
Debiased Contrastive Learning with

multi-resolution Kolmogorov-Arnold Network for

Gravitational Wave Glitch Detection Appendix

1

1 Wasserstein distance andWasserstein loss Lwass

computation

The direct computation of the Wasserstein distance can be challenging due to
its optimization over the space of joint distributions. We implement the Wasser-
stein distance more practically by using Sinkhorn divergence [4]. Sinkhorn di-
vergence introduces entropy regularization to the optimal transport problem,
making it efficient to compute while retaining sensitivity to distributional char-
acteristics.

Given two distributions µ and ν, with corresponding samples {xi}ni=1 and
{yj}mj=1, the Sinkhorn divergence is defined as:

Wϵ(µ, ν) = min
γ∈Γ(µ,ν)

∑
i,j

γijc(xi, yj) + ϵ ·KL(γ∥µ⊗ ν), (1)

where:

• Γ(µ, ν): Set of all joint distributions with marginals µ and ν.

• γij : Transport plan between xi and yj .

• c(xi, yj): Cost function, often the squared Euclidean distance ∥xi − yj∥2.

• ϵ: Regularization parameter for entropy smoothing.

• KL(γ∥µ⊗ν): Kullback-Leibler divergence regularizing the transport plan.

• µ⊗ ν: Independent product of the distributions µ and ν.

1.1 Wasserstein loss Lwass(f(x
+), f(x−)) = Sinkhorn-divergence(f(x+), f(x−))

Our Wasserstein loss Lwass is defined as

Lwass(f(x
+), f(x−)) = min

γ∈Γ(f(x+),f(x−))

∑
i,j

γijc(f(x
+
i), f(x

−
j))+ϵ·KL(γ∥f(x+)⊗f(x−)),

(2)
where:

• Γ(f(x+), f(x−)): Set of all joint distributions between the embeddings of
positive samples f(x+) and negative samples f(x−).

• γij : Transport plan between f(x+i) and f(x
−
j).

• Cost function c(f(x+i), f(x
−
j)):

1
2∥f(x

+
i)− f(x−j)∥2.

• ϵ (0.01): Regularization parameter for entropy smoothing .

• KL(γ∥f(x+)⊗f(x−)): Kullback-Leibler divergence regularizing the trans-
port plan.

• f(x+)⊗ f(x−): Independent product of the embeddings’ distributions.

2

2 Proof of Theorem 1.

Theorem 1 (Robustness of wDCL to Data Imbalance):

Lwdcl is robust to data imbalance than Ldebiased.
Proof.
Let Lwdcl represent the Wasserstein-based Debiased Contrastive Loss, and

Ldebiased represent the standard Debiased Contrastive Loss, we will demonstrate
that the Wasserstein distance term in Lwdcl provides a more stable and repre-
sentative measure of dissimilarity between distributions, especially under data
imbalance.

1. Sensitivity of Ldebiased to Data Imbalance:

The Debiased Contrastive Loss Ldebiased is defined as:

Ldebiased = E(x,x+)∼ppos

− log
ef(x)

⊤f(x+)/τ

ef(x)⊤f(x+)/τ +
∑M
i=1

(
ef(x)

⊤f(x−
i

)/τ − γe2f(x)
⊤f(x−

i
)/τ

)

(3)

This loss function relies on pointwise similarities between embeddings f(x−i)
and f(x). Under data imbalance, where negative samples x−i dominate, the
pointwise similarities become biased, resulting in gradient updates that do not
reflect the true data structure!

It means that the variance of the gradient updates under data imbalance
becomes higher: Var(∇fLdebiased) is large due to this overrepresentation.

2. Robustness of the Wasserstein Distance:

The Wasserstein distance W (µ, ν) between two probability distributions µ and
ν over a metric space X is defined as:

W (µ, ν) = inf
γ∈Γ(µ,ν)

∫
X×X

d(x, y) dγ(x, y), (4)

where Γ(µ, ν) is the set of all couplings (joint distributions) with marginals
µ and ν, and d(x, y) is a distance metric.

a. Sensitivity to Distribution Geometry: The Wasserstein distance captures
global structural differences by considering optimal mass transport between dis-
tributions, not pointwise similarities.

b. Robustness to Data Imbalance: The Wasserstein distance evaluates the
entire distribution’s transport plan, making it less influenced by sample imbal-
ance and mitigating negative sample overrepresentation.

