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1 Wasserstein distance and Wasserstein loss Ly s
computation

The direct computation of the Wasserstein distance can be challenging due to
its optimization over the space of joint distributions. We implement the Wasser-
stein distance more practically by using Sinkhorn divergence [4]. Sinkhorn di-
vergence introduces entropy regularization to the optimal transport problem,
making it efficient to compute while retaining sensitivity to distributional char-
acteristics.

Given two distributions p and v, with corresponding samples {x;}? ; and
{y;}jL1, the Sinkhorn divergence is defined as:

We(p,v) = min iic(xs,y5) +€- KL Qv), 1
(1, v) 7EF(W);%( vj) C1I=3% (1)

where:

(i, v): Set of all joint distributions with marginals p and v.

e 7;;: Transport plan between x; and y;.

c(wi,y;): Cost function, often the squared Euclidean distance |z; — y;||*.

e ¢: Regularization parameter for entropy smoothing.

KL(v||p®v): Kullback-Leibler divergence regularizing the transport plan.

1 ® v: Independent product of the distributions p and v.

1.1 Wasserstein 1oss Lyass(f(21), f(z7)) = Sinkhorn-divergence(f(z"), f(z7))

Our Wasserstein 10ss Lyags is defined as

Lyass (f(z7), f(27)) D vielf (@), fla; ) +eKLOYf (o f (7)),

= min
YEL(f(zt),f(z7)) 07
(2)

where:

o I'(f(z™), f(z7)): Set of all joint distributions between the embeddings of
positive samples f(z7) and negative samples f(x™).

7i;: Transport plan between f(z;) and f(@y).

Cost function e(f(x; ), f(z;)): 311 F(xf) — Fa;)%

€ (0.01): Regularization parameter for entropy smoothing .

KL(v||f(z*)® f(x7)): Kullback-Leibler divergence regularizing the trans-
port plan.

f(zT) ® f(xz™): Independent product of the embeddings’ distributions.



2 Proof of Theorem 1.

Theorem 1 (Robustness of wDCL to Data Imbalance):

Lwqel 18 robust to data imbalance than Lgebiased-

Proof.

Let Lyqc represent the Wasserstein-based Debiased Contrastive Loss, and
Ldebiased Tepresent the standard Debiased Contrastive Loss, we will demonstrate
that the Wasserstein distance term in Lyqc provides a more stable and repre-
sentative measure of dissimilarity between distributions, especially under data
imbalance.

1. Sensitivity of Lgcbiasea to Data Imbalance:

The Debiased Contrastive Loss Lgchiasea 1S defined as:

ef@ T f@ty/r

Lgebiased = By 4+ —log
(w2 ) ~Ppos @ T /7 4 M (efuﬁf(z;)h _ 762f(m)7f(m;)/7>

(3)
This loss function relies on pointwise similarities between embeddings f(x;)
and f(z). Under data imbalance, where negative samples x; dominate, the
pointwise similarities become biased, resulting in gradient updates that do not
reflect the true data structure!
It means that the variance of the gradient updates under data imbalance
becomes higher: Var(V s Ldebiased) is large due to this overrepresentation.

2. Robustness of the Wasserstein Distance:

The Wasserstein distance W (u, v) between two probability distributions p and
v over a metric space X is defined as:

W)= it [ dy) iy, @
yel(u) Jxxx

where T'(u, v) is the set of all couplings (joint distributions) with marginals
w and v, and d(z,y) is a distance metric.

a. Sensitivity to Distribution Geometry: The Wasserstein distance captures
global structural differences by considering optimal mass transport between dis-
tributions, not pointwise similarities.

b. Robustness to Data Imbalance: The Wasserstein distance evaluates the
entire distribution’s transport plan, making it less influenced by sample imbal-
ance and mitigating negative sample overrepresentation.



3. Wasserstein-based Debiased Contrastive Loss Lyqci:

The Wasserstein-based Debiased Contrastive Loss is defined as:

Ewdcl(.ﬂ x, o, 5) = )‘ﬁwass(f<$+)7 f((E(Oé)_)) - B*CN—pair(f(x)a f(.%‘+)7 f(x(a)_)),

(5)
where Lyass represents the Wasserstein distance between positive and negative
samples.

