

|∆̂i,j −∆i,j | ≤ 2−(ℓ+2)
∣∣∣Eℓ−1, . . . , E1

)
≥ 1− δℓ

Step 3: Sample complexity. First, we remark that when ℓ = ⌈log2(1/∆min)⌉, we have Sℓ =
{(i⋆, j⋆)}. Therefore, under the event

E1 ∩ · · · ∩ E⌈log2(1/∆min)⌉

the algorithm will stop after τ rounds, and recommend the optimal (i⋆, j⋆), where

τ ≤
⌈log2(1/∆min)⌉∑

ℓ=1

Tℓ

≤
⌈log2(1/∆min)⌉∑

ℓ=1

⌈
C32

2(ℓ−2)(m+ n) log3
(
22(ℓ−2)(m+ n)

δℓ

)⌉

≤
⌈log2(1/∆min)⌉∑

ℓ=1

⌈
C3

(m+ n)

∆2
min

log3
(
(m+ n)⌈log2 (1/∆min)⌉2

∆2
minδ

)⌉
≤ log2

(
1

∆min

)⌈
C3

(m+ n)

∆2
min

log3
(
(m+ n)⌈log2 (1/∆min)⌉2

∆2
minδ

)⌉
≤ ψ(n,m, δ) := C4

(m+ n) log (e/∆min)

∆2
min

log3
(
e(m+ n) log (e/∆min)

∆minδ

)

where we recall the definition of Tℓ in (55), that δℓ = δ/ℓ2, and where C4 is a large enough universal
constant. Hence, we have

P ((iτ , jτ ) = (i⋆, j⋆), τ ≤ ψ(n,m, δ)) ≥ P

⌈log2(1/∆min)⌉⋂
ℓ=1

Eℓ

 ≥ 1− δ. (56)

This conclude the proof of the guarantee for the best entry identification. Note that we can immediately
conclude from the above guarantee (56) that the sample complexity of SME-AE(1/Tα) for all T ≥ 1,
satisfies E[τ ∧ T ] ≤ ψ(n,m, T−α) + T 1−α. Indeed, we have

E[τ ∧ T ] = E[(τ ∧ T )1{τ≤ψ(n,m,T−α)}] + E[(τ ∧ T )1{τ>ψ(n,m,T−α)}]

≤ ψ(n,m, T−α) + TP(τ > ψ(n,m, T−α))

≤ ψ(n,m, T−α) + T 1−α,

where the upper bound on the probability follows from (56) with δ = 1/Tα.
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Next, we turn our attention to proving the regret upper bound. We define Egood = {(̂ıτ , ȷ̂τ ) =
(i⋆, j⋆), τ ≤ ψ(n,m, 1/T 2)}. We have

Rπ(T ) = TMi⋆,j⋆ − E

[
T∑
t=1

Miπt ,j
π
t

]

= E

[
T∑
t=1

(Mi⋆,j⋆ −Miπt ,j
π
t
)1{Egood}

]
+ E

[
T∑
t=1

(Mi⋆,j⋆ −Miπt ,j
π
t
)1{Ec

good}

]

≤ E

[
T∑
t=1

(Mi⋆,j⋆ −Miπt ,j
π
t
)1{τ≤ψ(n,m,T−2)}

]
+∆maxTP(Ecgood)

≤ E

[ ∞∑
t=1

(Mi⋆,j⋆ −Miπt ,j
π
t
)1{τ∧ψ(n,m,T−2)>t}

]
+

∆max

T

≤ E

[ ∞∑
t=1

∆̄1{τ∧ψ(n,m,T−2)>t}

]
+

∆max

T

≤ ∆̄ψ(n,m, T−2) +
∆max

T

where in the second to last inequality, we used the tower rule together with the observation that
E[(Mi⋆,j⋆−Miπt ,j

π
t
)1{τ∧ψ(n,m,T−2)>t}|Ft−1] = ∆̄1{τ∧ψ(n,m,T−2)>t} where Ft−1 is the σ-algebra

defined by the observations up to time t− 1. This concludes the proof.