3

3. Wasserstein-based Debiased Contrastive Loss Lwdcl:

The Wasserstein-based Debiased Contrastive Loss is defined as:

Lwdcl(f, x, α, β) = λLwass(f(x
+), f(x(α)−))− βLN-pair(f(x), f(x

+), f(x(α)−)),
(5)

where Lwass represents the Wasserstein distance between positive and negative
samples.

4. Gradient Stability and Generalization Comparison:

Gradient Stability: The gradient for Lwdcl with respect to the model param-
eters f is given by:

∇fLwdcl = λ∇fLwass − β∇fLN-pair. (6)

The Wasserstein term involves integration over the distributions, leading to
smoother gradients:

Var(∇fLwdcl) < Var(∇fLdebiased). (7)

Generalization: Generalization error is given by the expected difference
between the true data distribution Pdata and the model’s learned distribution
Qmodel:

Ex∼Pdata
[L(f(x))]− Ex∼Qmodel

[L(f(x))]. (8)

For Lwdcl, this difference is minimized, as it reflects the global structure of
the data.

5. Mathematical Justification:

For Ldebiased: The gradient with respect to f(x) is influenced by individual
negative samples f(x−i). Overrepresentation of negative samples leads to biased
gradient updates.

For Lwdcl: The Wasserstein term involves integration over distributions:

∇fLwass ∝
∫
X

(
∇ff(x

+)−∇ff(x
−
i)
)
dγ(x+, x−i), (9)

leading to smoother gradients and less sensitivity to imbalance.
By incorporating the Wasserstein distance, Lwdcl smooths the effect of im-

balanced samples and better captures the global structure of the data, resulting
in:

• More Stable Optimization: Gradients are less volatile:

Var(∇fLwdcl) < Var(∇fLdebiased). (10)

4

• Better Generalization: The model learns embeddings that reflect the
true data distribution:

Ex∼Pdata
[L(f(x))]− Ex∼Qmodel

[L(f(x))] is minimized for Lwdcl. (11)

Therefore, mathematically, Lwdcl is more robust to data imbalance than
Ldebiased.

5

3 Proof of Theorem 2

Theorem 2 Let FKAN-W, FKAN-S, and FMLP be the hypothesis classes of KAN
with wavelet basis functions, B-spline basis functions, and MLP (Multilayer
Perceptron), respectively. The norm-based Rademacher complexity of these
function classes satisfies the following inequality:

Rn(FKAN-W) ≺ Rn(FKAN-S) ≺ Rn(FMLP), (12)

, where ≺ denotes a strict inequality.
Proof.
We begin with the empirical Rademacher complexity for a function class F

over a sample S = {x1, . . . , xn}:

Rn(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
, (13)

where σi are Rademacher random variables taking values in {−1, 1} with equal
probability, and f(xi) ∈ F represents the function applied to sample xi.

The Rademacher complexity can be bounded based on the norm of the
hypothesis class, using the inequality:

Rn(Fψ) ≤
λ√
n
· E
[
∥ψ∥Hψ

]
, (14)

where ∥ψ∥Hψ
is the norm of the basis function ψ in the appropriate Hilbert

space Hψ, and λ is a constant.
We compare the norms of the basis functions:
1. Wavelet Basis ψw: Wavelet functions have compact support and exhibit

localization in both time and frequency. TheH1 norm of a wavelet basis function
is given by:

∥ψw∥H1 =

∫ ∞

−∞

(
|ψw(x)|2 + |∇ψw(x)|2

)
dx.

Since wavelets are localized, this norm is relatively small, leading to a lower
Rademacher complexity.

2. B-Spline Basis ψs: Spline basis functions are smoother but more global
than wavelets. Their H1 norm is given by:

∥ψs∥H1 =

∫ 1

0

(
|ψs(x)|2 + |∇ψs(x)|2

)
dx. (15)

B-Splines typically have larger norms because they spread over larger inter-
vals and require more parameters, leading to a higher complexity compared to
wavelets.

3. MLP Functions: MLPs, with many parameters, exhibit high expressiv-
ity but also have very large norms due to the number of layers and parameters.
Therefore, the Rademacher complexity of MLPs grows significantly faster than
that of wavelet and spline functions.

6

To rigorously quantify these differences, we apply Dudley’s entropy integral:

Rn(F) ≤ 12√
n

∫ ∞

0

√
logN(ϵ,F , ∥ · ∥) dϵ, (16)

where N(ϵ,F , ∥·∥) is the covering number of F with ϵ-balls under the norm ∥·∥.
Since wavelets require fewer terms to represent functions, the covering number
is smaller for FKAN-W, followed by FKAN-S, and then FMLP.

