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Zenith: Real-time Identification of DASH Encrypted Video Traffic
with Distortion
Anonymous Author(s)

ABSTRACT
Some video traffic carries harmful content, such as hate speech and
child abuse, primarily encrypted and transmitted through Dynamic
Adaptive Streaming over HTTP (DASH). Promptly identifying and
intercepting traffic of harmful videos is crucial in network regula-
tion. However, QUIC is becoming another DASH transport protocol
in addition to TCP. On the other hand, complex network environ-
ments and diverse playback modes lead to significant distortions
in traffic. The issues above have not been effectively addressed.
This paper proposes a real-time identification method for DASH
encrypted video traffic with distortion, named Zenith. We extract
stable video segment sequences under various itags as video finger-
prints to tackle resolution changes and propose a method of traffic
fingerprint extraction under QUIC and VPN. Subsequently, simulat-
ing the sequence matching problem as a natural language problem,
we propose Traffic Language Model (TLM), which can effectively
address video data loss and retransmission. Finally, we propose a
frequency dictionary to accelerate Zenith’s speed further. Zenith
significantly improves accuracy and speed compared to other SOTA
methods in various complex scenarios, especially in QUIC, VPN,
automatic resolution, and low bandwidth. Zenith requires traffic for
just half a minute of video content to achieve precise identification,
demonstrating its real-time effectiveness. The project page is avail-
able at https://anonymous.4open.science/r/Zenith-Anonymous.

CCS CONCEPTS
• Security and privacy → Web application security; Social
network security and privacy.

KEYWORDS
Video Regulation, Encrypted Video Traffic, Traffic Identification,
DASH, QUIC, Poor Network, Automatic Resolution

1 INTRODUCTION
Video traffic accounts for themost significant proportion of network
traffic on the Internet currently. As of 2022, the proportion of video
traffic to network traffic has reached 65.93%, an increase of 24%
compared to 2021 [34]. In 2023, 85.9% of video traffic underwent
encryption. Many harmful contents, such as hate speech and child
abuse, are disseminated through encrypted video traffic [13], posing
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significant challenges to network regulation. Research on encrypted
video traffic identification is of great significance to public safety.

Major video service providers like YouTube, Netflix, Hulu, and
Amazon Prime have consistently used DASH [50] for video traffic
transmission. To accelerate transmission speed, DASH has begun
employing the QUIC protocol for transmitting video data. Most of
the data packets in QUIC are fully authenticated and encrypted,
and the multiplexing mechanism of QUIC [19] also poses many
challenges. Most research on encrypted video traffic based onDASH
is limited to TCP transport, with relatively little research on QUIC
transport.

The complete video is divided into multiple video contents and
encoded into multiple video chunks using Variable Bit Rate (VBR)
[54] in DASH, then transmitted sequentially. VBR encoding dy-
namically allocates bit rates based on video content, resulting in a
unique video chunk sequence for a specific video under a specific
encoding. Previously, most research used video chunk sequences
as video fingerprints, but it is now discovered that video chunk
sequences are unstable [53]. The video chunk sequence for a spe-
cific video under a particular encoding scheme changes over time
due to network conditions, significantly affecting the accuracy of
encrypted video traffic identification.

Content Delivery Network (CDN) [21] has been consistently
utilized to enhance the smoothness of video in DASH. When con-
gestion occurs in the link between the client and the CDN node, it
automatically switches to a CDN node with better network quality.
Cross-transfer of video data across different streams may lead to
loss [55]. Additionally, under severe network fluctuations, video
data may be retransmitted [45]. The loss and retransmission of
video data significantly affect the accuracy of encrypted video traf-
fic identification, yet there is currently scarce research analyzing
these two critical challenges.

Most studies only focus on the simplest playback modes. Playing
videos under a VPN encapsulates video data with additional headers
[39], causing significant noise in encrypted video traffic. Resolution
switching also leads to severe distortion in encrypted video traffic
[28]. Methods for identifying encrypted video traffic that can adapt
to a broader range of video playback modes are more meaningful.

To tackle the above challenges, this paper proposes a real-time
identification method for DASH encrypted video traffic with dis-
tortion called Zenith. We extract video segment sequences under
various itags from video file headers as video fingerprints to con-
struct the fingerprint database and extract the video chunk sequence
from DASH encrypted video traffic transported by QUIC or TCP
under VPN as the traffic fingerprint. Using the random walk model,
we convert video fingerprints into video intermediate fingerprints
in the form of video chunk sequences and then match the traffic fin-
gerprint with each video intermediate fingerprint in the fingerprint
database. We simulate the sequence matching problem as a natural
language problem and propose TLM, which calculates the finger-
print similarity in two stages using the fingerprint sequence subset

https://anonymous.4open.science/r/Zenith-Anonymous
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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frequency. The identification result is the video corresponding to
the intermediate fingerprint with the highest similarity. Finally,
we propose a frequency dictionary to accelerate Zenith’s speed
further. The overview of Zenith is shown in Figure 1. In various
complex scenarios, we compare Zenith with other SOTA methods
[2, 46, 49, 53]. Zenith improves accuracy ranging from 2.77% to
35.38%, with an average of 18.43%. Additionally, Zenith’s speed
can reach 9.87 μs. Zenith achieves 97.32% accuracy with traffic for
just half a minute of video content, demonstrating its real-time
effectiveness.