4. Gradient Stability and Generalization Comparison:

Gradient Stability: The gradient for Lyqc with respect to the model param-
eters f is given by:

Vfﬂwdcl = )\vfﬁwass - ﬁvf['N-paib (6)

The Wasserstein term involves integration over the distributions, leading to
smoother gradients:

VaI‘(VfAdecl) < Var(vfﬁdebiased)- (7)

Generalization: Generalization error is given by the expected difference
between the true data distribution Pgai, and the model’s learned distribution

Qmodel:

B Pasea [L(S (2))] = EanQuuoaa [£(f (2))]- (8)

For Lyqel, this difference is minimized, as it reflects the global structure of
the data.

5. Mathematical Justification:

For Lgebiased: The gradient with respect to f(z) is influenced by individual
negative samples f(z; ). Overrepresentation of negative samples leads to biased
gradient updates.

For Lyaci: The Wasserstein term involves integration over distributions:

V) Lopas o /X (Vi /(@) =V f@0)) dr(at, a0, (9)

leading to smoother gradients and less sensitivity to imbalance.

By incorporating the Wasserstein distance, Lyq4c smooths the effect of im-
balanced samples and better captures the global structure of the data, resulting
in:

e More Stable Optimization: Gradients are less volatile:

Var(Vfﬁwdcl) < Var(Vdeebiased). (10)



e Better Generalization: The model learns embeddings that reflect the
true data distribution:

Epn P [L(f(2))] = Exn@roaa [L(f(2))]  is minimized for Lyga. (11)

Therefore, mathematically, Lyqc is more robust to data imbalance than
£debiased~



3 Proof of Theorem 2

Theorem 2 Let Fxan-w, FKAN-S, and Fyp be the hypothesis classes of KAN
with wavelet basis functions, B-spline basis functions, and MLP (Multilayer
Perceptron), respectively. The norm-based Rademacher complexity of these
function classes satisfies the following inequality:

Rn(Fran-w) < Rp(Fran-s) < Rn(Furp), (12)

, where < denotes a strict inequality.

Proof.

We begin with the empirical Rademacher complexity for a function class F
over a sample S = {z1,...,z,}:

Rn(F) = IEa’ [Sup l Zazf(xz)‘| ) (13)

where o; are Rademacher random variables taking values in {—1,1} with equal
probability, and f(x;) € F represents the function applied to sample z;.

The Rademacher complexity can be bounded based on the norm of the
hypothesis class, using the inequality:

Ra(Fy) < % E [l ] (14)

where [[1)[|3, is the norm of the basis function 9 in the appropriate Hilbert
space H,, and A is a constant.

We compare the norms of the basis functions:

1. Wavelet Basis 1,,: Wavelet functions have compact support and exhibit
localization in both time and frequency. The H' norm of a wavelet basis function
is given by:

[Ywllm = /_OO (Jw (@) + |Vibu (2)?) da.

Since wavelets are localized, this norm is relatively small, leading to a lower
Rademacher complexity.

2. B-Spline Basis ¢;: Spline basis functions are smoother but more global
than wavelets. Their H' norm is given by:

lballzn = / (6s()]? + |Vba(2)[?) d. (15)

B-Splines typically have larger norms because they spread over larger inter-
vals and require more parameters, leading to a higher complexity compared to
wavelets.

3. MLP Functions: MLPs, with many parameters, exhibit high expressiv-
ity but also have very large norms due to the number of layers and parameters.
Therefore, the Rademacher complexity of MLPs grows significantly faster than
that of wavelet and spline functions.



To rigorously quantify these differences, we apply Dudley’s entropy integral:

Ru(F) < % / " g N, F. T de, (16)
0

where N (e, F, ||-||) is the covering number of F with e-balls under the norm || ||.
Since wavelets require fewer terms to represent functions, the covering number
is smaller for Fxan.w, followed by Fkan.s, and then Fyrp.