Thus, integrating the bounds gives:

Rn(FKAN-W) ≤ 12√
n

∫ ∞

0

√
logN(ϵ,FKAN-W, ∥ · ∥) dϵ, (17)

with the same inequality holding for FKAN-S and FMLP.
Therefore, by combining norm-based bounds and entropy integrals, we con-

clude:
Rn(FKAN-W) ≺ Rn(FKAN-S) ≺ Rn(FMLP) (18)

7

4 Proof of Theorem 3

Theorem 3: Let FdcMltR-KAN-W, FdcMltR-KAN-S, and Fdc-MLP represent the
hypothesis classes of dcMltR-KAN with wavelet basis, B-spline basis, and dc-
MLP model, respectively. The upper-bound on the generalization error for these
models satisfies:

Egen(FdcMltR-KAN-W) ≺ Egen(FdcMltR-KAN-S) ≺ Egen(Fdc-MLP), (19)

where Egen(·) denotes the generalization error, and ≺ signifies strict inequality.
Proof.

1. Preliminaries

We are to prove that the upper bound on the generalization error for the models
satisfies: Egen(FdcMltR-KAN-W) ≺ Egen(FdcMltR-KAN-S) ≺ Egen(Fdc-MLP),

where:

• FdcMltR-KAN-W is the hypothesis class of the dcMltR-KAN model with
wavelet basis functions.

• FdcMltR-KAN-S is the hypothesis class of the dcMltR-KAN model with B-
spline basis functions.

• Fdc-MLP is the hypothesis class where MltR-KAN is replaced by an MLP.

The generalization error Egen(F) measures the difference between the ex-
pected loss and the empirical loss for a hypothesis class F :

Egen(F) = Ef∼F [Lexpected(f)− Lempirical(f)]. (20)

The Rademacher complexity Rn(F) of a hypothesis class F with sample size
n is a measure of its capacity, reflecting how well the class can fit random noise:

Rn(F) = Eσ,X

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
, (21)

where σi are independent Rademacher variables taking values ±1 with equal
probability, and X = {x1, . . . , xn} is the sample.

2. Relate generalization error to Rademacher complexity

We can have the relationships between the generalization error and the Rademacher
complexity:

Egen(F) ≤ 2Rn(F) + ϵ(n, δ), (22)

where ϵ(n, δ) is a term that diminishes as the sample size n increases and
confidence level δ is considered. Since ϵ(n, δ) is common for all models (assuming
the same n and δ), the primary factor influencing the generalization error is the
Rademacher complexity Rn(F).

8

3. Apply Theorem 2

From Theorem 2, we have the ordering of Rademacher complexities:

Rn(FdcMltR-KAN-W) ≺ Rn(FdcMltR-KAN-S) ≺ Rn(Fdc-MLP). (23)

Since the generalization error is directly proportional to the Rademacher
complexity, we have the ordering of generalization errors follows the same strict
inequalities:

Egen(FdcMltR-KAN-W) ≺ Egen(FdcMltR-KAN-S) ≺ Egen(Fdc-MLP). (24)

This result indicates that the dcMltR-KAN model with wavelet basis func-
tions has a strictly lower upper bound on the generalization error compared to
the versions with B-spline basis. This is because Wavelet Basis Functions offer
a sparse representation and capture localized features effectively, leading to a
more constrained hypothesis class with lower complexity.

9

5 Ablation studies of dcMltR-KAN with four
wavelets

Table 1: Ablation Study: Top-1 Accuracy and D-Index for Different Methods
(Datasets: O1, O2, and O3)

Dataset Method Top-1 Accuracy (mean ± std) D-Index (mean ± std)

O1 Baseline - CNN 0.9288 1.9027

Ablation Components:
w/ wDCL 0.9219± 0.0014 1.9187± 0.0015
w/ MltR-KAN 0.9254± 0.0069 1.9174± 0.0025

dcMltR-KAN
Haar 0.9817± 0.0017 1.9936± 0.0009
Mexican Hat 0.9804± 0.0016 1.9929± 0.0009
Db4 0.9772± 0.0014 1.9916± 0.0005
Sym4 0.9772± 0.0031 1.9913± 0.0018

