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A  MORE METHODOLOGY DETAILS

A.1 DECODER

The dimension of the feature map is H/16 and W/16. After going through the Decoder operation,
the output dimension becomes H and W, which is the target dimension. The detailed process is as
follows:

X, € RB*embeddimx £ x ¥ (14)

Here, X is the tensor input to this module.

w
8

X, = Tanh(ConvTranspose2d (X)) € R xout-channelsx & x (15)

In this step, we use a transposed convolution layer followed by a Tanh activation function to obtain
the tensor X.

w
1

X5 = Tanh(ConvTranspose2d(X,)) € RB>cut-channelsx ix (16)

Next, we again use a transposed convolution layer and Tanh activation function to get the tensor X5.

X3 = ConvTranspose2d(Xy) € RBout-channelsx Hx W (17)

Finally, we apply another transposed convolution layer to get the output tensor X3 with dimensions
Hand W.

A.2 Loss FUNCTION DETAILS

Our loss function is as follows, inside the main text, we have described £M5E and £APV in detail,
next, we describe £55TM in detail.

L= EMSE _|_LSSIM _|_[’ADV' (18)

SSIM (Structural Similarity Index) is a metric used to assess the structural similarity of two images.
It is proposed to better reflect the human eye’s subjective perception of image quality, and provides a
more intuitive and accurate assessment of image quality than the traditional mean square error (MSE)
or peak signal-to-noise ratio (PSNR).

Specifically, two four-dimensional tensors of dimension [T x C' x H x W] are given: predicted data
P and real labeled data GG, where T stands for the time dimension or batch size, C is the number of
channels, and H and W are the height and width of the tensor, respectively. To compute the SSIM
loss, a window of fixed size w (e.g., a Gaussian window of 11x11) and two constants for stabilizing
the denominator ¢; and cg are first chosen.

For each sample ¢ and each channel ¢, we define the following calculations:

1. mean value:

pp,. =w- P (19)
pa,. =w- G (20)
2. variance:
0P, =w- Pl —pip, 21)
U2thc =w- G?,c — ”%‘t,c (22)
3. covariance:
O-Pt‘cGt,c =w- Pt7c : Gtvc - :uPt,c : /’LGt,(‘. (23)
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Then, the SSIM value for each position is calculated using the SSIM formula:

(2/’LPt,c/’LGt,c + Cl)(QJPt,cGt,c + 02)

SSIM; . = -
,c (N%‘t,c + NQGM +e1)( szgma%twc + Jém + ¢2)

(24)

Average over all positions to obtain the SSIM value for that channel. Finally, average the SSIM
values over all samples and channels and subtract this value from 1 to get the SSIM loss:

L:SSIM — 1 — mean(SSIMt,c) (25)

For efficiency, the computation of mean, variance and covariance can be realized by convolution
operation.

A.3 ALGORITHMIC PROCESS

The proposed algorithm, named STAC, offers a novel approach to model the spatio-temporal evolution
in dynamical systems. At its core, the algorithm integrates a twin spatio-temporal encoder, which
captures both spatial and frequency domain semantics, and a cache-based recurrent propagator,
which leverages historical data to enhance long-term dynamics prediction. The encoder consists of a
Frequency-enhanced Spatial Module (FSM) and an ODE-enhanced Temporal Module (OTM), which
are then fused together. The recurrent propagator utilizes a cache mechanism to store and update
previous representations. Finally, a decoder transforms the updated feature maps into predicted
trajectories, which are then optimized using a combination of loss functions. The algorithm aims to
provide accurate and reliable long-term predictions for dynamical systems.