Thus, integrating the bounds gives:

12 >
R (Fran-w) < 7/ Vog N (e, Fkan-w, || - |]) de, (17)
v Jo

with the same inequality holding for Fxan.s and Fyp-
Therefore, by combining norm-based bounds and entropy integrals, we con-
clude:
Ry (Fran-w) < Rn(Fran-s) < Rn(FuLp) (18)



4 Proof of Theorem 3

Theorem 3: Let FyemitR-KAN-W, FdeMItR-KAN-S, and Fqe.mrp represent the
hypothesis classes of dcMItR-KAN with wavelet basis, B-spline basis, and dc-
MLP model, respectively. The upper-bound on the generalization error for these
models satisfies:

Egen(FaeMitR-KAN-W) < Egen (FdeM1tR-KAN-S) < Egen(Fde-MLP), (19)

where Egen(+) denotes the generalization error, and < signifies strict inequality.
Proof.

1. Preliminaries

We are to prove that the upper bound on the generalization error for the models

satisfies: Egen(FaeMitR-KAN-W) =< Egen (FdeMitR-KAN-S) < Egen(Fde-MLP),
where:

o FycMitR-KAN-w 1S the hypothesis class of the dcMItR-KAN model with
wavelet basis functions.

o F4cMItR-KAN-s 18 the hypothesis class of the dcMItR-KAN model with B-
spline basis functions.

o Fyc.mLp is the hypothesis class where MItR-KAN is replaced by an MLP.

The generalization error Egen(F) measures the difference between the ex-
pected loss and the empirical loss for a hypothesis class F:

ggen (-F) = IE:ffv]:[Lexpected (f) - Lempirical(f)]' (20)

The Rademacher complexity R, (F) of a hypothesis class F with sample size
n is a measure of its capacity, reflecting how well the class can fit random noise:

n

1
Rn(F) =Eq x |sup —
feF Mz

O'if($i)] ; (21)
1

where o; are independent Rademacher variables taking values +1 with equal
probability, and X = {z1,...,x,} is the sample.

2. Relate generalization error to Rademacher complexity

We can have the relationships between the generalization error and the Rademacher
complexity:
Egen(F) < 2R (F) + €(n, ), (22)

where €(n,d) is a term that diminishes as the sample size n increases and
confidence level § is considered. Since €(n, §) is common for all models (assuming
the same n and ¢), the primary factor influencing the generalization error is the
Rademacher complexity R, (F).



3. Apply Theorem 2

From Theorem 2, we have the ordering of Rademacher complexities:
R (FacMitr-KAN-W) < R (Faemitr-KAN-8) < R (Fde-MLP)- (23)

Since the generalization error is directly proportional to the Rademacher
complexity, we have the ordering of generalization errors follows the same strict
inequalities:

Egen (FacMR-KAN-W) < Egen (FaeMitR-KAN-3) < Egen(Fde-MLP)- (24)

This result indicates that the dcMItR-KAN model with wavelet basis func-
tions has a strictly lower upper bound on the generalization error compared to
the versions with B-spline basis. This is because Wavelet Basis Functions offer
a sparse representation and capture localized features effectively, leading to a
more constrained hypothesis class with lower complexity.



5 Ablation studies of dcMItR-KAN with four
wavelets

Table 1: Ablation Study: Top-1 Accuracy and D-Index for Different Methods
(Datasets: 01, 02, and 03)
Dataset Method

Top-1 Accuracy (mean + std) D-Index (mean =+ std)

o1 Baseline - CNN 0.9288 1.9027
Ablation Components:
w/ wDCL 0.9219 £+ 0.0014 1.9187 + 0.0015
w/ MItR-KAN 0.9254 £+ 0.0069 1.9174 + 0.0025
dcMItR-KAN
Haar 0.9817 4+ 0.0017 1.9936 + 0.0009
Mezxican Hat 0.9804 £+ 0.0016 1.9929 + 0.0009
Dby, 0.9772 4+ 0.0014 1.9916 + 0.0005
Sym4 0.9772 + 0.0031 1.9913 + 0.0018
02 Baseline - CNN 0.9155 1.8576
Ablation Components:
w/ wDCL 0.8887 £+ 0.0015 1.8154 £+ 0.0014
w/ MltR-KAN 0.8850 £ 0.0059 1.9272 + 0.0035
dcMItR-KAN
Haar 0.9799 £+ 0.0072 1.9832 + 0.0059
Mezxican Hat 0.9731 £ 0.0028 1.9776 + 0.0023
Dby 0.9744 £+ 0.0076 1.9811 + 0.0056
Sym4, 0.9803 £ 0.0029 1.9847 + 0.0021
03 Baseline - CNN 0.8363 1.8175