G.2 Gap-independent guarantees

An immediate consequence of the regret bound in Theorem 7 is that we can have a gap-independent
bound under some additional assumption. Let us define ζ = ∆max/∆min, then the regret bound
becomes

Rπ(T ) ≤ ζC4(m+ n) log (e/∆min)

∆min
log3

(
e(m+ n) log (e/∆min)T

2

∆min

)
+

∆max

T
. (57)

At the same time, we also have the worst case bound

Rπ(T ) ≤ ζ∆minT. (58)

Taking the best of the two bounds (57) and (58) with the worst case choice for ∆min, we get

Rπ(T ) = Õ
(
ζ
√

(n+m)T log2((n+m)T )
)

where the Õ hides additional log-log terms in m,n and T .
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H Related work

In this section, we first discuss the results for the estimation of a low-rank transition matrix presented
in [63]. We then give a more detailed account of the related work for low-rank bandits.

H.1 Low-rank transition matrix estimation

In [63], the authors try to estimate a low-rank transition matrix from the data consisting of a single
trajectory of the corresponding Markov chain. In a sense, this objective is similar to ours in Model
II(b). The main results of [63] are presented in Theorem 1. First observe that our results are more
precise since we manage to get entry-wise guarantees. Then it is also worth noting that, in the case of
homogenous transition matrices, the upper bound on ∥P̂ − P∥1→∞ stated in Theorem 1 in [63] are
similar to the upper bounds we establish in Corollary 6. However, to obtain such bounds, we believe
that it is necessary to first derive guarantees for the singular subspace recovery in the ℓ2→∞ norm, as
we do. The authors of [63] do not present any step with such guarantees for the estimation of the
singular subspaces. We explain below why this step is missing and where the analysis towards the
upper bound ∥P̂ − P∥1→∞ breaks in [63].

Proof of the guarantees for ∥P̂ − P∥1→∞ in [63]. Note that in [63], the authors use F in lieu of
M . We keep our notation M below to be consistent with the rest of the manuscript. In the proof of
Theorem 1 in [63], the authors use the following decomposition:

∥M̂i,: −Mi,:∥ ≤ ∥(M̂i,: −Mi,:)V ∥+ (∥M̂i,: −Mi,:∥+ ∥Mi,:∥)
C∥M̃ −M∥
σr(M)

. (59)

They apply concentration results on ∥(M̃ −M)V ∥2→∞ (Lemma 8) and ∥M − M̃∥ (Lemma 7) to
bound the two terms from above. More precisely, their proof includes (33) page 3217, a sequence of
inequalities where these concentration results are used. In the fifth line of (33), the authors apply (31),
the concentration result on ∥(M̃ −M)V ∥2→∞, but to bound ∥(M̂ −M)V ∥2→∞ instead. Replacing
M̂ by M̃ is however not possible, and the analysis breaks here.

Is there a simple solution? We argue below that it is not easy to solve the aforementioned issue in
the proof. We first claim that the two concentration bounds on ∥(M̃ −M)V ∥2→∞ and ∥M − M̃∥
are not sufficient for bounding the first term from Equation (59). Specifically, for any row i:

∥(M̂i,: −Mi,:)V ∥ = ∥(M̃i,:V̂ V̂
⊤ −Mi,:)V ∥ = ∥(M̃i,: −Mi,:)V + M̃i,:(V̂ V̂

⊤ − V V ⊤)V ∥,

and in order to analyze the second term inside the norm, we need to deal with dependence between
M̃ and V̂ . Doing this naively using the triangle inequality and Cauchy-Schwarz inequality yields:

∥(M̂ −M)V ∥2→∞ ≤ ∥(M̃ −M)V ∥2→∞ + ∥M̃(V̂ V̂ ⊤ − V V ⊤)V ∥2→∞

≤ ∥(M̃ −M)V ∥2→∞ + ∥M̃∥1→∞∥V − V̂ (V̂ ⊤V )∥2→∞. (60)

It is not clear how bounds on ∥(M̃−M)V ∥2→∞ and ∥M−M̃∥ imply a bound on ∥(M̂−M)V ∥2→∞
since term ∥V − V̂ (V̂ ⊤V )∥2→∞ does not seem to be directly bounded by these two terms. We can
think of bounding ∥V − V̂ (V̂ ⊤V )∥2 using Davis-Kahan’s inequality:

∥V − V̂ (V̂ ⊤V )∥2→∞ ≤ ∥V − V̂ (V̂ ⊤V )∥2 ≲
∥M − M̃∥
σr(M)

,

where we neglect the higher order term (see Equations (47),(48),(49)). Then, with the upper bound
on ∥M −M̃∥, we may obtain an upper bound on ∥P̂ −P∥1→∞ but that does not have a fast decaying
rate as that claimed in Theorem 1 in [63] or in our main theorems.

