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S.I EXPLANATORY FIGURES

Figure[ST|shows a high-level overview of a Deep Latent Gaussian Model (DLGMs)
[2014). One key-feature of this architecture is the transformational layers that are utilized by both the
posterior and the prior layers. Other variations of deep VAE architectures may consider conditional
prior distributions p(z; | z;—1) and/or the posterior distributions ¢(z; | z;—1, ), but they omit the
joint transformational layers.
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Figure S1: Independent VAE.

Figure [S2] shows a high-level overview of both the generative and the inference part of the SeRe-
VAE. Some key differences of our model from existing works are i) the joint transformational layers
are enforced to be bijective, in contrast to Figure [ST} ii) also in contrast to Figure [ST] there is
statistical feedback to the next layer of both the generative and inference network, iii) the latent
variables of all layers directly interact with the data distribution p(x|2).

Figure[S3|offers a detailed illustration of the generative procedure of the SeRe-Vae described in sec-
tion[3.1] The nodes represent random variables and the edges the conditional dependencies induced
by the generative procedure. The colors match the random variables with the layers in Figure [S2]
which are responsible for their generation.

Figure [S4] shows the computational graph of an amortized Gaussian prior layer, as described in
section [3.4.T]and according to the reparametrization trick (Kingma & Welling| [2014).
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Figure S2: Self-Reflective VAE.
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Figure S3: Self-Reflective Generative Model.
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Figure S4: Amortized Gaussian Prior Layer.
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S.II IMPLEMENTATION DETAILS

Our experiments use Tensorflow Probability (TFP,[2018). All models were optimized
using Adam (Kingma & Ba, [2015) on a 4xGeForce GTX 2080Ti.

S.II.A  TRAINING A SELF-REFLECTIVE PROBABILISTIC MODEL

In this section, we describe two modifications of the ELBO objective in equation 2] We found
empirically that they both facilitate the training of the proposed model.

S.II.A.1 KL ANNEALING

We applied deterministic warm-up as suggested in|Sgnderby et al.|(2016a)); Rezende & Viola(2018);
Bowman et al.|(2016));[Sgnderby et al.|(2016b). This technique introduces a scheduled regularization
coefficient (3 for the KL-divergence. Formally, the regularized ELBO objective becomes:

£(x:0,) = E,llogp(z | )] - ADxc1(a(z | @) | p()),0 < B < 1, 1)

where (3 linearly increases from O to 1 for a number of epochs at the beginning of the training.

S.II.A.2 MINIMIZING ENSEMBLE RECONSTRUCTION LOSSES

In order to train the residual data layers presented in section [3.4.2] we modify the conditional like-
lihood p(x|z) in equation [2| so that for each layer [, the average conditional likelihood of the two
estimation levels[1]is used. Formally, we replace p(a;; v (2, @;—1)) with:

p(| 2, ®—1) = 0.5 x p(@; v/ (20)) + 0.5 x (7] (1) + 6% (-1, 20)).- (S2)

This change helps prevent overfitting triggered by the computational block at the first estimation
level. We apply this change only for the warm-up training epochs mentioned in the previous subsec-
tion (for which 8 < 1). For inference, we use the most refined parameters -; of the last level of the
residual data layers.

S.III EXPERIMENTAL DETAILS OF THE MLP-SERE VAE FOR BINARIZED
MNIST

S.III.A LEARNING PLOTS

In this experiment, we trained the model for 2000 epochs. For the first 1024 epochs (Figure [S3)) the
regularized, ensemble loss function as described in Section [S.IT.A] was minimized. For the second
half, the negative ELBO of equation 2] (Figure[S6) was minimized.
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Figure S5: Loss function during warm-up.  Figure S6: Loss function after warm-up.
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In Figure we plot the conditional loglikelihoods obtained when the first estimations (red line)
of the parameters ~;., of the data distribution is used and when they are rectified by the residual
functions d-y;., to give the final estimation .y, (blue line). As we see, the residual functions 1.1,
significantly improve the reconstruction loss. For the first 1024 epochs, the average of these plots is
maximized, while for the second half of the training only the conditional likelihood computed from
~1.1 18 maximized.