2 Traffic Fingerprint Extraction

3 Identification

Viewer

Traffic

DASH

QUIC

TLS

upstream

chunk

Traffic Fingerprint
 (Video Chunk Sequence)chunk

ack=n

1 Video Fingerprint Extraction

Video File 
Headers

Video Fingerprints 
(Video Segment Sequence)

Intermediate Fingerprints 
(Video Chunk Sequence)

Videos

Random
Walk

ack=n

Correct

Video Text

Traffic Text

Frequency 
Dictionary

Fingerprint 
Database 
Similarity

Traffic Language Model

Video Sentence 
Frequency

Traffic Sentence 
Frequency

Text
Similarity

Stage 1 Stage 2

 Video Fingerprint
Database

Figure 1: The overview of Zenith.

The main contributions of this paper are as follows:

• We design the fingerprint database, ensuring the stability and
adaptability of video fingerprints across various resolutions.

• We extract the traffic fingerprint fromDASH encrypted video
traffic transported by QUIC or TCP under VPN, with errors
within ±50.

• We propose TLM, significantly alleviating issues such as
video data loss and retransmission. We additionally propose
a frequency dictionary to accelerate Zenith’s speed further.

• We compare Zenith with other SOTA methods in various
complex scenarios. Zenith improves the accuracy by 18.43%
on average and can reach 9.87 μs speed. Additionally, Zenith
achieves 97.32% accuracy with traffic for just half a minute
of video content.

The organization of this paper is as follows. Section 2 provides
an overview of the current research progress in DASH encrypted
video traffic identification. Section 3 elaborates on the process of
Zenith, a real-time identification method for DASH encrypted video
traffic with distortion. Section 4 conducts experimental evaluations
on the accuracy, real-time performance, and robustness of Zenith
from various aspects. Section 5 summarizes the research work of
this paper.

2 RELATEDWORK
Research on methods for identifying DASH encrypted video traffic
begins with extracting meaningful features from encrypted video
traffic [24]. Some studies focus on extracting time series features
to construct fingerprints for matching. Others extract multidimen-
sional features and then utilize deep learning models for training
and identification.

2.1 Time Series Method
The video chunks mentioned in Section 1 are the mainstream time
series features [12]. Matching video chunk sequences as fingerprints
primarily employs time series methods. Using the differential con-
cept, Gu et al. [10] proposed P-DTW for video fingerprint matching.
Wu et al. [46] transformed fingerprints through differential trans-
formation and aligned video fingerprints using a sliding window.
Yang et al. [49] converted video fingerprints into tensor form using
Markov chains and then matched them by comparing the similarity
between tensors. Reed et al. [32] constructed a fingerprint database
using kd-trees and calculated similarity based on the shape of the
video fingerprint’s time series for matching. However, it requires a
significant distinction between video chunks within the window.
Dubin et al. [6] used the peak burst bit rate of videos as video fin-
gerprints. Stikkelorum et al. [41] employed finite state machines for
matching, but the video chunk sequence must be continuous and
severely affected by missing and retransmitted video chunks. Song
et al. [40] extracted Media Presentation Description (MPD) files
from encrypted video traffic through a man-in-the-middle attack
and then extracted video fingerprints from MPD files. Zhang et
al. [53] extracted video segment sequences from the file header as
video fingerprints. Most of the above methods based on time series
utilize Dynamic Time Warping (DTW) or its variants to match [42].
These methods perform effectively in small-scale applications as
they do not rely on large datasets for training [30]. However, as
the network environment and playback modes become complex
and the scale of encrypted video traffic increases, the accuracy and
speed of these methods are significantly affected.

2.2 Deep Learning Method
Methods based on deep learning extract multidimensional features
from encrypted video traffic for training. Schuster et al. [35] ex-
tracted features from raw encrypted video traffic without process-
ing and utilized Convolutional Neural Network (CNN) as the model
for training. However, the model suffered significant distortion un-
der frequent CDN switching. Khan et al. [16] used Bits Per Second
(BPS) as a feature and employed Sequence Convolutional Neural
Network (SCNN) to learn the changes in BPS. Lotfollahi et al. [25]
still utilized video chunk sequences as features and trained using
CNN, but the one-dimensional features limited the model’s iter-
ative updates. Li et al. [22] experimented with CNN, Recurrent
Neural Network (RNN), and Multilayer Perceptron (MLP). Bae et
al. [2] extracted Data Center Interconnect (DCI) information from
encrypted video traffic input into CNN and then applied CNN to
Long Term Evolution (LTE) networks for identification. With much
training, deep learning models achieve high identification accuracy
but require substantial data [33]. Furthermore, they are unsuitable
for natural network environments because when new videos need
to be added to the model, the entire model needs to be retrained,
which requires significant resources.

3 METHODOLOGY
This section will elaborate on the core method Zenith of this paper.
Zenith is mainly divided into two parts: fingerprint extraction and
identification.
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3.1 Fingerprint Extraction
In Zenith, two types of fingerprints need to be extracted. One is
video fingerprints used to identify videos, which constitute the
fingerprint database. The other is the traffic fingerprint extracted
from encrypted video traffic, which serves as the identification
target and is matched against video fingerprints in the fingerprint
database. The following will detail the extraction methods for these
two types of fingerprints.

3.1.1 Video Fingerprint Extraction. As mentioned in Section 1,
video chunk sequences have been used as video fingerprints. How-
ever, it is now discovered that a video chunk is composed of several
video segments. The variability in the combination of these video
segments results in the instability of video chunk sequences [53].
Since video segment sequences are stable and invariant, we choose
to use video segment sequences as video fingerprints.