Ablation Components:

w/ wDCL 0.8888 4+ 0.0008 1.9293 + 0.0004

w/ MltR-KAN 0.8639 £+ 0.0018 1.8830 + 0.0012
dcMItR-KAN

Haar 0.9009 + 0.0019 1.9377 + 0.0010

Mezican Hat 0.9005 £ 0.0007 1.9126 + 0.0007

Dby, 0.9045 £ 0.0005 1.9399 + 0.0003

Sym/, 0.9010 £ 0.0019 1.9378 + 0.0012
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6 Proof of Proposition 1

Proposition 1: Lygqc with FNE is lower than the loss without FNE:
E(z,2(a)-) [,Cfvgg] <E@az) [ESV%CI?NE}, where « is the the elimination ratio.

Statement: Let £ENE(z) denote the Wasserstein Debiased Contrastive
Loss (wWDCL) with False Negatives Elimination (FNE), and £29E5NE(z) denote
the wDCL without FNE. Then, under the assumption that the set of negative
samples after FNE is a proper subset of the original negative samples, and that
the removed negatives are those with the highest similarity to the anchor sample
x, we have:

E(m,x*,x(a)*) [Eggg(x)] < E(z,m*,a:*) [LQ%(ENE(I)] s (25)

where « is the elimination ratio, ™~ are negative samples, and z(a)~ are the
negative samples after applying FNE.

Proof.

Let  be an anchor sample, x " its positive counterpart, and N the set of all
negative samples.

Define N'(a) C NV as the set after FNE, where the top « fraction of negatives
most similar to x are removed.

Let f be the encoder mapping samples to normalized embeddings h = f(x),
h* = f(zT), and h™ = f(z7).

The N-pair contrastive loss without FNE is:

FNE ehht/r
EN—pair = 710g ehTh+/T + Z 61’17}1*/7' (26)

z= €N

With FNE, it becomes:
h™ht/r
FNE __ €

EN—pair - 10g ehTh+/T + Z eh‘rh— /T (27)

z=eN ()

Since N(a) C N and the most similar negatives are removed, we have:

Z eh' T/ < Z e/, (28)

z=eN(a) z—eN
This implies:
ehht/r ehht/r
ehTh+/T + Z ehTh*/‘r > ehTh+/T + Z ehTh*/‘r' (29)
z—eN (@) z= €N

11



Since —log(x) is a decreasing function, it follows that:

FNE FNE

‘CN—pair < Erﬁf?pair . (30)

For the Wasserstein loss Lyass, removing negatives closest to « may increase
the distance:

L:FNE > Eno FNE. (31)

wass — wass

The total loss difference is:

AL = EVFVIC\{E o E\r,lv(:jgNE =\ (EFNE _ [no FNE) o ﬂ (EFNE _ [no FNE) ) (32)

wass wass -pair N-pair

Since .CEI_\IpEair < Er&‘fpﬂﬁE (from Equation 30), the second term in Equation
32 is negative. The first term is non-negative due to Equation 31.

By choosing 3 sufficiently large relative to A, the decrease in N-pair loss
outweighs any increase in Wasserstein loss, ensuring AL < 0.

Taking expectations over the data distribution:

E [Lona] =E [Coad™F + AL] <E [L3057"], (33)

since AL < 0.

Therefore, we have

E(x,m*,x(a)*) [Egvgg(l’)] < E(x,x*,x*) ['C\IzlvodgNE<x)] .

12



7 Proof of Proposition 2

The expected WDCL loss with Similarity-Based Weighting (SBW) is lower than
without SBW:
B [£300] < Eam) [Laaa™ ] (34)

wdcl

where v; is the aggregated feature vector from the top & most similar samples
via SBW.

Proof

1. WDCL Loss Function:
The Weighted Decoupled Contrastive Loss (WDCL) for a sample z is

defined as:
f@ T )T
[:wdcl = — log ef(z)Tf(m+)/T + Zw— ”LU(JZ, J?_) ef(ac)Tf(m*)/T ) (35)
where:

e f(x) is the feature representation of sample x.

e 27T is a positive sample associated with x.

e 1~ are negative samples.

e w(z,x”) is the weight assigned to each negative sample.

e T is a temperature parameter.
2. Effect of SBW:

e With SBW: Focuses on the top k£ most similar negatives, aggregat-
ing them into v; and assigning appropriate weights.

e Without SBW: Considers a larger set of negatives, often with equal
weighting.