O2 Baseline - CNN 0.9155 1.8576

Ablation Components:
w/ wDCL 0.8887± 0.0015 1.8154± 0.0014
w/ MltR-KAN 0.8850± 0.0059 1.9272± 0.0035

dcMltR-KAN
Haar 0.9799± 0.0072 1.9832± 0.0059
Mexican Hat 0.9731± 0.0028 1.9776± 0.0023
Db4 0.9744± 0.0076 1.9811± 0.0056
Sym4 0.9803± 0.0029 1.9847± 0.0021

O3 Baseline - CNN 0.8363 1.8175

Ablation Components:
w/ wDCL 0.8888± 0.0008 1.9293± 0.0004
w/ MltR-KAN 0.8639± 0.0018 1.8830± 0.0012

dcMltR-KAN
Haar 0.9009± 0.0019 1.9377± 0.0010
Mexican Hat 0.9005± 0.0007 1.9126± 0.0007
Db4 0.9045± 0.0005 1.9399± 0.0003
Sym4 0.9010± 0.0019 1.9378± 0.0012

10

6 Proof of Proposition 1

Proposition 1: Lwdcl with FNE is lower than the loss without FNE:
E(x,x(α)−)

[
LFNE
wdcl

]
< E(x,x−)

[
Lno FNE
wdcl

]
, where α is the the elimination ratio.

Statement: Let LFNE
wdcl(x) denote the Wasserstein Debiased Contrastive

Loss (wDCL) with False Negatives Elimination (FNE), and Lno FNE
wdcl (x) denote

the wDCL without FNE. Then, under the assumption that the set of negative
samples after FNE is a proper subset of the original negative samples, and that
the removed negatives are those with the highest similarity to the anchor sample
x, we have:

E(x,x+,x(α)−)

[
LFNE
wdcl(x)

]
< E(x,x+,x−)

[
Lno FNE
wdcl (x)

]
, (25)

where α is the elimination ratio, x− are negative samples, and x(α)− are the
negative samples after applying FNE.

Proof.
Let x be an anchor sample, x+ its positive counterpart, and N the set of all

negative samples.
Define N (α) ⊂ N as the set after FNE, where the top α fraction of negatives

most similar to x are removed.
Let f be the encoder mapping samples to normalized embeddings h = f(x),

h+ = f(x+), and h− = f(x−).
The N-pair contrastive loss without FNE is:

Lno FNE
N-pair = − log

 eh
⊤h+/τ

eh⊤h+/τ +
∑

x−∈N
eh⊤h−/τ

 . (26)

With FNE, it becomes:

LFNE
N-pair = − log

 eh
⊤h+/τ

eh⊤h+/τ +
∑

x−∈N (α)

eh⊤h−/τ

 . (27)

Since N (α) ⊂ N and the most similar negatives are removed, we have:∑
x−∈N (α)

eh
⊤h−/τ <

∑
x−∈N

eh
⊤h−/τ . (28)

This implies:

eh
⊤h+/τ

eh⊤h+/τ +
∑

x−∈N (α)

eh⊤h−/τ
>

eh
⊤h+/τ

eh⊤h+/τ +
∑

x−∈N
eh⊤h−/τ

. (29)

11

Since − log(x) is a decreasing function, it follows that:

LFNE
N-pair < Lno FNE

N-pair . (30)

For the Wasserstein loss Lwass, removing negatives closest to x may increase
the distance:

LFNE
wass ≥ Lno FNE

wass . (31)

The total loss difference is:

∆L = LFNE
wdcl − Lno FNE

wdcl = λ
(
LFNE
wass − Lno FNE

wass

)
− β

(
LFNE
N-pair − Lno FNE

N-pair

)
. (32)

Since LFNE
N-pair < Lno FNE

N-pair (from Equation 30), the second term in Equation
32 is negative. The first term is non-negative due to Equation 31.

By choosing β sufficiently large relative to λ, the decrease in N-pair loss
outweighs any increase in Wasserstein loss, ensuring ∆L < 0.

Taking expectations over the data distribution:

E
[
LFNE
wdcl

]
= E

[
Lno FNE
wdcl +∆L

]
< E

[
Lno FNE
wdcl

]
, (33)

since ∆L < 0.
Therefore, we have

E(x,x+,x(α)−)

[
LFNE
wdcl(x)

]
< E(x,x+,x−)

[
Lno FNE
wdcl (x)

]
.

12

7 Proof of Proposition 2

The expected WDCL loss with Similarity-Based Weighting (SBW) is lower than
without SBW:

E(x,vi)

[
LSBW
wdcl

]
< E(x,x−)

[
Lno SBW
wdcl

]
, (34)

where vi is the aggregated feature vector from the top k most similar samples
via SBW.