Algorithm 1 The STAC Approach

0: function METHOD(Input: system states in interval [0, 7°%*]) {Twin Spatio-temporal Encoder}
0: I < Input
I°ut + FSM(I™") {Frequency-enhanced Spatial Module }
Fy < OTM(I"") {ODE-enhanced Temporal Module}
X + IFTM(7°%*, Fyy) {Information Fusion between Twin Modules}
{Cache-based Recurrent Propagator }
Initialize cache M with size R
for m = 1to M do
Qm < UpdateCache(Qp—1, Xpm, M)
Add X,,,_1 to cache M
end for
{Decoder and Optimization}
Yiat < Decode(Qpn)
Loss < CalculateLoss (Y}, GroundTruth)
UpdateModelParameters(Loss)
return Y},
end function=0
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B DETAILED DESCRIPTION OF BENCHMARKS

We summarize the benchmark configurations in Tab. Here are the details of the dataset.

B.1 TURBULENCE DATASET

This dataset (Khojasteh et al., 2022) contains Eulerian velocity fields and pressure fields. An open-
source direct numerical simulation (DNS) flow solver named Incompact3d was used to compute
the Eulerian fields around the cylinder. Following the original thesis setup, highly resolved direct
numerical simulations (DNS) of the flow over a smooth cylinder at a subcritical Reynolds number of
3900 (based on the diameter D of the cylinder and the diameter D of the freestream velocity) were
performed to generate the data. Double-precision Eulerian and Lagrangian fields were collected for
both subdomains as shown in Fig. 7. Due to online cloud storage limitations, every 10 DNS time steps
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were saved every 10 DNS time steps (saving each time step would require about 30 TB of storage
space per vortex shed). The 1000 snapshots are also used for smaller subdomains with dimensions of
4D x 2D x 2D (i.e., per DNS time step). Subdomain 2 is suitable for studies that require the highest
possible temporal resolution. Detailed information on the two subdomains can be found in Table 2.
An Eulerian snapshot of the current tail stream is shown in Fig. 2. For both subdomains, Lagrangian
trajectories are provided for about 200000 synthetic particles. Three main categories are provided in
the data repository: subdomain 1, subdomain 2, and software. Snapshots are in text format (.txt) and
are collected in compressed files (.zip). There are no special requirements for reading and opening
the data. Euler 3D snapshots are saved in vector format. Therefore, they need to be extracted within
three internal loops in the xyz direction.
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Figure 7: The flow around a smooth cylinder at a subcritical Reynolds number of 3900, with
dimensions of two computational subdomains. (Khojasteh et al., 2022)

Figure 8: Snapshot Overview of Sub-domain 2: (a) Pressure iso-surface highlighted by the intensity
of the pressure. (b) Lagrangian trajectories of 20,000 particles, visualized after 1,000 DNS time steps,
color-coded by velocity magnitude. (c) Q-criterion representation depicting Eulerian flow structures,
color-graded by the magnitude of vorticity.
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B.2 ERAS5 DATASET

ERAS is the latest global reanalysis product released by the European Centre for Medium-Range
Weather Forecasts (ECMWEF). It provides researchers and meteorologists with high-resolution me-
teorological and climatic data from 1979 to the present. The spatial resolution of ERAS data is
31 kilometers, with a temporal resolution of hourly, representing a significant improvement over
previous reanalysis products. It encompasses observations from the atmosphere, land, and oceans,
offering invaluable data resources for global climate change, weather forecasting, and other related
studies. The data quality and accuracy of ERAS have been widely recognized by researchers, making
it an essential tool in climate research and meteorological forecasting.

We have selected global temperature field data and local velocity field data as our training set. The
former has a resolution of 1440x720. In our experiments, we downsampled it to a quarter of its
original size, i.e., 360x180. The velocity field has a resolution of 64x64. For the temperature data, we
employed autoregressive training, using 5 days of data as input and 10 days of data as output. For the
velocity field, we chose 8 hours of data as input and another 8 hours of data as output.

B.3 SEVIR DATASET

The Storm EVent ImagRy (SEVIR) dataset presents a meticulously curated set of spatiotemporally
synchronized images, capturing meteorological phenomena via the GOES-16 geostationary satellite
and the NEXRAD weather radar system. Encompassing in excess of 10,000 distinct weather events,
each individual event in this collection showcases an image sequence persisting for a duration of 4
hours, spanning a geographical expanse of 384 km x 384 km. Delving into this dataset can expedite
advancements in the realms of weather sensing, hazard avoidance, near-term forecasting, and other
pertinent meteorological applications.