3. Comparison of Denominators:
¢ With SBW:

1@ f @)/ HORSS (36)

Dspw =€ + wsBw - €

where wspw is the aggregated weight for the negative v;.
e Without SBW:

Do spw = e/ @ F@/m 4 Z f@ @)/ (37)

X

4. Key Observation:

13



e Aggregated Negatives: SBW's aggregation leads to a more in-
formative negative v;, but the overall denominator Dggw grows less
than Dn0 SBW -

e Denominator Size: A smaller denominator in SBW means the
fraction inside the logarithm is larger.

5. Implication on Loss: Since the negative logarithm function is decreas-
ing, a larger fraction results in a lower loss:

L3 < Lyad™. (38)

6. Expectation over Data:
Taking expectations over the data distribution confirms the inequality:

Evi) [Co50] < Ewam) [L295EY]. (39)

Thus, by focusing on the most informative negatives and weighting them
appropriately, SBW reduces the expected WDCL loss compared to not using
SBW.

14



8 Proof of Proposition 3

The total loss in the Wasserstein Debiased Contrastive Learning (wDCL) frame-
work is a sum over all resolution levels:

L
Lyaa =Y wPLO, (40)
=1

where:

e £ is the loss at resolution level .

e w®) >0 are learned weights adjusting the contribution of each level.

1. Applying SBW at Each Level Reduces Loss:
From Proposition 2, we know that applying SBW to the feature representa-
tions reduces the expected loss at a single resolution level:

E, [E(l),SBW} < Eipam) {ﬁ(l),no SBW} ’ (41)

(-'L'vvil))
where:
. vgl) is the SBW-refined feature vector at level [.
o LSBW g the loss at level I with SBW.

o Lm0 SBW ¢ the loss at level [ without SBW.

2. Summing Over All Levels:
Since the inequality holds at each level I, we can multiply both sides by the
non-negative weights w® and sum over all levels:

L L
ZW(Z)E(as,vﬁ”) [L(z),ssw} < ZW(Z)E(m,r) [ﬁ(l),no SBW} . (42)
=1 =1

3. Expressing the Overall Expected Loss:
The left side represents the overall expected loss with SBW applied:

L

]E:Ei"‘pdata [’Ca]?ig}]:l = Zw(l)E(%VEZ)) |:£(l)’SBW:| . (43)
=1

Similarly, the right side is the overall expected loss without SBW:

wdcl

L
Eopops, [ﬁno SBW] _ ZW(Z)E(w,w—) |:£(l),no SBW} . (44)
=1
As such, combining the above, we have:

El‘i"‘pdata [L‘?V]?iy] < ]Ex'i’\’pdata I:‘Ci’lvc()iCSle] . (45)

15



This inequality demonstrates that applying SBW before MItR-KAN across
all resolution levels reduces the overall expected wDCL loss compared to not
applying SBW.

16



9 Visualization of the explainability enhance-
ment process in MItR-KAN

The CNN encoder initially extracts high-level features from the normalized SNR,
data, which are then decomposed by the Haar wavelet into approximation (cA)
and detail coeflicients (cD1, ¢D2), which capture the global and local data
behaviors of the SNR feature after CNN. This provides a multi-resolution view
of the learned representation, enhancing the transparency and interpretability
of the feature extraction process.

The combined use of a CNN encoder followed by Haar wavelet transforma-
tion helps us clearly see what features are being learned from the SNR data.
The CNN extracts high-level features, while the Haar wavelet further breaks
down these features into explainable components, covering both broad trends
and finer details. This multi-stage process makes the learned representation
more transparent and easier to understand, enhancing explainability.
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Figure S1: Visualization of the explainability enhancement process in MItR-
KAN for the SNR feature from gravitational wave O1 data. The original nor-
malized SNR data is processed by a CNN encoder to extract high-level features.
The learned CNN feature is subsequently decomposed using Haar wavelet trans-
formation, resulting in both approximation (cA) and detail coefficients (cD1,
¢D2), which provide a multi-resolution view of the learned representation, en-
hancing transparency and interpretability of the feature extraction process
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10 Impact of False Negative Elimination (FNE)
on Hierarchical Loss During Training under
MItR-KAN