Proof

1. WDCL Loss Function:

The Weighted Decoupled Contrastive Loss (WDCL) for a sample x is
defined as:

Lwdcl = − log

(
ef(x)

⊤f(x+)/τ

ef(x)⊤f(x+)/τ +
∑
x− w(x, x−) ef(x)

⊤f(x−)/τ

)
, (35)

where:

• f(x) is the feature representation of sample x.

• x+ is a positive sample associated with x.

• x− are negative samples.

• w(x, x−) is the weight assigned to each negative sample.

• τ is a temperature parameter.

2. Effect of SBW:

• With SBW: Focuses on the top k most similar negatives, aggregat-
ing them into vi and assigning appropriate weights.

• Without SBW: Considers a larger set of negatives, often with equal
weighting.

3. Comparison of Denominators:

• With SBW:

DSBW = ef(x)
⊤f(x+)/τ + wSBW · ef(x)

⊤vi/τ , (36)

where wSBW is the aggregated weight for the negative vi.

• Without SBW:

Dno SBW = ef(x)
⊤f(x+)/τ +

∑
x−

ef(x)
⊤f(x−)/τ . (37)

4. Key Observation:

13

• Aggregated Negatives: SBW’s aggregation leads to a more in-
formative negative vi, but the overall denominator DSBW grows less
than Dno SBW.

• Denominator Size: A smaller denominator in SBW means the
fraction inside the logarithm is larger.

5. Implication on Loss: Since the negative logarithm function is decreas-
ing, a larger fraction results in a lower loss:

LSBW
wdcl < Lno SBW

wdcl . (38)

6. Expectation over Data:

Taking expectations over the data distribution confirms the inequality:

E(x,vi)

[
LSBW
wdcl

]
< E(x,x−)

[
Lno SBW
wdcl

]
. (39)

Thus, by focusing on the most informative negatives and weighting them
appropriately, SBW reduces the expected WDCL loss compared to not using
SBW.

14

8 Proof of Proposition 3

The total loss in the Wasserstein Debiased Contrastive Learning (wDCL) frame-
work is a sum over all resolution levels:

Lwdcl =

L∑
l=1

ω(l)L(l), (40)

where:

• L(l) is the loss at resolution level l.

• ω(l) ≥ 0 are learned weights adjusting the contribution of each level.

1. Applying SBW at Each Level Reduces Loss:
From Proposition 2, we know that applying SBW to the feature representa-

tions reduces the expected loss at a single resolution level:

E
(x,v

(l)
i)

[
L(l),SBW

]
< E(x,x−)

[
L(l),no SBW

]
, (41)

where:

• v
(l)
i is the SBW-refined feature vector at level l.

• L(l),SBW is the loss at level l with SBW.

• L(l),no SBW is the loss at level l without SBW.

2. Summing Over All Levels:
Since the inequality holds at each level l, we can multiply both sides by the

non-negative weights ω(l) and sum over all levels:

L∑
l=1

ω(l)E
(x,v

(l)
i)

[
L(l),SBW

]
<

L∑
l=1

ω(l)E(x,x−)

[
L(l),no SBW

]
. (42)

3. Expressing the Overall Expected Loss:
The left side represents the overall expected loss with SBW applied:

Exi∼pdata

[
LSBW
wdcl

]
=

L∑
l=1

ω(l)E
(x,v

(l)
i)

[
L(l),SBW

]
. (43)

Similarly, the right side is the overall expected loss without SBW:

Exi∼pdata

[
Lno SBW
wdcl

]
=

L∑
l=1

ω(l)E(x,x−)

[
L(l),no SBW

]
. (44)

As such, combining the above, we have:

Exi∼pdata

[
LSBW
wdcl

]
< Exi∼pdata

[
Lno SBW
wdcl

]
. (45)

15

This inequality demonstrates that applying SBW before MltR-KAN across
all resolution levels reduces the overall expected wDCL loss compared to not
applying SBW.

16

9 Visualization of the explainability enhance-
ment process in MltR-KAN

The CNN encoder initially extracts high-level features from the normalized SNR
data, which are then decomposed by the Haar wavelet into approximation (cA)
and detail coefficients (cD1, cD2), which capture the global and local data
behaviors of the SNR feature after CNN. This provides a multi-resolution view
of the learned representation, enhancing the transparency and interpretability
of the feature extraction process.