We follow the same setup as Earthformer, using 13 frames as input and 12 frames as output.

B.4 FLAME FLOW FIELD DATASET

In this study, we select a typical highway tunnel for simulation, with dimensions of 50 meters in
length, 10 meters in width, and 5 meters in height. The fire source has dimensions of 4.6 meters in
length, 1.8 meters in width, and 2.4 meters in height. The top surface of the truck is set as a burner”
type. To simulate a realistic scenario, the maximum heat release rate (HRR) of the fire source is set at
20 MW, a value recommended by the standard for the maximum HRR of tunnel fires in the event of
a truck fire. The fire source is modeled as a propane gas fire, with its HRR growing at a ¢2 rate. Four
operating conditions are designed, In all four scenarios, the power of the fire source is consistently
20 MW. In the first scenario, the fire source growth factor is 0.0029 kW/ s2, with the time to reach
steady state being 2626 seconds and another steady state time being 2700 seconds. In the second
scenario, the fire source growth factor is 0.0117 kW/s2, with the times to reach steady state being
1307 seconds and 1400 seconds, respectively. In the third scenario, the fire source growth factor is
0.0469 kW /s2, with the steady state times being 653 seconds and 700 seconds. Lastly, in the fourth
scenario, the fire source growth factor is 0.1876 kW/s2, with the times to reach steady state being
326 seconds and 400 seconds. The choice of actual tunnel dimensions, fire source size, and HRR
values ensures the validity and relevance of the simulation results, providing a solid foundation for
the proposed artificial intelligence fire prediction method.

In this study, the input dimensions are set at [10,2,80,480], while the output dimensions are
[90,2,80,480]. Here, the input duration of 10 seconds represents the observation time, and the
value of 2 corresponds to the temperature field and smoke field, both of which have a resolution
of 80x480. The output duration of 90 seconds is used for extended time-range predictions. To
achieve this long-term forecasting, we employ a rollout strategy. Moreover, the caching mechanism
introduced in this paper plays a pivotal role in enhancing the accuracy and efficiency of long-term
predictions.

B.5 KTH DATASET

The KTH dataset stands as a benchmark in the domain of human activity recognition, stemming from
the esteemed KTH Royal Institute of Technology in Sweden. This collection distinctly captures six

17



Under review as a conference paper at ICLR 2024

human activities: walking, jogging, running, boxing, hand waving, and hand clapping. Across diverse
scenarios—ranging from outdoor settings (s1, s4) and scaled outdoor variations (s2, s3) to indoor
environments (s5, s6)—25 participants, donning varied attire, repetitively perform these actions. Each
video in this dataset is recorded at a clarity of 128x128 pixel resolution and maintains a consistent
frame rate of 25 frames per second.

B.6 DYNAMIC SYSTEM DATASETS RECORDED BY VIDEO.

We have provided 9 datasets of dynamic system, recorded in the form of videos. Both the input and
output dimensions are [10,3,128,128], indicating an input length of 10 time steps and an output length
of 10 time steps. Since they are recorded as videos, there are 3 channels, representing RGB, with a
resolution of 128x128 for each image.
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Figure 9: A case study of a dataset of dynamical systems recorded by video

1. Circular motion system. (CMS) An object moves uniformly along a fixed radius. Formula as
follows:

V= Trw, (26)

a = rw?, (27)

where v is the linear speed, r is the radius of the circle, w is the angular speed, and a is the centripetal
acceleration.

2. Reaction diffusion system. (RDS) A system describing how the concentration of substances
changes over time due to reactions and diffusion. Formula as follows:

% = D,V*u —uwv? + F(1 —u), (28)
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% = D,V?*v0 +uwv?® — (F + k), (29)

where u and v are concentrations, D,, and D,, are their diffusion coefficients, and F' and k are system
parameters.