Impact of False Negative Elimination (FNE) on Hierarchical Loss

1.2
=== Hierarchical Loss without FNE

AR — Hierarchical Loss with FNE

1.0+

0.8 1

0.6

Loss Value

0.4+

0.29

0.0+

Epoch

Figure S2: Simulated impact of False Negative Elimination (FNE) on Hierar-
chical Loss During Training. This figure compares the hierarchical loss values
for models trained with and without the False Negative Elimination (FNE) pro-
cess over 50 epochs. The green line represents the model incorporating FNE,
while the red dashed line shows the model without FNE. The model with FNE
exhibits a consistently lower loss, indicating that FNE helps to effectively min-
imize false negatives, leading to enhanced learning and improved convergence
during training
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11 Impact of Similarity-Based Weighting (SBW)
on Hierarchical Loss During Training under
MItR-KAN

Impact of Similarity-Based Weighting (SBW) on Training Loss
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Figure S3:Simulated impact of Similarity-Based Weighting (SBW) on Training
Loss. This figure illustrates the effect of incorporating SBW into a simulated
training process. The blue line represents the training loss with SBW, while the
orange dashed line shows the training loss without SBW. It is evident that using
SBW results in a more rapid decline in training loss, indicating enhanced model
convergence and efficiency. The reduced overall loss with SBW suggests better
feature representation, ultimately contributing to improved model performance.
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12 Baseline comparisons

12.1 CPC(Contrastive Predictive Coding) Result

Contrastive Predictive Coding (CPC) [7] is an unsupervised learning method
to extract robust high-level representations from sequential data such as audio,
images, text, and reinforcement learning trajectories. The CPC architecture
combines an encoder and an autoregressive model to capture temporal or spatial
dependencies, encoding input data into a compact latent space that emphasizes
essential features while filtering noise. An autoregressive model then processes
these encoded representations to create a context vector, preserving temporal
relationships and summarizing the information necessary for future predictions.
Using a contrastive loss function, specifically InfoNCE, CPC maximizes the
mutual information between the context vector and subsequent data, refining
its ability to predict future sequence elements. However, CPC has limitations:
it is best suited to sequential data, relying on temporal or spatial coherence; it
is sensitive to the quality of negative samples, which are essential for effective
contrastive learning; and, while it captures broad contextual information, it may
overlook finer details.

Table 2: Performance Metrics for Dataset O1, Dataset 02, and Dataset O3
Metric Dataset O1 Dataset O2 Dataset O3

Accuracy 0.775202 0.525758 0.510133
Precision 0.773208 0.499888 0.455736
Recall 0.775202 0.525758 0.510133
F1 Score 0.771829 0.475751 0.453775
D-index 1.877014 1.696813 1.638236

12.2 TS-TCC(Time-Series Representation Learning via Tem-
poral and Contextual Contrasting) Result

Time-Series Representation Learning via Temporal and Contextual Contrast-
ing (TS-TCC) [3] is an unsupervised framework designed to extract powerful
representations from time-series data, which makes it especially effective in sce-
narios with limited labeled data. By generating two augmented views of the
input, one with weaker augmentations and the other with stronger augmenta-
tions, TSC learns temporal dependencies by predicting future segments of one
view using the context of the other. This cross-view prediction strengthens
the model’s ability to handle variations from augmentation and capture essen-
tial patterns. The contextual contrasting module of TS-TCC further enhances
learning by maximizing similarity between contexts of the same sample and
minimizing similarity with others, promoting discriminative and generalizable
representations. However, T'S-TCC demands high computational power due to
its use of augmented views and an autoregressive model, and it can be sensitive
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to hyperparameters. Additionally, while capturing general temporal patterns
effectively, TS-TCC may underperform on tasks that require very fine-grained
or specialized features.