The combined use of a CNN encoder followed by Haar wavelet transforma-
tion helps us clearly see what features are being learned from the SNR data.
The CNN extracts high-level features, while the Haar wavelet further breaks
down these features into explainable components, covering both broad trends
and finer details. This multi-stage process makes the learned representation
more transparent and easier to understand, enhancing explainability.

Figure S1: Visualization of the explainability enhancement process in MltR-
KAN for the SNR feature from gravitational wave O1 data. The original nor-
malized SNR data is processed by a CNN encoder to extract high-level features.
The learned CNN feature is subsequently decomposed using Haar wavelet trans-
formation, resulting in both approximation (cA) and detail coefficients (cD1,
cD2), which provide a multi-resolution view of the learned representation, en-
hancing transparency and interpretability of the feature extraction process

17

10 Impact of False Negative Elimination (FNE)
on Hierarchical Loss During Training under
MltR-KAN

Figure S2: Simulated impact of False Negative Elimination (FNE) on Hierar-
chical Loss During Training. This figure compares the hierarchical loss values
for models trained with and without the False Negative Elimination (FNE) pro-
cess over 50 epochs. The green line represents the model incorporating FNE,
while the red dashed line shows the model without FNE. The model with FNE
exhibits a consistently lower loss, indicating that FNE helps to effectively min-
imize false negatives, leading to enhanced learning and improved convergence
during training

18

11 Impact of Similarity-BasedWeighting (SBW)
on Hierarchical Loss During Training under
MltR-KAN

Figure S3:Simulated impact of Similarity-Based Weighting (SBW) on Training
Loss. This figure illustrates the effect of incorporating SBW into a simulated
training process. The blue line represents the training loss with SBW, while the
orange dashed line shows the training loss without SBW. It is evident that using
SBW results in a more rapid decline in training loss, indicating enhanced model
convergence and efficiency. The reduced overall loss with SBW suggests better
feature representation, ultimately contributing to improved model performance.

19

12 Baseline comparisons

12.1 CPC(Contrastive Predictive Coding) Result

Contrastive Predictive Coding (CPC) [7] is an unsupervised learning method
to extract robust high-level representations from sequential data such as audio,
images, text, and reinforcement learning trajectories. The CPC architecture
combines an encoder and an autoregressive model to capture temporal or spatial
dependencies, encoding input data into a compact latent space that emphasizes
essential features while filtering noise. An autoregressive model then processes
these encoded representations to create a context vector, preserving temporal
relationships and summarizing the information necessary for future predictions.
Using a contrastive loss function, specifically InfoNCE, CPC maximizes the
mutual information between the context vector and subsequent data, refining
its ability to predict future sequence elements. However, CPC has limitations:
it is best suited to sequential data, relying on temporal or spatial coherence; it
is sensitive to the quality of negative samples, which are essential for effective
contrastive learning; and, while it captures broad contextual information, it may
overlook finer details.

Table 2: Performance Metrics for Dataset O1, Dataset O2, and Dataset O3

Metric Dataset O1 Dataset O2 Dataset O3

Accuracy 0.775202 0.525758 0.510133
Precision 0.773208 0.499888 0.455736
Recall 0.775202 0.525758 0.510133
F1 Score 0.771829 0.475751 0.453775
D-index 1.877014 1.696813 1.638236

12.2 TS-TCC(Time-Series Representation Learning via Tem-
poral and Contextual Contrasting) Result

Time-Series Representation Learning via Temporal and Contextual Contrast-
ing (TS-TCC) [3] is an unsupervised framework designed to extract powerful
representations from time-series data, which makes it especially effective in sce-
narios with limited labeled data. By generating two augmented views of the
input, one with weaker augmentations and the other with stronger augmenta-
tions, TSC learns temporal dependencies by predicting future segments of one
view using the context of the other. This cross-view prediction strengthens
the model’s ability to handle variations from augmentation and capture essen-
tial patterns. The contextual contrasting module of TS-TCC further enhances
learning by maximizing similarity between contexts of the same sample and
minimizing similarity with others, promoting discriminative and generalizable
representations. However, TS-TCC demands high computational power due to
its use of augmented views and an autoregressive model, and it can be sensitive

20

to hyperparameters. Additionally, while capturing general temporal patterns
effectively, TS-TCC may underperform on tasks that require very fine-grained
or specialized features.