3. Single pendulum system. (SPS) A point mass hung from a fixed point swings due to gravity.
Formula as follows:

d?6 g .
@ = _7 Sln(@), (30)

where 6 is the pendulum angle, [ is the length of the pendulum, and g is gravitational acceleration.

4. Rigid double pendulum system. (RDPS) A complex pendulum system consisting of two
pendulums, with one pendulum attached to the end of another. The equations of a double pendulum
are usually relatively complex and involve multiple variables. But the basic idea is to use the Lagrange
equation. For a simplified description:

d291 o g(SiIl 92 COS(91 — 92) — sin 91) — (829.2 + 619% sin(91 — 92)) COS(91 — 92) (31)
a2 01 (cos2(6; —02) — 1) ’

d?0,  gsin; cos(0y — 0) — (103 sin(0; — 02) — gsin by
dt2 o 52(6082(91 — 92) — 1) ’

(32)

5. Elastic double pendulum system. (EDPS) Similar to the double pendulum, but the connecting
component between the pendulums is elastic. The basic mathematical description of an elastic
pendulum involves Hooke’s law of springs and the motion of a pendulum. A simplified description is:

2
% = —kx/m — gsinf , (33)
2
0
(;? = —g/xcosb, (34)

where x is the displacement from the equilibrium position, & is the spring constant, and m is the
mass.

6. Swing stick system. (SSS) A long stick with a fixed endpoint that swings under the influence of
gravity and other possible external forces. The pendulum system is equivalent to a long pendulum. The
basic description is similar to a simple pendulum, but requires consideration of the mass distribution
and length of the rod. The simplest description is:
d*0 39 .
ﬁ = 7% S 9, (35)

where L is half the length of the rod.

7. Air Dancer System. (ADS) For the air dancer, it is crucial to consider the influence of the gas
flow. This can be described by the incompressible Navier-Stokes equation:

Ju 1 9
aJr(ro)uff;Verl/V u, (36)
V.ou=0, (37)

where u is the velocity, p is the pressure, p is the density, and v is the kinematic viscosity.
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8. Lava Lamp System. (LLS) At the heart of the lava lamp is the fluid flow caused by density
changes due to temperature. This can be described using the Navier-Stokes equation and the
Boussinesq approximation:

3} 1
9y (u-V)u=—-—Vp+vViu—oT - Ty)g, (38)
ot Po
V-u=0, (39)
%—f +u- VT = kV2T, (40)

where T’ is the temperature, « is the thermal expansion coefficient, « is the thermal diffusivity, and g
is the acceleration due to gravity.

9. Fire System. (FS) The fire system involves chemical reactions, heat transfer, and fluid dynamics.
A common description is:

1
({;—ltl + (u- V)u = —=Vp+ vV?2u + source terms due to combustion, 41)
p
V-u=0, (42)
oT 9 .
o +u- VT = kV*T + source terms due to combustion, 43)
aY; . .
En +u - VY; = DV?Y; + reaction rate of species i, (44)

where Y is the mass fraction of the i-th chemical species, and D is the diffusion coefficient.

C EXPERIMENTAL DETAILS

C.1 EVALUATION METRICS

We utilize the following metrics:

Mean Squared Error (MSE) Given the predicted data dimension Yreq € RT*C*H*W and the label

data dimension Yiype € RTXC*H>XW 'the MSE is computed as:
1 T C H W
h tchw\2
MSE(Vinea, Vi) = 75 e D 2 2 2 (Vo™ = k™) (45)

t=1 c=1 h=1w=1

Mean Absolute Error (MAE) The MAE is given by:
T

H W
1 chw chw
MAE(Ypred, Yiavel) = TxCOxHXW Z Z Z Z Vived" — Yiioel (46)

t=1 c=1 h=1w=1

Anomaly Correlation Coefficient (ACC) The ACC, often used in meteorology, is defined as:
Z(Yi)red - Y;red) (Yiabel - Yi;bel)

ACC = — = 47
\/Z(Yi)red - }/pred)z Z(Yiabel - }/label)Q
where Y;red and Yiapel represent the means of Yjreq and Yiapel, respectively.
Structural Similarity Index (SSIM) For each local window or region, the SSIM is calculated as:
20y Ch)(2 C.
SSIM(z, y) = (2ptapty + C1)(204y + C) (48)

(12 + 13 + C1) (o2 + 3 + C2)

where x and y are pixel values within two windows or regions, pi,, and /1, are their means, o2 and 05
are their variances, and o, is their covariance. C'; and Cy are small constants to prevent division by
Zero.