Video Segment Extraction. MPD [29] file is a streaming media
description file in DASH, which records various information about
video transmission, including video segment information. However,
video service providers no longer use MPD files. They embed this
information into the headers of video files [53]. Video files come in
two formats: fmp4 and webm. The Segment Index Box (sidx) and
cues are control elements within fmp4 and webm, respectively, used
to store relevant information about video segments and keyframes.
This facilitates random access during streaming media playback
and efficient data retrieval. The index values of video segment in-
formation in sidx and cues are located in the "adaptiveFormats"
field of the web element, where the "start" and "end" values in the
"indexRange" indicate the starting and ending indexes of video seg-
ment information. The "Reference_Size" in sidx and the difference
between the "Cluster Position" in two adjacent cues represent the
size of video segments. This enables the extraction of video segment
sequences as video fingerprints directly from the video header file.

Fingerprint Database Construction. The video fingerprint uniquely
corresponds to a specific video under a specific itag, where itag [4]
represents a combination of specific media type (video/audio), file
format (fmp4/webm), encoding method, resolution, frame rate, and
other factors. Different resolutions of the same video correspond to
different itags. To adapt to the playback mode of automatic resolu-
tion, when constructing the fingerprint database, video fingerprints
corresponding to various itags with higher occurrence rates for
each video are selected and added to the fingerprint database.

3.1.2 Traffic Fingerprint Extraction. Zenith uses stable video seg-
ment sequences as video fingerprints, but it is not feasible to extract
video segment sequences from encrypted video traffic [36]. This is
because the complete video is divided into multiple video contents
in DASH, and each video content corresponds to a video chunk in-
stead of a video segment. Therefore, only the video chunk sequence
can be extracted as the traffic fingerprint.

Video Chunk Extraction. DASH encrypted video traffic by TCP
transport is first divided into flows based on the five-tuple srcIP,
srcPort, dstIP, dstPort, Protocol. Then, the encrypted video traffic
is extracted from the traffic based on the Server Name Indication
(SNI) in the TCP handshake [48]. For example, the SNI field in

the encrypted traffic of YouTube and Netflix will contain "google-
video.com" and "netflix.com". In encrypted video traffic, packets
containing the same video or audio content have duplicate ACK
numbers [5], and contents are transmitted sequentially. Therefore,
the video chunk sequence can be extracted from the encrypted
video traffic based on the ACK number.

However, QUIC does not have an SNI field and the three-way
handshake process of TCP, so the video chunk sequence cannot
be divided by the ACK number. For DASH encrypted video traffic
by QUIC transport, traffic is divided into flows based on the five-
tuple. According to statistics, flows larger than 4MB have a 91.9%
probability of being encrypted video flows [8]. So, encrypted video
traffic is extracted from the encrypted traffic by judging the flow
size. Although one of the main features of QUIC is multiplexing,
under CDN services, QUIC transmits audio and video content in-
dependently in sequence [43]. The client first sends multiple small
and continuous request packets to the server, and then the server
sends video content to the client. Video content consists of multiple
1250-byte data packets. Therefore, the sum of the downlink data
packets sandwiched between two uplink data packets is the size
of a video chunk, from which the video chunk sequence can be
extracted from the encrypted video traffic.

Offset Correction. The video chunk extracted through the method
mentioned above is larger than the actual video chunk because the
extracted video chunk size includes the sizes of various headers
encapsulated within the data packets. Encrypted data packets un-
der TCP encapsulate HTTP headers and TLS headers [18], while
encrypted data packets under QUIC encapsulate HTTP/3 headers
and QUIC headers [38]. Additionally, if playing videos in a VPN,
there will be an extra encapsulation of VPN headers [17]. The en-
capsulation of video data under both TCP and QUIC transmitting
follows a similar pattern. Taking QUIC as an example, it is shown
in Figure 2.
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HTTP/3 Packet
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HTTP/3 
Packet
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Figure 2: Video data encapsulation and transmission process.
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The formulas can be obtained from Figure 2 as follows:

𝑐ℎ𝑢𝑛𝑘 + 𝐻𝑇𝑇𝑃/3_ℎ𝑒𝑎𝑑𝑒𝑟 = 𝑛 ·𝑄𝑈 𝐼𝐶_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 (1)

𝑄𝑈 𝐼𝐶_ℎ𝑒𝑎𝑑𝑒𝑟 +𝑄𝑈 𝐼𝐶_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑄𝑈 𝐼𝐶_𝑝𝑎𝑐𝑘𝑒𝑡 (2)

𝑛 ·𝑄𝑈 𝐼𝐶_𝑝𝑎𝑐𝑘𝑒𝑡 =
𝑚∑︁
𝑖

𝑈𝐷𝑃_𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑖 (3)

𝑚 ·𝑉𝑃𝑁_ℎ𝑒𝑎𝑑𝑒𝑟 +
𝑚∑︁
𝑖

𝑈𝐷𝑃_𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑖 =
𝑚∑︁
𝑗

𝑈𝐷𝑃_𝑝𝑎𝑐𝑘𝑒𝑡 𝑗 (4)

𝑐ℎ𝑢𝑛𝑘 refers to the actual size of the video chunk. An HTTP/3
packet is divided into 𝑛 QUIC packets, and 𝑛 QUIC packets are di-
vided into𝑚 UDP packets. Eliminating𝑛, the formula for calculating
the chunk size is as follows:

𝑐ℎ𝑢𝑛𝑘 =
©­«
𝑚∑︁
𝑗

𝑈𝐷𝑃_𝑝𝑎𝑐𝑘𝑒𝑡 𝑗 −𝑚 ·𝑉𝑃𝑁_ℎ𝑒𝑎𝑑𝑒𝑟ª®¬
· 𝑄𝑈 𝐼𝐶_𝑝𝑎𝑦𝑙𝑜𝑎𝑑
𝑄𝑈 𝐼𝐶_𝑝𝑎𝑐𝑘𝑒𝑡

− 𝐻𝑇𝑇𝑃/3_ℎ𝑒𝑎𝑑𝑒𝑟

(5)