Table 3: TS-TCC: Performance Metrics for Dataset O1, Dataset O2, and
Dataset O3

Metric Dataset O1 Dataset O2 Dataset O3

Accuracy 0.980205 0.976989 0.843326
Precision 0.980719 0.977677 0.840732
Recall 0.980205 0.976989 0.843326
F1 Score 0.980179 0.977055 0.839187
D-index 1.967096 1.984084 1.819134

12.3 SimCLR (Simple Contrastive Learning of Represen-
tations) Result

SimCLR [1] is a self-supervised framework for learning visual representations,
reducing contrastive learning by removing complex architectures and memory
banks in favor of large batch sizes and strong enhancements. Train by maxi-
mizing agreement between two augmented views of the same image, generated
through a data augmentation module that applies transformations such as crop-
ping and color distortion. These views, forming a positive pair, pass through
an encoder and projection head to a latent space where contrastive loss aligns
similar images. This approach allows SimCLR to achieve performance close
to fully supervised models on datasets such as ImageNet. However, SimCLR
requires large batch sizes, making it computationally demanding, and its per-
formance heavily depends on carefully chosen augmentations. While strong at
capturing general visual features, SimCLR may miss fine details that other,
more task-specific methods can capture.

Table 4: SimCLR: Performance Metrics for Dataset O1, Dataset O2, and
Dataset O3

Metric Dataset O1 Dataset O2 Dataset O3

Accuracy 0.969796 0.966020 0.828186
Precision 0.971033 0.968858 0.826369
Recall 0.969796 0.966020 0.828186
F1 Score 0.969475 0.966591 0.822599
D-index 1.971161 1.948001 1.826083

21

12.4 Fully-supervised deep learning Models

To leverage the time-series structure of the data from all three observing runs
(O1, O2, O3), we begin by sorting the dataset chronologically, using earlier
data points to train the models and later points to test. Since our dataset is
heavily imbalanced, we ensure that both the training and testing sets reflect
the same label distribution to maintain a fair performance evaluation across all
deep learning models.

For model testing, we split the data, dedicating 80% to training and the
remaining 20% to testing. The following machine-learning models were imple-
mented:

• GAN-DNN Classifier [5]: This model employs a Generative Adversar-
ial Network (GAN) consisting of a generator and a discriminator to aug-
ment the dataset with synthetic samples. The generator network takes
random noise as input and produces synthetic data samples, utilizing two
dense layers with LeakyReLU activation and batch normalization to sta-
bilize training. The discriminator, structured to classify both real and
synthetic samples, has two dense layers with LeakyReLU activation fol-
lowed by a final dense layer with softmax activation to output labels. The
GAN generates 20,000 synthetic samples with three additional labels to
balance the original dataset. The final labeled dataset, combining real
and synthetic samples, is used for classification training with categorical
cross-entropy as the loss function.

• CNN: This Convolutional Neural Network (CNN) is designed for sequen-
tial data classification. It begins with an input layer that preserves the
original shape of the sequence. Two 1D convolutional layers with 64 fil-
ters and a kernel size of 3 apply ReLU activation while maintaining the
sequence length. The output is flattened and then passed through two
dense layers with 64 neurons and ReLU activations, which identify com-
plex patterns. Finally, a softmax output layer, with neurons equal to the
target classes, provides class probabilities for classification.

• Gated Recurrent Unit (GRU) [2]: This GRU model consists of three
layers with 128, 256, and 128 neurons, respectively. Each GRU layer is
followed by a dropout layer with rates of 0.1, 0.2, and 0.3. The GRU cells
include an update gate and a reset gate, both with sigmoid activation.
The update gate controls the balance between the previous hidden state
and the current node’s hidden state, while the reset gate controls the
degree of forgetting of the previous hidden state in calculating the new
candidate state. The model ends with a dense output layer that uses
softmax activation for class probability output, optimized with categorical
cross-entropy.

• Residual Networks (ResNet) [6]: A ResNet-50 model is implemented,
starting with an initial convolutional layer (64 filters, stride of 2) followed

22

by batch normalization, ReLU activation, and a max-pooling layer (pool
size of 3, stride of 2). The main architecture includes four stages of bot-
tleneck blocks with configurations [3, 4, 6, 3]. Each bottleneck block
reduces dimensions, applies a convolution, and then restores dimensions
with shortcut connections between the input and output of each block.
Batch normalization and ReLU activation are applied throughout. Down-
sampling occurs at the start of each new stage by adjusting the stride.
The model concludes with global average pooling and a dense output
layer with softmax activation to produce class probabilities. Categorical
cross-entropy is used as the loss function for multiclass classification.