Peak Signal-to-Noise Ratio (PSNR) The PSNR is given by:
MAX?
PSNR =10 x 1 —_— 4
0 x OglO(MSE) (49)
where MAX represents the maximum possible pixel value. For an 8-bit image, MAX = 255.
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C.2 HYPERPARAMETERS

In the experimental settings, various hyperparameters are set for different datasets. For the attention
head, the Turbulence, KTH, and Video DS datasets are set to 2, while the ERAS5, SEVIR, and
FLAME FLOW datasets are set to 4. The Fourier Transform Layers are configured as follows: 6 for
Turbulence, ERAS, and SEVIR; 4 for FLAME FLOW; 10 for KTH; and 12 for Video DS. The hidden
layer dimension in both the Feature Selection Module (FSM) and Other Training Module (OTM)
is set to 64 for Turbulence, ERAS, and KTH, and 128 for SEVIR, FLAME FLOW, and Video DS.
Across all datasets, the learning rate is consistently set at 0.01. In terms of the number of epochs,
Turbulence, ERAS, SEVIR, and KTH have 500 epochs, FLAME FLOW has 300, and Video DS has
100. Lastly, the batch sizes vary: 2 for Turbulence, 6 for ERAS, 10 for both SEVIR and KTH, 4 for
FLAME FLOW, and 20 for Video DS.

Table 3: Hyperparameters for Different Datasets

Hyperparameter TurbulenceERAS  SEVIR FLAME KTH Video
FLOW DS
Attention head 2 4 4 4 2 2
Fourier Transform Layers 6 6 6 4 10 12
Hidden layer dimension in FSM 64 64 128 128 64 128
Hidden layer dimension in OTM 64 64 128 128 64 128
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
Number of epochs 500 500 500 300 500 100
Batch size 2 6 10 4 10 20

D ADDITIONAL EXPERIMENTS

Table 4: Performance of Models on Various Datasets

Datasets
CMS RDS SPS RDPS EDPS SSS ADS LLS FS

ADFV 8724 9093 9478 9343 9132 8774 88.65 8241 9287
STAC 88.64 9214 9634 9526 93.14 8896 90.12 8390 94.54

MODEL

Our dataset is derived from (Chen et al., 2022), nine dynamics system datasets, recorded in video
format. Comparison experiment with the model of the original text, we named the original text
model as ADFV, because it is a video recording, we use SSIM as the evaluation metrics, and the
experimental results are shown in the Table 4.

According to the experimental results, the STAC model performs better on all datasets compared to
the original ADVF model. Specifically, the SSIM scores of the STAC model are higher than those
of the ADVF model both on the CMS, RDS, SPS, RDPS, EDPS, SSS, ADS, LLS, and FS datasets,
which clearly highlights the advantages and efficiency of the STAC model. These results demonstrate
the strong performance and reliability of the STAC model in dealing with dynamic systems of video
recordings.

E LONG-TERM PREDICTION RESULTS OF STAC

In this section, we present the complete visualization results of STAC on the long-term prediction
benchmark. We observe that on the Flame benchmark, our model is capable of excellently recon-
structing the forecast results over an extended time frame, nearly encapsulating detailed contour
information of the fire dynamics as well as the flow velocity. The astonishing consistency between
the ground-truth and prediction at 210 seconds further substantiates our model’s prowess in long-term
forecasting.
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Initial condition Ground-truth Prediction

Figure 10: Case study of predicting the fire temperature field for the next 210 seconds based on the
dynamic of the past 30 seconds.