𝑄𝑈 𝐼𝐶_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 , 𝑄𝑈 𝐼𝐶_𝑝𝑎𝑐𝑘𝑒𝑡 , and 𝐻𝑇𝑇𝑃/3_ℎ𝑒𝑎𝑑𝑒𝑟 are fixed val-
ues in DASH [27], while 𝑉𝑃𝑁_ℎ𝑒𝑎𝑑𝑒𝑟 remains constant within
the same VPN service, with variations in VPN encapsulation head-
ers between different VPN services not exceeding 10 bytes [44].∑𝑚

𝑗 𝑈𝐷𝑃_𝑝𝑎𝑐𝑘𝑒𝑡 𝑗 is equivalent to the size of the video chunk di-
rectly extracted from encrypted video traffic, denoted as 𝑡𝑟𝑎_𝑒𝑥𝑡𝑟𝑎.
In summary, there exists a linear relationship between 𝑐ℎ𝑢𝑛𝑘 and
𝑡𝑟𝑎_𝑒𝑥𝑡𝑟𝑎, and the simplified formula is as follows:

𝑐ℎ𝑢𝑛𝑘 = 𝛼 · 𝑡𝑟𝑎_𝑒𝑥𝑡𝑟𝑎 − 𝛽 (6)

Section 4.2.1 discusses the optimal values for parameters 𝛼 and 𝛽 .
After the correction operations, video chunks that closely approxi-
mate actual video chunk sizes can be obtained. Traffic fingerprints
contain both video and audio chunks. Audio chunks, significantly
smaller than video chunks and with less discriminative power, are
unsuitable as fingerprint elements [9]. As shown in Figure 3, the
size ranges of video chunks and audio chunks hardly overlap, allow-
ing for filtering audio chunks based on a threshold. Chunks below
600KB are considered audio chunks [51]. Furthermore, only video
fingerprints corresponding to itags labeled "video" are selected
when constructing the fingerprint database.

Video Chunk Audio Chunk
0.0

0.5

1.0

1.5

2.0

Ch
un

k 
Si

ze

1e6

Figure 3: Video and audio chunk size box.

3.2 Identification
3.2.1 Video Fingerprint Transformation. The fingerprint database
constructed by video fingerprints serves as the identification tem-
plate, while the traffic fingerprint serves as the identification target.
However, since video fingerprints are in the form of video segment
sequences and the traffic fingerprint is in the form of video chunk
sequences, direct matching operations cannot be performed. As
mentioned in Section 3.1.1, a video chunk is composed of multiple
video segments, so video fingerprints can be transformed by com-
bining video segments to form video chunk sequences, referred to
as video intermediate fingerprints. Two rules for combining video
segments were obtained through experimentation. Rule 1: Video
segments tend to be combined as much as possible until the maxi-
mum size can be combined [3]. This is because the maximum size
of a video chunk is 2MB, and statistics show that 95.7% of video
chunks would exceed this maximum value if combined with the
following video segment. Rule 2: Combining the first few video
segments is relatively random [14]. An error in one combination
point will significantly affect subsequent combinations. Although
video segments of a video fingerprint can simulate many combi-
nations, we plan to simulate only one most suitable combination
method for algorithm speed.

Random walk is commonly used to characterize irregular vari-
ations, and a one-dimensional random walk model can also be
viewed as a Markov chain. When the walk reaches a steady state,
the probability of visiting each node conforms to a specific distri-
bution [15]. Taking the video fingerprint as a sequence of walks,
following Rule 1 and Rule 2 during walks, there is also Rule 3:
The walk is unidirectional backward. Assuming a video fingerprint
𝑉𝐹 = {𝑠1, 𝑠2, ..., 𝑠𝑛}, where 𝑠 represents a video segment, and a
single walk result is 𝑅𝑊 = {𝑟1, 𝑟2, ..., 𝑟𝑛}, where 𝑟𝑖 = 1 indicates
that the 𝑖-th video segment is visited during this walk, and 𝑟𝑖 = 0
indicates that it is not visited. Assuming a total of 𝑚 iterations
of walks, the frequency of the 𝑖-th video segment being visited is
calculated as follows:

𝑓 𝑟𝑒𝑖 =

∑𝑚
𝑗 𝑟𝑖

(
𝑟𝑖 ∈ 𝑅𝑊𝑗

)∑𝑛
𝑙

∑𝑚
𝑘
𝑟𝑙 (𝑟𝑙 ∈ 𝑅𝑊𝑘 )

(7)

where 𝑅𝑊𝑗 represents the result of the 𝑗-th walk. After 𝑚 itera-
tions of walks, the walk frequency vector of the video fingerprint
is denoted as 𝐹𝑟𝑒𝑚 = (𝑓 𝑟𝑒1, 𝑓 𝑟𝑒2, ..., 𝑓 𝑟𝑒𝑛). After iterating walks,
it begins to iterate probability. The walk frequency vector is the
initial walk probability vector 𝑃0 = 𝐹𝑟𝑒𝑚 . The formula for the walk
probability vector for the 𝑡-th iteration is as follows:

𝑃𝑡 = (1 − 𝜃 ) · 𝑃0 + 𝜃 · 𝑃𝑡−1 (8)

where 𝜃 is the damping factor, representing the probability of se-
lecting a forward walking strategy. Zenith does not allow backward
walking, so 1 − 𝜃 represents the probability of staying in the same
position. After multiple iterations of walk probability, the proba-
bility of each video segment being walked will stabilize [47]. The
final walk probability vector 𝑃𝑚 = (𝑝1, 𝑝2, ..., 𝑝𝑛) is subjected to a
sigmoid transformation in the following formula:

𝑢𝑖 =


0,

1
1 + 𝑒−𝑝𝑖

≤ 0.5

1,
1

1 + 𝑒−𝑝𝑖
> 0.5

(9)
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𝑢𝑖 is the decision factor, where 𝑢𝑖 = 1 indicates that the 𝑖-th video
segment is the endpoint of a combination. The final decision vector
is denoted as 𝑈 = (𝑢1, 𝑢2, ..., 𝑢𝑛). Combine the video segments
enclosed between adjacent decision factors with a value of 1. For
example, if 𝑢4 = 1, 𝑢5 = 0, 𝑢6 = 0, 𝑢7 = 1, then the 5th, 6th, and 7th
video segments should be combined into one video chunk. Using
this method, all video fingerprints in the fingerprint database are
converted into video intermediate fingerprints.

3.2.2 Traffic Language Model. The matching between fingerprints
is the matching between video chunk sequences. As mentioned in
Section 1, adverse network conditions can result in the loss and re-
transmission of video chunks, severely disrupting the continuity of
the traffic fingerprint, leading to a significant decrease in matching
accuracy. Therefore, designing an algorithm that does not rely on
sequence continuity is necessary. This paper proposes TLM, which
transforms the sequence matching problem into a natural language
problem. TLM utilizes the fingerprint sequence subset frequency
to bypass the continuity being disrupted. First, regarding video
chunks as words, fingerprints as texts, and fingerprint sequence
subsets as sentences.

Chunk toWord. Assuming the fingerprint database 𝐹𝐷 = {𝑣1, 𝑣2, ...}
contains numerous video fingerprints 𝑉𝐹

𝑖𝑡𝑎𝑔
𝑣 = {𝑠1, 𝑠2, ...}, where

𝑉𝐹
𝑖𝑡𝑎𝑔
𝑣 represents the video fingerprint of video 𝑣 under a certain

𝑖𝑡𝑎𝑔, and 𝑠 denotes a video segment. After the transformation of
video fingerprints described in Section 3.2.1, video intermediate
fingerprints𝑀𝐹

𝑖𝑡𝑎𝑔
𝑣 = {𝑐1, 𝑐2, ...} are obtained, where 𝑐 represents a

video chunk. Capturing traffic at the gateway, the traffic fingerprint
𝑇𝐹 = {𝑐1, 𝑐2, ...} is extracted following the approach outlined in
Section 3.1.2. To convert video chunks into words, the size range of
video chunks is initially divided into multiple areas of equal size,
with the partitioning formula as follows:

𝑎𝑟𝑒𝑎 =
𝑠𝑖𝑧𝑒𝑚𝑎𝑥 − 𝑠𝑖𝑧𝑒𝑚𝑖𝑛

𝑎𝑟𝑒𝑎_𝑛𝑢𝑚
(10)

where 𝑎𝑟𝑒𝑎 represents the size of the area, 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 is the maximum
value of the video chunk, typically 2MB [52], 𝑠𝑖𝑧𝑒𝑚𝑖𝑛 is the mini-
mum value of the video chunk, typically 600KB [51], and 𝑎𝑟𝑒𝑎_𝑛𝑢𝑚
denotes the number of areas. The optimal value for 𝑎𝑟𝑒𝑎_𝑛𝑢𝑚 is
discussed in Section 4.2.2. Each video chunk is assigned to its cor-
responding area according to the following formula:

𝑠𝑛 = ⌈𝑐 − 𝑠𝑖𝑧𝑒𝑚𝑖𝑛

𝑎𝑟𝑒𝑎
⌉ (11)

The video chunk 𝑐 is assigned to the 𝑠𝑛-th area, thus transforming
the video chunk into a word, denoted as𝑊 𝑠𝑛 . The traffic fingerprint
𝑇𝐹 is transformed into a traffic text 𝑇𝑇 = {𝑤1,𝑤2, ...}, and video
intermediate fingerprints𝑀𝐹

𝑖𝑡𝑎𝑔
𝑣 are transformed into video texts

𝑀𝑇
𝑖𝑡𝑎𝑔
𝑣 .

Sentence Frequency. Utilizing the entire fingerprint for matching
operations would impose a significant computational burden on the
algorithm [20]. Hence, matching is commonly performed using sub-
sets of fingerprint sequences, with shorter subset lengths yielding
faster algorithms. Fingerprint sequence subsets correspond to sen-
tences in TLM, the sentence set denoted as 𝑆𝑒𝑛 = {𝑠𝑒𝑛1, 𝑠𝑒𝑛2, ...},
where each sentence has the same length. For instance, if the sen-
tence length is set to 2, the sentence set becomes 𝑆𝑒𝑛 = {𝑤1𝑤2,𝑤2𝑤3, ...}.

Section 4.2.2 discusses the optimal value for the sentence length
𝑠𝑒𝑛_𝑙𝑒𝑛. The same sentence can appear multiple times in a text, and
𝑐𝑡𝑇𝑠𝑒𝑛 is used to record the number of sentences 𝑠𝑒𝑛 in text 𝑇 .