In Figure[S8] we plot the KL divergence of each stochastic layer. As we see, all the stochastic layers
remain active (they do not collapse to the prior).
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Figure S7: Conditional loglikelihood with :
Red: vi.;, Blue: v2,

S.III.B ARCHITECTURAL HYPERPARAMETERS OF THE MLP-SERE VAE FOR BINARIZED
MNIST

This section provides detailed description of the training parameters and architectural hyperparam-
eters for the experiments in Section in the main paper.

Specifically, in Table [ST| we provide the parameters of the training procedure. A constant learn-
ing rate and a small amount of weight regularization was used. We did not observe overfitting.
Moreover, batch normalization layers were added at the input of each layer in the hierarchy.

Table S1: Training Hyperparameters of the MLP-SeRe VAE'’s for binarized MNIST

Parameter Value

batch size 256

warm up epochs 1024

warm up schedule linear

epochs 2000

learning rate le-3

batch normalization Yes

kernel/bias regularization ly, X=1le—5
kernel/bias initializer glorot normal

The model consists of 10 layers of 10 latent variables each. This experiment uses exclusively Mul-
tiLayer Perceptrons (MLP) as building blocks of the prior, posterior and bijective layers and of the
final data distribution in the decoder. The hyperparameters for each component in the hierarchy
are given in Table [S2] The evidence encoders of each layer are decoupled: they receive the raw
binary image as input and not the output of the encoders at the upper (top-down inference) or lower
(bidirectional inference Kingma et al.| (2016))) layer in the hierarchy. We also use latent encoders,
for all but the first inference layer in the hierarchy. These components process the latent codes pro-
vided by the bijective layer at the upper layer, before it is passed to the posterior. In contrast to the
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parametrization adopted in Equations (13) and (14) of [Kingma et al.| (2016) for the mean and vari-
ance, which restricts the scale in (0, 1) to ensure training stability, we use the following alternative
that was found to be both more flexible and stable:

0? = softplus(elu(Sout)), (S3)

where X,,; is the network responsible for learning the scale of the distribution. According to
equation large positive entries are left unaffected, while negative outputs of X,,; are first
suppressed by the elu activation, and then mapped to a small positive value through the softplus
transformation. A small offset is added to the small positive entries by the softplus to discriminate
them by the negative outputs. A similar parametrization is used for the scale of the diagonal plus
unit-rank affine transformations (to ensure positivity of the diagonal part and hence invertibility of
the resulting bijective function).
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Table S2: Architectural Hyperparameters of the MLP-SeRe VAE’s layers for binarized MNIST

Component

Parameter

Value

Evidence Encoder

# hidden layers
hidden dimension
feature size
activation

output activation

2
256
20
Relu

None

Latent Encoder

# hidden layers
hidden dimension
feature size
activation

output activation

256
20
Relu

None

Posterior Layer (diagonal Gaussian)
2 identical networks (for loc and scale_diag)
MultivariateNormalDiag in[TFP(2018)

# hidden layers
hidden dimension
activation

output activation

hidden feature size

256
Relu

None

Bijective Layer (diagonal plus unit-rank affine)

3 identical networks
(for shift, scale_diag, and scale_perturb_factor)

Affine in|TFP|(2018)

# hidden layers
hidden dimension
activation

output activation

20
Relu
Relu

Prior Layer (diagonal Gaussian)
2 identical networks (for loc and scale_diag)
MultivariateNormalDiag in[TFP|(2018)

# hidden layers
hidden dimension
activation

output activation

500
Relu

None

Decoder

# hidden layers

]ogbbmedpmmnaﬂmnmnofBernoulliinTFP(ﬂHS)hidden dimension

activation

output activation

hidden feature size

128
Relu
None
10

S.IV EXPERIMENTAL DETAILS OF THE RESNET-SERE VAE FOR BINARIZED

MNIST

This section provides detailed description of the training parameters, Table [S4] and architectural
hyperparameters, Table [S3] for the experiments in Section in the main paper. For the ResNet
encoders and decoder, we use ResNet blocks, with batch normalization layers between them, that
follow the design rule suggested in|He et al.| (2016)): if the feature map size is halved, the number of
filters is doubled, and reversely if the feature map size is doubled the number of filters is halved, so

as to preserve the time complexity per layer.