F ABLATION STUDY

F.1 DATASET DETIALS

We conduct a comprehensive ablation study on STAC, with the dataset sourced from (Yin et al.,
2022). The dataset is based on the shallow water equation, and our primary focus is on modeling
its velocity field. The dataset has a basic dimensionality of [160, 1, 128, 256], which signifies 160
consecutive time snapshots. The 1 in the dimension stands for the channel variable, representing
velocity. The resolution of the velocity field is captured by the 128x256 dimension. We slice the
dataset into two sections: [20,1,128,256] and [140,1,128,256]. The former serves as the input, while
the latter acts as the ground truth. Subsequently, these slices are fed into various model variants for
ablation experiments.

F.2 EXPERMENTAL RESULTS

To gain deeper insights into the significance and impact of each component within the Spatio-temporal
Twins with A Cache (STAC) model, we conducted a series of ablation experiments. Firstly, we set up
a basic model for comparison, termed as Basic STAC. Subsequently, we removed specific components
from the STAC model one at a time to evaluate their contributions to the overall performance.
Specifically, we examined the following model variants:

STAC w/o FESM - without the Frequency-enhanced Spatial Module.
STAC w/o ODETM - excluding the ODE-enhanced Temporal Module.
STAC w/o CA - devoid of the Channel Attention module.

STAC w/o CRP - lacking the Cache-based Recursive Propagator.
STAC w/o TF&M - omitting Teacher Forcing and Mixup.

STAC w/o SSAL - without the Semi-supervised Adversarial Learning.

AN S o

To thoroughly evaluate the influence of each component within the STAC model on predictions, we
have devised the following ablation strategy: Initially, the "Basic STAC” serves as our benchmark.
Then, by eliminating the Frequency-enhanced Spatial Module (STAC w/o FESM) and the ODE-
enhanced Temporal Module (STAC w/o ODETM), we assess their impact on prediction intricacies.
Lastly, delving deeper into the pivotal components for long-term predictive robustness, we evaluate the
variant devoid of the Cache-based Recursive Propagator (STAC w/o CRP) and the variant excluding
Teacher Forcing and Mixup (STAC w/o TF&M). These experiments are geared towards revealing the
specific contributions of each component to short-term prediction accuracy and long-term predictive
stability.

All these model variants were trained and tested on the same dataset to ensure the consistency of
results. Through these ablation experiments, our goal is to pinpoint which components play a pivotal
role in the model’s performance and which might be auxiliary.
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Ground-turth Basic STAC STAC w/o FESM STAC w/o ODETM

STAC w/o SSAL

e

Figure 11: Visualization of the ablation experiment results.

Table 5: Ablation study on the Spherical Shallow Water dataset using RMSE as the evaluation metric.

Model Variant RMSE

Basic STAC 0.0287
STAC w/o FESM 0.0485
STAC w/o ODETM  0.0464
STAC w/o CA 0.0344
STAC w/o CRP 0.0795
STAC w/o TF&M 0.0311
STAC w/o SSAL 0.0421

The Basic STAC model, with an RMSE of 0.0287, serves as our benchmark. The absence of the
Frequency-enhanced Spatial Module elevates the RMSE to 0.0485, highlighting its significance.
Similarly, excluding the ODE-enhanced Temporal Module pushes RMSE to 0.0464, underscoring
its importance. The omission of the Channel Attention leads to a modest rise in RMSE to 0.0344.
Notably, removing the Cache-based Recursive Propagator causes the most dramatic increase, with
RMSE soaring to 0.0795, emphasizing its pivotal role in long-term predictions. Minor shifts are
observed when removing Teacher Forcing and Mixup, and the Semi-supervised Adversarial Learning,
with RMSE values of 0.0311 and 0.0421 respectively. In essence, the CRP stands out as the most
critical component, followed closely by FESM and ODETM. To optimize the model further, it’s
recommended to delve deeper into enhancing the CRP, FESM, and ODETM functionalities.
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