In a typical language model, the text similarity is often analyzed
by computing word frequency [31]. Zenith analyzes the fingerprint
similarity from both macro and micro perspectives. Firstly, from a
macro perspective, the frequency of each sentence in the fingerprint
database is calculated as shown in the following formula:

𝐹𝐷_𝐹𝑟𝑒𝑠𝑒𝑛 = log
©­­«
∑

𝑣∈𝐹𝐷
∑
𝑠𝑒𝑛𝑖 ∈𝑀𝑆𝑒𝑛

𝑖𝑡𝑎𝑔
𝑣

𝑐𝑡
𝑀𝑇

𝑖𝑡𝑎𝑔
𝑣

𝑠𝑒𝑛𝑖∑
𝑣∈𝐹𝐷 𝑐𝑡

𝑀𝑇
𝑖𝑡𝑎𝑔
𝑣

𝑠𝑒𝑛 + 1

ª®®¬ (12)

𝑀𝑆𝑒𝑛
𝑖𝑡𝑎𝑔
𝑣 is the sentence set of𝑀𝑇

𝑖𝑡𝑎𝑔
𝑣 ,

∑
𝑣∈𝐹𝐷

∑
𝑠𝑒𝑛𝑖 ∈𝑀𝑆𝑒𝑛

𝑖𝑡𝑎𝑔
𝑣

𝑐𝑡
𝑀𝑇

𝑖𝑡𝑎𝑔
𝑣

𝑠𝑒𝑛𝑖

represents the number of total sentences in the fingerprint database,

and
∑

𝑣∈𝐹𝐷 𝑐𝑡
𝑀𝑇

𝑖𝑡𝑎𝑔
𝑣

𝑠𝑒𝑛 represents the number of 𝑠𝑒𝑛 in the fingerprint
database. The reason for taking the reciprocal logarithm of the fre-
quency is that when the frequency of a sentence in the fingerprint
database is lower, it indicates that the sentence is unique and more
representative and should be given higher importance during the
matching process. The frequency in the fingerprint database reflects
the macro weight of a sentence. Then, from a micro perspective,
the frequency of each sentence in a particular text is calculated as
shown in the formula:

𝑇_𝐹𝑟𝑒𝑇𝑠𝑒𝑛 =
𝑐𝑡𝑇𝑠𝑒𝑛∑

𝑠𝑒𝑛𝑖 ∈𝑆𝑒𝑛 𝑐𝑡
𝑇
𝑠𝑒𝑛𝑖

(13)

𝑆𝑒𝑛 is the sentence set of 𝑇 , and
∑
𝑠𝑒𝑛𝑖 ∈𝑆𝑒𝑛 𝑐𝑡

𝑇
𝑠𝑒𝑛𝑖

reprsents the
number of total sentences in 𝑇 .

Fingerprint Similarity. Next, sentence frequency calculates the
fingerprint similarity in two stages based on macro and micro per-
spectives. The first stage utilizes sentence frequency in the finger-
print database from a macro perspective to compute the fingerprint
similarity between the video intermediate fingerprint of video 𝑣

and the traffic fingerprint at the fingerprint database dimension, as
shown in the following formula:

𝐹𝐷_𝑆𝑖𝑚𝑣 =
∑︁

𝑠𝑒𝑛∈𝑇𝑆𝑒𝑛∩𝑀𝑆𝑒𝑛
𝑖𝑡𝑎𝑔
𝑣

𝐹𝐷_𝐹𝑟𝑒𝑠𝑒𝑛 (14)

where𝑇𝑆𝑒𝑛 is the sentence set of𝑇𝑇 . As mentioned above, the sen-
tence frequency in the fingerprint database represents the weight
of the sentence in the fingerprint database. Here, the weight of the
shared sentences between the two fingerprint texts is directly used
as the fingerprint similarity criterion. This matching approach has
lower complexity, significantly improving the speed.

However, the above strategy also reduces the discriminative
power of the matching, potentially resulting in multiple video in-
termediate fingerprints having the same maximum similarity with
the traffic fingerprint. In such cases, the second stage of matching
is initiated. This stage utilizes sentence frequency in the text from a
micro perspective to compute the fingerprint similarity between the
video intermediate fingerprint of video 𝑣 and the traffic fingerprint
at the text dimension, as shown in the following formula:

𝑇_𝑆𝑖𝑚𝑣 =
∑︁

𝑠𝑒𝑛∈𝑇𝑆𝑒𝑛∩𝑀𝑆𝑒𝑛
𝑖𝑡𝑎𝑔
𝑣

(
𝑇_𝐹𝑟𝑒𝑇𝑇𝑠𝑒𝑛 ·𝑇_𝐹𝑟𝑒𝑀𝑇

𝑖𝑡𝑎𝑔
𝑣

𝑠𝑒𝑛

)
(15)
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The text similarity accumulates the product of frequency in the
text of sentences shared between the two fingerprint texts. Finally,
the identification result is the video corresponding to the video
intermediate fingerprint with the highest similarity to the traffic
fingerprint. An example is simulated to facilitate understanding, as
shown in Figure 4.
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Figure 4: Example of the TLM process.

Frequency Dictionary. We propose a dictionary to store sentence
frequency information to accelerate the process further. The struc-
ture is illustrated in Figure 5. The frequency dictionary records
the occurrence frequency of each sentence in both the finger-
print database and texts. Let 𝑠𝑒𝑛_𝑛𝑢𝑚 denote the number of sen-
tences in the traffic fingerprint, and 𝑓 𝑝_𝑛𝑢𝑚 denote the number
of video fingerprints in the fingerprint database. The time com-
plexity is 𝑂 (𝑠𝑒𝑛_𝑛𝑢𝑚 + 𝑠𝑒𝑛_𝑛𝑢𝑚 · 𝑓 𝑝_𝑛𝑢𝑚 + 𝑓 𝑝_𝑛𝑢𝑚). However,
since 𝑓 𝑝_𝑛𝑢𝑚 is significantly larger than 𝑠𝑒𝑛_𝑛𝑢𝑚, the time com-
plexity is ultimately simplified to 𝑂 (𝑓 𝑝_𝑛𝑢𝑚). Whenever a new
video is added to the database, only minor changes to the finger-
print database and frequency dictionary are required. This offers
significant advantages over deep learning methods, which require
retraining [37].
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Figure 5: Frequency dictionary structure.