• Transformer [8]: This model utilizes a Transformer architecture with a
multi-head attention mechanism, configured with 32 heads alongside feed-
forward layers. Each Transformer block includes a multi-head attention
layer and a feed-forward neural network consisting of dense layers with
ReLU activation. Layer normalization is applied both before and after
the feed-forward network, while dropout layers are included after the at-
tention and feed-forward layers for regularization. After attention and
feed-forward processing, the output is flattened and passed through dense
layers for final classification.

Each model was trained for 100 epochs, experimenting with different learning
rates (1e-3, 1e-4, 1e-5) and batch sizes (64, 128, 256, 512). The optimal model
configuration was selected based on the highest accuracy and D-index, ensuring
it did not overfit the training data.

23

13 Silhouette analysis of O1, O2, and O3 data
before and after dcMltR-KAN

Table 5: Silhouette analysis under UMAP

Data n neighbors (UMAP) Silhouette Score (K-Mean clustering)

Original O1 data

5 0.1847
10 0.2490
15 0.1991
20 0.3094
30 0.2457
50 0.2787

O1 data after dcMltR-KAN

5 0.3958
10 0.5028
15 0.5307
20 0.5319
30 0.5219
50 0.5401

Original O2 data

50 0.2293
60 0.2323
70 0.2139
80 0.2088
90 0.1966
100 0.2328

O2 data after dcMltR-KAN

50 0.4754
60 0.4963
70 0.5130
80 0.4748
90 0.5125
100 0.5041

Original O3 data

50 -0.0807
60 -0.0181
70 -0.0733
80 -0.0583
90 0.1428
100 0.1213

O3 data after dcMltR-KAN

50 0.4317
60 0.4450
70 0.4291
80 0.4237
90 0.4393
100 0.4391

24

Note: UMAP is applied to original O1/O2/O3 and their corre-
sponding data after dcMltR-KAN before Kmeans

25

14 dcMltR-KAN results on EMODB and abla-
tion study

Table S5: dcMltR-KAN results on EMODB and ablation study

Method Top1 Accuracy (mean ± std) D-Index (mean ± std)

Ablation components:

w/o wDCL 0.8503± 0.0277 1.9042± 0.0181
w/o MltR-KAN 0.8379± 0.0103 1.8955± 0.0067

dcMltR-KAN
Mexican-hat 0.9326± 0.0035 1.9573± 0.0022

Sym4 0.9186± 0.0055 1.9483± 0.0035
Db4 0.9180± 0.0036 1.9478± 0.0023

Haar 0.8866± 0.0061 1.9278± 0.0040

26

15 Preprocessing and Feature Extraction for EMODB data

The EMODB dataset consists of raw mono audio files, each sampled at 16,000 Hz and approximately two
seconds in duration. The audio files were first blocked into small chunks of audio signals, i.e., windowing,
where each window has a length of 1024 samples (block size) and is spaced by hop of 512 samples (hop
size). For each windowed segment, we extracted features such as Mel Frequency Cepstral Coefficients
(MFCC) (first 14 coefficients), spectral centroid, spectral bandwidth, spectral contrast, spectral rolloff, Zero-
Crossing Rate (ZCR), Root Mean Square Energy (RMS), and fundamental frequency (F0). Table 1 lists the
dimensions of each feature. After feature extraction for each window, we computed two statistics, mean
and standard deviation, to represent the overall characteristics of the audio file by aggregating all the
instantaneous features. Figure 1 illustrates the preprocessing and feature extraction process.

Table 1. Audio Dataset Features
Features Feature Dim. for Each Windowed Segment Aggregated Feature Dim. for Each File
MFCC 14 28
Spectral Centroid 1 2
Spectral Bandwidth 1 2
Spectral Contrast 7 14
Spectral Rolloff 1 2
Zero-Crossing Rate 1 2
RMS Energy 1 2
F0 1 2

Figure S1. Feature Extraction of EMODB data. Each audio file was divided into smaller segments. We
then computed the features for each segment as detailed in Table 1. After all features are extracted for
each window, we aggregated all these instantaneous features by computing mean and standard deviation
to represent the audio file.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-

work for contrastive learning of visual representations, 2020.

[2] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation, 2014.

[3] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli

Li, and Cuntai Guan. Time-series representation learning via temporal and contextual

contrasting, 2021.

[4] Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouve,

and Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn di-

vergences. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 2681–2690, 2019.

[5] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks,
2014.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition, 2015.

[7] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive

predictive coding, 2019.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

27