It is also worth noting that assuming proof of Theorem 1 in [63] holds or that more specifically, the
series of inequalities leading to Equation (33) holds, one could greatly simplify the singular subspace
recovery problem. In particular, since

∥M̃(V − V̂ V̂ ⊤V )∥2→∞ = ∥(M̃ − M̂)V ∥2→∞ ≤ ∥(M̂ −M)V ∥2→∞ + ∥EV ∥2→∞
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we can rewrite Equation (36) (wlog for symmetric matrix M with eigenvector matrix V ) as:

∥V − V̂ (V̂ ⊤V )∥2→∞

≤ 1

σr(M)

(
(2 +

4∥E∥
σr(M)

)∥EV ∥2→∞ + 2∥(M̂ −M)V ∥2→∞ +
4∥MV ∥2→∞∥E∥

σr(M)

)
. (61)

Now if (33) in [63] was true, we could use the correspoding bound of the critical term ∥(M̂ −
M)V ∥2→∞. This would not only greatly simplify proofs given in literature based on leave-one-
out-technique, but also extend their work to Markov dependent random variables (which has not
been done before). Lastly, note that we cannot skip estimation of singular subspaces by combining
Equation (60) and (61) since inequality 2∥M̃∥1→∞ < σr(M) does not hold in general.

H.2 Low rank bandits

Here we survey models for low-rank bandits that have emerged recently in the literature but that are
not directly related to our model. Nonetheless our guarantees can be exported there.

[31] considers a bi-linear bandit model which seems more general than that of considered [7]. Indeed,
they assume that the observed reward in round t after selecting a pair (x, z) ∈ X × Z , is x⊤Θz + ξt
where X ⊂ Rm and Z ⊂ Rn are finite. They assume that Θ ∈ Rm×n is low rank. If we assume
that X = {e1, . . . , em} and Z = {e1, . . . , en}, we then recover our model and that of [7] with
M = Θ. However, we can also argue that if we restrict our attention to m vectors from X , say
X ′ = {x1, . . . , xm}, that span Rm, and n vectors from Z , say Z ′ = {z1, . . . , zn}, that span Rn, then
in our model and that of [7], Mi,j = x⊤i Θzj , for all (i, j) ∈ [m]× [n]. Note that in this case, the rank
of M is equal to that of Θ. In fact, in the first phase of the algorithm proposed by [31], the authors
also restrict their attention to sets X ′ and Z ′ such that λmin(

∑m
i=1 xix

⊤
i ) and λmin(

∑m
i=1 ziz

⊤
i ) are

maximized. To simplify our exposition, we do not use the model presented by [31], instead we use
that of [7].

[34] considers a generalized bandit framework with low rank structure which is rather different than
the bandit framework we consider. There, the algorithm is based on the two stage idea introduced by
[31], which consists in first estimating the subspace, then reducing the problem to a low-dimensional
linear bandit with ambient dimension nm but with roughly n +m relevant dimensions. They are
able obtain a minimax regret scaling as (n+m)

√
T . It is worth noting that both these works do not

have gap-dependent bounds.

[27] is another relevant work. There, the authors consider a low-rank bandit problem similar to ours
but slightly more restrictive. At time t, they recommend an arm ρ(j)t for each user j, and they
observe the corresponds rewards. In other words they observe m entries per round, while in our case
we only observe one entry per round. They show that with an explore-then-commit algorithm, they
attain a regret of order polylog(n+m)T 2/3. Their regret guarantees require an entry-wise matrix
estimation guarantee with scaling comparable to ours. They use the result of Chen et al. [16] which
again is only valid for independent entries and does not account for repetitive sampling. To remedy
that they rely on ad-hoc pre-processing steps (see remarks 2, 3 and 4 in [27]). In our case, we believe
that our matrix estimation guarantees can be immediately used in their setting and this would lead to
a regret scaling of order (n+m)1/3T 2/3 with the more reasonable constraint that we only observe
one entry at each round. The authors also obtain an polylog(n +m)

√
T guarantee but for rank-1

reward matrices only.
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