Table 3: TS-TCC: Performance Metrics for Dataset O1, Dataset O2, and
Dataset Q3

Metric Dataset O1 Dataset O2 Dataset O3

Accuracy 0.980205 0.976989 0.843326
Precision 0.980719 0.977677 0.840732
Recall 0.980205 0.976989 0.843326
F1 Score 0.980179 0.977055 0.839187
D-index 1.967096 1.984084 1.819134

12.3 SimCLR (Simple Contrastive Learning of Represen-
tations) Result

SimCLR [1] is a self-supervised framework for learning visual representations,
reducing contrastive learning by removing complex architectures and memory
banks in favor of large batch sizes and strong enhancements. Train by maxi-
mizing agreement between two augmented views of the same image, generated
through a data augmentation module that applies transformations such as crop-
ping and color distortion. These views, forming a positive pair, pass through
an encoder and projection head to a latent space where contrastive loss aligns
similar images. This approach allows SimCLR to achieve performance close
to fully supervised models on datasets such as ImageNet. However, SimCLR
requires large batch sizes, making it computationally demanding, and its per-
formance heavily depends on carefully chosen augmentations. While strong at
capturing general visual features, SimCLR may miss fine details that other,
more task-specific methods can capture.

Table 4: SimCLR: Performance Metrics for Dataset O1, Dataset O2, and
Dataset O3
Metric Dataset O1 Dataset O2 Dataset O3

Accuracy 0.969796 0.966020 0.828186
Precision 0.971033 0.968858 0.826369
Recall 0.969796 0.966020 0.828186
F1 Score 0.969475 0.966591 0.822599
D-index 1.971161 1.948001 1.826083
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12.4 Fully-supervised deep learning Models

To leverage the time-series structure of the data from all three observing runs
(01, 02, 03), we begin by sorting the dataset chronologically, using earlier
data points to train the models and later points to test. Since our dataset is
heavily imbalanced, we ensure that both the training and testing sets reflect
the same label distribution to maintain a fair performance evaluation across all
deep learning models.

For model testing, we split the data, dedicating 80% to training and the
remaining 20% to testing. The following machine-learning models were imple-
mented:

e GAN-DNN Classifier [5]: This model employs a Generative Adversar-
ial Network (GAN) consisting of a generator and a discriminator to aug-
ment the dataset with synthetic samples. The generator network takes
random noise as input and produces synthetic data samples, utilizing two
dense layers with LeakyReLU activation and batch normalization to sta-
bilize training. The discriminator, structured to classify both real and
synthetic samples, has two dense layers with LeakyReLU activation fol-
lowed by a final dense layer with softmax activation to output labels. The
GAN generates 20,000 synthetic samples with three additional labels to
balance the original dataset. The final labeled dataset, combining real
and synthetic samples, is used for classification training with categorical
cross-entropy as the loss function.

e CNN: This Convolutional Neural Network (CNN) is designed for sequen-
tial data classification. It begins with an input layer that preserves the
original shape of the sequence. Two 1D convolutional layers with 64 fil-
ters and a kernel size of 3 apply ReLU activation while maintaining the
sequence length. The output is flattened and then passed through two
dense layers with 64 neurons and ReLU activations, which identify com-
plex patterns. Finally, a softmax output layer, with neurons equal to the
target classes, provides class probabilities for classification.

e Gated Recurrent Unit (GRU) [2]: This GRU model consists of three
layers with 128, 256, and 128 neurons, respectively. Each GRU layer is
followed by a dropout layer with rates of 0.1, 0.2, and 0.3. The GRU cells
include an update gate and a reset gate, both with sigmoid activation.
The update gate controls the balance between the previous hidden state
and the current node’s hidden state, while the reset gate controls the
degree of forgetting of the previous hidden state in calculating the new
candidate state. The model ends with a dense output layer that uses
softmax activation for class probability output, optimized with categorical
cross-entropy.

e Residual Networks (ResNet) [6]: A ResNet-50 model is implemented,
starting with an initial convolutional layer (64 filters, stride of 2) followed
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by batch normalization, ReLU activation, and a max-pooling layer (pool
size of 3, stride of 2). The main architecture includes four stages of bot-
tleneck blocks with configurations [3, 4, 6, 3]. Each bottleneck block
reduces dimensions, applies a convolution, and then restores dimensions
with shortcut connections between the input and output of each block.
Batch normalization and ReLU activation are applied throughout. Down-
sampling occurs at the start of each new stage by adjusting the stride.
The model concludes with global average pooling and a dense output
layer with softmax activation to produce class probabilities. Categorical
cross-entropy is used as the loss function for multiclass classification.

e Transformer [8]: This model utilizes a Transformer architecture with a
multi-head attention mechanism, configured with 32 heads alongside feed-
forward layers. Each Transformer block includes a multi-head attention
layer and a feed-forward neural network consisting of dense layers with
ReLU activation. Layer normalization is applied both before and after
the feed-forward network, while dropout layers are included after the at-
tention and feed-forward layers for regularization. After attention and
feed-forward processing, the output is flattened and passed through dense
layers for final classification.