4 EVALUATION
4.1 Dataset
Platforms like Netflix, which offers movies and TV shows, undergo
strict scrutiny by video service providers before releasing content.
However, platforms like YouTube, where individuals upload videos,
are more prone to hosting harmful content [1]. Therefore, this study
primarily collects data from the YouTube platform. The experiment
involved 5186 videos since 2021, covering ten categories such as
sports, food, and travel. Video fingerprints are collected for each
video under 12 different itags to build the fingerprint database,

Table 1: Itag information.

Itag Resolution FPS Itag Resolution FPS
134 360p 30 136 720p 30
396 360p 30 398 720p 60
243 360p 30 247 720p 30
135 480p 30 137 1080p 30
397 480p 30 399 1080p 60
244 480p 30 248 1080p 30

Table 2: Experimental scenario information.

Scenario Connection Resolution Bandwidth VPN
Ideal wired 720p 5Mbps none

Low Resolution wired 360p 5Mbps none
Auto Resolution wi-fi auto 2Mbps none

VPN wired 720p 5Mbps vpn
Low Bandwidth wired 720p 500Kbps none

Table 3: Amount of data in five scenarios.

Scenario Stream Number Video Chunk Number
TCP QUIC TCP QUIC

Ideal 5427 5531 515565 530976
Low Resolution 5264 5396 184242 194256
Auto Resolution 6232 6110 529727 525461

VPN 5843 5698 555085 547008
Low Bandwidth 7198 7233 539853 549708

Sum 29964 29968 2324472 2347409
59932 4671881

resulting in 62232 video fingerprints. The corresponding resolutions
and frame rates for each itag are listed in Table 1.

In order to simulate natural network environments and play-
back modes as closely as possible and to comprehensively measure
Zenith’s performance in various situations, this study designed
five scenarios, as shown in Table 2. In these five scenarios, traffic
transmitted within 10 minutes was collected for the 5186 videos
mentioned above under both TCP and QUIC transport in DASH,
and traffic fingerprints were extracted. A video may be transmitted
through multiple streams [7]. The amount of data in five scenarios
is presented in Table 3.

4.2 Parameter Adjustment
4.2.1 𝛼 and 𝛽 . In Section 3.1.2, it is demonstrated that the sizes
of video chunks extracted directly from encrypted video traffic are
linearly related to the actual size of video chunks, as shown in
Equation 6. The sizes of 4671881 pairs of extracted video chunks
and actual video chunks from five scenarios are projected onto the
coordinate axis and then fitted with a linear curve, as shown in
Figure 6.

The slope of the resulting curve is 0.986317, and the intercept
is -1123.45. Thus, 𝛼 is 0.986317, and 𝛽 is 1123.45. Equation 6 can be
rewritten as follows:

𝑐ℎ𝑢𝑛𝑘 = 0.986317 · 𝑡𝑟𝑎_𝑒𝑥𝑡𝑟𝑎 − 1123.45 (16)
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Figure 6: Video chunks projection and fitting curve.

The range of the difference between the corrected video chunk size
and the actual video chunk size is only ±50, which has a negligible
impact.

4.2.2 𝑎𝑟𝑒𝑎_𝑛𝑢𝑚 and 𝑠𝑒𝑛_𝑙𝑒𝑛. In TLM, the number of areas de-
noted as 𝑎𝑟𝑒𝑎_𝑛𝑢𝑚 determines the granularity of the segmentation.
With a higher 𝑎𝑟𝑒𝑎_𝑛𝑢𝑚, different video chunks are likelier to be
assigned to different words, resulting in greater distinguishability
between video chunks. However, this also increases the compu-
tational burden of the algorithm. The sentence length denoted as
𝑠𝑒𝑛_𝑙𝑒𝑛 influences the uniqueness of the sentences: longer sen-
tences result in fewer identical sentences and greater uniqueness.
However, longer sentences are more vulnerable to changes in reso-
lution, loss and retransmission of video chunks. Set 𝑠𝑒𝑛_𝑙𝑒𝑛 from 5
to 9 and explore the impact of 𝑎𝑟𝑒𝑎_𝑛𝑢𝑚 on Zenith’s accuracy using
datasets from automatic resolution and low-bandwidth scenarios.
The results are shown in Figure 7.
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Figure 7: Accuracy with different 𝑎𝑟𝑒𝑎_𝑛𝑢𝑚 and 𝑠𝑒𝑛_𝑙𝑒𝑛.

The experimental results indicate that Zenith achieves the high-
est accuracy of 97.32% when 𝑎𝑟𝑒𝑎_𝑛𝑢𝑚 is set to 163 and 𝑠𝑒𝑛_𝑙𝑒𝑛 is
set to 8. A sentence length of 8 implies the need for only eight video
chunks, each containing approximately 4 seconds of video content
[11]. Consequently, Zenith can achieve excellent performance with
traffic for just half a minute of video content.

4.3 Ablation
This paper designs TLM to operate in two stages from both macro
and micro perspectives to accelerate speed and accuracy further.
To verify the necessity of the macro stage, the matching is only in
the second stage, conducted directly by computing the sentence
frequency and fingerprint similarity in texts. Compared with TLM’s

complete two-stage identification, the experimental results are
shown in Figure 8.
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Figure 8: Comparison of accuracy between two-stage TLM
and one-stage TLM.