In Figure [S9a] we plot some samples from the generative network of the SeRe-VAE. In Figure [S9¢
we plot the reconstructed images from the latent codes of the images in Figure[S9b]
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Table S3: Architectural Hyperparameters of the ResNet-SeRe VAE’s layers for binarized MNIST

Component Parameter Value
initial # filters 16
# ResNet blocks 2
ResNet blocks’ scale []2,] 2]
Evidence Encoder ,
feature size 64
kernel size 3
activation Relu
output activation None
# hidden layers 2
hidden dimension 256
feature size 20
Latent Encoder ) )
activation Relu
output activation None
Posterior Layer (diagonal Gaussian) # hidden layers 2
2 identical networks (for loc and scale_diag) hidden dimension 256
MultivariateNormalDiag in/TEP|(2018) . ,
activation Relu
output activation None
hidden feature size 3
Bijective Layer (diagonal plus unit-rank affine) # hidden layers 2
3 identical networks ) . .
(for shift, scale_diag, and scale_perturb_factor) hidden dimension 20
Affine in[TFP|(2018) activation Relu
output activation Relu
Prior Layer (diagonal Gaussian) # hidden layers 2
2 identical networks (for loc and scale_diag) hidden dimension 256
MultivariateNormalDiag in/TEP|(2018) . ,
activation Relu
output activation None
Decoder initial # filters 32
bgﬂJxmedpmaHmuﬁaﬁonofBernoulliinTTP(2018)# ResNet blocks’ 2
ResNet blocks’ scale [12,712]
kernel size 3
activation Relu
output activation None
hidden feature size 3

S.V  SELF-REFLECTIVE NORMALIZING FLOWS

S.V.A DEFINITION AND BASICS

Normalizing flows (Tabak & Vanden-Eijnden, |2010; |Tabak & Turner, 2013)) are models for learning
probability distributions based on iterative transformations of samples « drawn from a simple base
distribution. Specifically, let z € R” with & ~ p(x;~) the distribution of interest. A chain of T'
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Table S4: Training Hyperparameters of the ResNet-SeRe VAE'’s for binarized MNIST

Parameter Value

batch size 128

warm up epochs 256

warm up schedule linear

epochs 1000

learning rate le-3

batch normalization Yes

kernel/bias regularization No

kernel/bias initializer glorot normal
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(a) Generated MNIST digits (b) MNIST digits (c) Reconstructed MNIST digits

Figure S9: Qualitative Performance of the ResNet SeRe-VAE.

invertible transformations g* parameterized by ~* is applied on a sample u° € R”, drawn from a
base distribution 7(u; ) parameterized by 4°, such that:

u’ ~ w(u;~°), ul = gl(u At Ve =1,..., T, withx = u”, (S4)

and v = {7%,~',...,47}. In the case of invertible and differentiable transformations g* and
differentiable (gt)’l, the change of variables formula (Rudin} 2006; Bogachev, |2007) provides a
closed form for p(x).

Normalizing flows were popularized for density estimation and variational inference by Dinh et al.
(2015) and Rezende & Mohamed| (2015)), respectively. An extensive review on normalizing flows is
provided in [Papamakarios et al.|(2019).

S.V.B HIERARCHICAL LATENT VARIABLE NORMALIZING FLOWS

In order to capture high-dimensional dependencies, normalizing flows typically require a long se-
quence of transformations g¢ and a large hidden dimension, two factors that introduce scalability
issues. This fact motivates our design of variational normalizing flows. The latent variables z in this
case can be incorporated in the flow in two ways: i) conditioning the base distribution by determin-
ing its parameters so that 7% £ 4°(z; ¢9), and ii) conditioning the bijective transformations so that
u! = g'(u!~1;4%(2)). In the case of a Masked Autoregressive Flow (Papamakarios et al., 2017) or
an Inverse Autoregressive Flow (Kingma et al., 2016)), the latter amounts to designing conditional
MADE layers (Germain et al.| 2015) that account for a mask offset so that the additional inputs
z are not masked out, see Section For the construction of the base distribution, amortized
distributional layers are used which receive as input the latent codes of the [—th layer z;.
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S.V.C CONDITIONAL MASKED AUTOENCODER

In this section, we describe the construction of conditional Masked Autoencoders (MADE layers)
used as building blocks for the variational normalizing flow. We use notation identical to those used
in|Germain et al.| (2015)).