Each model was trained for 100 epochs, experimenting with different learning
rates (1e-3, le-4, 1e-5) and batch sizes (64, 128, 256, 512). The optimal model
configuration was selected based on the highest accuracy and D-index, ensuring
it did not overfit the training data.
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13 Silhouette analysis of O1, O2, and O3 data

before and after dcMItR-KAN

Table 5: Silhouette analysis under UMAP

Data n_neighbors (UMAP) Silhouette Score (K-Mean clustering)
5 0.1847
10 0.2490
. 15 0.1991
Original O1 data 20 0.3094
30 0.2457
50 0.2787
5 0.3958
10 0.5028
15 0.5307
01 data after dcMItR-KAN 20 0.5319
30 0.5219
50 0.5401
50 0.2293
60 0.2323
o 70 0.2139
Original O2 data <0 0.2088
90 0.1966
100 0.2328
50 0.4754
60 0.4963
70 0.5130
02 data after dcMItR-KAN 30 0.4748
90 0.5125
100 0.5041
50 -0.0807
60 -0.0181
. 70 -0.0733
Original O3 data S0 -0.0583
90 0.1428
100 0.1213
50 0.4317
60 0.4450
70 0.4291
03 data after dcMItR-KAN 30 0.4237
90 0.4393
100 0.4391
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Note: UMAP is applied to original 01/02/03 and their corre-
sponding data after dcMItR-KAN before Kmeans
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14 dcMItR-KAN results on EMODB and abla-
tion study
Table S5: decMItR-KAN results on EMODB and ablation study

Method Topl Accuracy (mean =+ std) D-Index (mean =+ std)
Ablation components:

w/o wDCL 0.8503 £+ 0.0277 1.9042 4+ 0.0181

w/o MItR-KAN 0.8379 £ 0.0103 1.8955 + 0.0067
dcMItR-KAN

Mezican-hat 0.9326 £+ 0.0035 1.9573 + 0.0022

Symy4, 0.9186 £ 0.0055 1.9483 + 0.0035

Dby 0.9180 £ 0.0036 1.9478 + 0.0023

Haar 0.8866 £ 0.0061 1.9278 + 0.0040
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15 Preprocessing and Feature Extraction for EMODB data

The EMODB dataset consists of raw mono audio files, each sampled at 16,000 Hz and approximately two
seconds in duration. The audio files were first blocked into small chunks of audio signals, i.e., windowing,
where each window has a length of 1024 samples (block size) and is spaced by hop of 512 samples (hop
size). For each windowed segment, we extracted features such as Mel Frequency Cepstral Coefficients
(MECC) (first 14 coefficients), spectral centroid, spectral bandwidth, spectral contrast, spectral rolloff, Zero-
Crossing Rate (ZCR), Root Mean Square Energy (RMS), and fundamental frequency (F0). Table 1 lists the
dimensions of each feature. After feature extraction for each window, we computed two statistics, mean
and standard deviation, to represent the overall characteristics of the audio file by aggregating all the
instantaneous features. Figure 1 illustrates the preprocessing and feature extraction process.

Table 1. Audio Dataset Features

Features Feature Dim. for Each Windowed Segment Aggregated Feature Dim. for Each File
MFCC 14 28
Spectral Centroid 1 2
Spectral Bandwidth 1 2
Spectral Contrast 7 14
Spectral Rolloff 1 2
Zero-Crossing Rate 1 2
RMS Energy 1 2
Fo 1 2
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Figure S1. Feature Extraction of EMODB data. Each audio file was divided into smaller segments. We
then computed the features for each segment as detailed in Table 1. After all features are extracted for
each window, we aggregated all these instantaneous features by computing mean and standard deviation
to represent the audio file.
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