The experimental results indicate that directly computing the
sentence frequency and fingerprint similarity in texts yields an
accuracy approximately 25.16% lower than the complete TLM, with
an additional time requirement of approximately 10 ms. Calculating
the fingerprint similarity at the fingerprint dimension is relatively
straightforward. If results can be identified in the first stage, the
fingerprint similarity at the text dimension computation becomes
unnecessary, leading to significant time savings. The identification
in the two stages involves mutual adjustments, which can further
enhance accuracy.

4.4 Comparison
We compared Zenith with four other SOTA encryption video traffic
identification methods. Because deep learning methods require
retraining the entire model when new videos need to be added, they
are unsuitable for real-time online applications. Therefore, only one
higher accuracy deep learning method was selected for comparison,
while the other three methods are time series related methods.
The details of these baseline methods are introduced in Section 2.
Experiments were conducted in the five scenarios mentioned in
Section 4.1, and the experimental results are illustrated in Figure 9.
Specific data information is presented in the Appendix.

Analysis of the experimental results leads to the following con-
clusions:

• Under low resolution, the traffic fingerprint is shorter [26].
When the video duration is below 120s, the accuracy of
the other three time series methods decreases by 2.77% to
7.80% compared to the ideal scenario. In Zenith, TLM utilizes
the fingerprint sequence subset frequency to calculate the
fingerprint similarity, mitigating the impact of low resolution.
The decrease in accuracy of Zenith is within 2.10%, and its
accuracy is, on average, 13.63% higher than other methods.

• Network stability is lower in Wi-Fi environments, often lead-
ing to resolution switches [23]. Following a resolution switch,
the size of video chunks within the traffic fingerprint under-
goes significant distortion. The video fingerprints utilized
by Wu and Yang are both unstable, while the CNN trained
by Bae lacks generalization. Consequently, the accuracy of
these three methods decreases by 4.78% to 12.76% compared
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Figure 9: Accuracy of methods in five scenarios.

to the ideal scenario. Zenith constructs the fingerprint data-
base using stable video segment sequences under various
itags as video fingerprints, alleviating the impact of resolu-
tion switches. The decrease in accuracy of Zenith is within
2.12%, and its accuracy is, on average, 19.34% higher than
other methods.

• When utilizing a VPN, original video data undergoes encap-
sulation with additional VPN headers. Wu, Yang, and Zhang
overlook the alterations VPN imposes on traffic, resulting in
a decrease in accuracy ranging from 3.02% to 9.89% compared
to the ideal scenario. Zenith simulates the encapsulation of
VPN headers when extracting the traffic fingerprint. The de-
crease in accuracy of Zenith is within 2.12%, and its accuracy
is, on average, 17.61% higher than other methods.

• Low-bandwidth network environments often cause video
data loss and retransmission, disrupting the traffic finger-
print’s continuity. The other fourmethods heavily rely on the
continuity of the traffic fingerprint, resulting in a decrease
in accuracy ranging from 8.55% to 16.92% compared to the
ideal scenario. Within Zenith, TLM employs the fingerprint
sequence subset frequency as its computational core, inde-
pendent of continuity. The decrease in accuracy of Zenith is
within 3.60%, and its accuracy is, on average, 23.14% higher
than other methods.

• The distinction between DASH video traffic transported with
QUIC and TCP is significant. Methods for extracting the traf-
fic fingerprint tailored to TCP cannot be similarly applied
to QUIC, resulting in a decrease in accuracy ranging from
7.07% to 15.22% for the other methods on QUIC. Zenith effec-
tively identifies QUIC encrypted video traffic in DASH with
an accuracy approximately 11.56% higher than the SOTA
methods.

The advantages and disadvantages of methods in five scenarios
are shown in Table 4. In particular, although the deep learning
method performs well in accuracy, it cannot be applied to natu-
ral networks due to the difficulty of updating the video database.
Across the five scenarios, Zenith improves accuracy compared to
the other four methods, ranging from 2.77% to 35.38%, with an

Table 4: The influence of methods in five scenarios.

Method Low
Resolution

Auto
Resolution VPN Low

Bandwidth QUIC

Wu - - - - -
Yang - - - - -
Zhang - + - - -
Bae + - + - +

Zenith + + + + +
+ represents that the method has advantages in the scenario.
- represents that the method has disadvantages in the scenario.

average of 18.43%. Additionally, Zenith’s speed can reach 9.87 μs.
In terms of real-time performance, Zenith achieves 97.32% accuracy
with traffic for just half a minute of video content. In summary,
Zenith is highly effective for QUIC and VPN, and maintains high
accuracy and speed in automatic resolution playback mode and
low bandwidth network environments. Zenith can be deployed in
natural network environments for real-time DASH encrypted video
traffic identification and regulation.

5 CONCLUSION
To address the challenges posed by QUIC transport, complex net-
work environments, and diverse playbackmodes causing significant
distortion in encrypted video traffic in DASH, this paper proposes
Zenith. We extract stable video segment sequences under various
itags as video fingerprints to tackle resolution changes and propose
a method of traffic fingerprint extraction aiming at QUIC and VPN.
The proposed TLM does not rely on sequence continuity and ef-
fectively addresses video data loss and retransmission. Finally, we
propose a frequency dictionary to accelerate Zenith’s speed further.
Across various complex scenarios, Zenith significantly improves
accuracy and speed compared to other SOTA methods. Addition-
ally, Zenith achieves precise identification with traffic for just half a
minute of video content, demonstrating its real-time effectiveness.
Future research will focus on defense strategies against various
encryption video traffic identification methods.
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