Let C be the dimension of the conditioning inputs. C' acts as a mask offset in the construction of the
masked autoregressive encoder, as we explain below. We assign unique numbers 1,2,...,C+ D to
the inputs. In case of a random input ordering, the first C' conditioning inputs are excluded so that
m®(d) =d, ford =1,2,...,C and m®(d) € {C +1,C +2,...,C + D} uniquely and randomly
assigned to the inputs d = C' + 1,C +2,...,C + D. The degrees m!(d) of the d—th hidden unit
of layer ! should now be larger than C, so that the conditioning inputs are not masked out: the
conditioning inputs are connected to all the hidden units. Therefore, m!(d) are random numbers
such that m!(d) € {C + 1,C + 2,C + D}. Equation (12) in Germain et al.|(2015) is still valid
for the construction of the masks for connections from the input to the first layer hidden units, and
from hidden units to next layer hidden units. For the last layer masks (from the hidden units to the
output), Equation (13) in|Germain et al.| (2015)) is used, and subsequently the first C, that refer to the
conditioning inputs, masks are discarded.

Finally, as suggested in [Papamakarios et al.| (2017) batch normalization layers between the MAF
steps are incorporated. Section B in the Appendix of Papamakarios et al.|(2017), provides a descrip-
tion of the batch normalization as a bijector and the t fp.bijectors.BatchNormalization
of TFP| (2018) offers a suggested implementation. In our implementantion, at both training and
validation/test time, we maintain averages over minibatches as in |loffe & Szegedy| (2015).

S.V.D EXPERIMENTAL DETAILS OF THE VARIATIONAL SERE MAF FOR CIFAR-10

Table[S5]provides the architectural hyperparameters for the experiments in Section in the main
paper. The model consists of 5 layers of 40 latent variables each.

Table S5: Architectural Hyperparameters of the variational SeRe MAF for CIFAR-10

Component Parameter Value
initial # filters 16
# ResNet blocks 3
ResNet blocks’ scale 112,12,12]
Evidence Encoder .
feature size 128
kernel size 3
dropout probability 0.5
activation Relu
output activation None
# hidden layers 2
hidden dimension 100
feature size 80
Latent Encoder ) )
activation Relu
output activation None

10
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Posterior Layer (diagonal Gaussian) # hidden layers 1

2 1dent'10a1 ngworks (for loc Iand scale_diag) hidden dimension 519

MultivariateNormalDiag

in[TFP| (2018) activation Relu
output activation None

Posterior Layer - # hidden layers 1

hidden feature maps hidden dimension 256

2 identical networks .

(for the residual connections of loc, scale_diag) feature size 40
activation Relu
output activation None

Bijective Layer (diagonal plus unit-rank affine) # hidden layers 2

3 identical networks . . .

(for bin_widths, bin_heights, and knot_slopes) hidden dimension 60

RationalQuadraticSpline activation tanh

in[TEP|(2018) output activation tanh
# bins 32
# splines 5
mask size 5
range_min =20

Prior Layer (diagonal Gaussian) # hidden layers 1

21dm¢malnq“mﬂ$(ﬂnlocgndsaﬂcﬂu@) hidden dimension 256

MultivariateNormalDiag

in[TFP|(2018) activation Relu
output activation None

Decoder - base distribution (unit rank Gaussian) initial # filters 64

3 identical networks ,

(for loc, scale_diag,scale_perturb_factor) # ResNet blocks 3

MultivariateNormalDiagPlusLowRank ResNet blocks’ scale (12,712,712

in[TEP (2018) kernel size 3
dropout probability 0.5
activation Relu
output activation None

Decoder - # hidden layers 2

hidden feature maps for the base distribution , i ,

. . hidden dimension 512

3 identical networks

(for the residual connections of : feature size 100

loc, scale_diag,scale_perturb_factor) sctivation Relu
output activation None
# flows 2

Decoder - autoregressive bijector (MAF) # MADEs/flow 5
batch normalization Yes
MADE: # hidden layers 2
MADE: hidden dimension 1024
MADE: activation Relu
MADE: output activation None

11
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MADE: input order random

MADE: hidden degrees equal
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