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ABSTRACT

Characterizing the relationship between neural population activity and behavioral
data is a central goal of neuroscience. While latent variable models (LVMs) are
successful in describing high-dimensional time-series data, they are typically only
designed for a single type of data, making it difficult to identify structure shared
across different experimental data modalities. Here, we address this shortcoming
by proposing an unsupervised LVM which extracts temporally evolving shared
and independent latents for distinct, simultaneously recorded experimental modal-
ities. We do this by combining Gaussian Process Factor Analysis (GPFA), an
interpretable LVM for neural spiking data with temporally smooth latent space,
with Gaussian Process Variational Autoencoders (GP-VAEs), which similarly use
a GP prior to characterize correlations in a latent space, but admit rich expressivity
due to a deep neural network mapping to observations. We achieve interpretability
in our model by partitioning latent variability into components that are either shared
between or independent to each modality. We parameterize the latents of our model
in the Fourier domain, and show improved latent identification using this approach
over standard GP-VAE methods. We validate our model on simulated multi-modal
data consisting of Poisson spike counts and MNIST images that scale and rotate
smoothly over time. We show that the multi-modal GP-VAE (MM-GPVAE) is able
to not only identify the shared and independent latent structure across modalities
accurately, but provides good reconstructions of both images and neural rates on
held-out trials. Finally, we demonstrate our framework on two real-world multi-
modal experimental settings: Drosophila whole-brain calcium imaging alongside
tracked limb positions, and Manduca sexta spike train measurements from ten wing
muscles as the animal tracks a visual stimulus.

1 INTRODUCTION

Recent progress in experimental neuroscience has enabled researchers to record from a large number
of neurons while animals perform naturalistic behaviors in sensory-rich environments. An important
prerequisite to analyzing these data is to identify how the high-dimensional neural data is related to
the corresponding behaviors and environmental settings. Traditionally, researchers often employ a
two-step approach, involving first dimensionality reduction on neural data followed by a post-hoc
investigation of the latent structure of neural recordings with respect to experimental variables of
interest such as stimuli or behavior (Wu et al., 2017} /Zhao and Parkl 2017} |Saxena and Cunningham,
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2019; Bahg et al.l 2020; |Pei et al.| 2021). However, recent deep learning advancements allow for
both experimental and behavioral variables to be part of a single latent-variable model (Schneider
et al., 2023; Hurwitz et al.| 2021} |Sani et al., 2021} [Singh Alvarado et al.|[2021)), thus opening a new
avenue for unsupervised discoveries on the relationship between neural activity and behavior.

The existing approaches that jointly model neural activity and behavior are limited in that they often
rely on a single latent space to describe data from both modalities (Schneider et al., [2023; Hurwitz
et al.| 2021)), making it difficult for practitioners to isolate latent features that are shared across and
independent to neural activity or behavior. Approaches that do isolate modality specific and shared
latent structure either do so with no temporal structure (Gundersen et al., 2019; |[Kleinman et al.| [2024;
Singh Alvarado et al.,|2021; Wu and Goodman) 2018}; |Shi et al., |2019} Brenner et al., 2022), or use a
relatively inflexible linear dynamical system (Sani et al., 2021). Moreover, because of the deep neural
network mapping from latents to observations, many existing multi-modal approaches generate latent
spaces that are not obviously related to experimental variables of interest, and so additional model
features are often added to aid in interpretability and analysis in neuroscience settings (Schneider
et al., 2023; [Hurwitz et al., 2021} Zhou and Well, [2020).

However, LVMs developed for neural data often are able to uncover interpretable features using
neural activity alone in an unsupervised fashion with minimal a priori assumptions. One example of
these is Gaussian Process Factor Analysis (GPFA), a widely used LVM in neuroscience that finds
smoothly evolving latent dynamics in neural population activity, and can illustrate different aspects of
neural processing (Yu et al., 2008; Duncker and Sahani, 2018} |[Keeley et al., 2020azb; |Balzani et al.,
2022)). GPFA constrains the latent space of neural activity through the use of a Gaussian Process (GP)
prior. GP priors have also been adapted to regularize the latent space of variational autoencoders
(GP-VAE or GP-prior VAE) with a variety of applications (Casale et al., 2018} |[Fortuin et al., 2020;
Ramchandran et al} [2021} |Yu et al., [2022). In each of these approaches, the GP prior provides a
flexible constraint in the latent dimension, specifying correlations across auxiliary observations like
viewing angle, lighting, or time. The GP prior often is used for out-of-sample prediction in GP-VAEs,
but in GPFA is frequently used to visualize latent structure in noisy neural population activity on a
trial-by-trial basis (Duncker and Sahani, 2018; Zhao and Park} 2017; Keeley et al., [2020a). Here, we
wish to leverage the interpretability seen in unsupervised GPFA models with the power of GP-VAEs
to use with multi-modal time-series datasets in neuroscience.

We propose a model for jointly observed neural and behavioral data that partitions shared and
independent latent subspaces across data modalities while flexibly preserving temporal correlations
using a GP prior. We call this the multi-modal Gaussian Process variational autoencoder (MM-
GPVAE). Our first innovation is to parameterize the latent space time-series in terms of a small
number of Fourier frequencies, an approach that has been used before in the linear GPFA setting
(Paciorekl [2007; |Aoi and Pillow, [2017} Keeley et al.,|2020a). We show that the Fourier representation
dramatically improves latent identification for the standard GP-VAE. Our second innovation is to
augment our new Fourier GP-VAE model to describe two data modalities simultaneously by mapping
the latents linearly to neural data (like in GPFA), as well as nonlinearly to another experimental
variable via a deep neural network (like a GP-VAE). We leave the specific identity of this other
experimental modality intentionally vague - it could be keypoints of limb positions as animals freely
move or visual stimuli across time. Because this observation modality is characterized by a deep
neural network, our model can be adapted to any experimental variable of interest.

We validate our MM-GPVAE model on a simulated dataset of a smoothly rotating and scaling
MNIST digit alongside simulated Poisson neural activity, whereby the digit data and the spiking
data share latent structure. We show that the MM-GPVAE model is able to recover both shared and
independent latent structures while simultaneously providing accurate reconstructions of data from
both modalities. Lastly, we demonstrate the utility of our model by fitting the MM-GPVAE to two
real-world multi-modal neural datasets: 1) Drosophila (fly) whole-brain calcium imaging alongside
tracked 16 limb positions, and 2) Manduca sexta (hawkmoth) spike train measurements from ten
wing muscles alongside a continuously moving visual stimulus. In the former case, we are able to
view Drosophila behavioral conditions across shared and independent subspaces and in the latter
case, we show distinct time-varying latent components tracking muscle and stimuli movement in the
experiment. By showing the MM-GPVAE in these two domains, we demonstrate that our model is
adaptable to a range of diverse experimental preparations in systems neuroscience.
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2 THE GAUSSIAN PROCESS VARIATIONAL AUTOENCODER

The Gaussian Process variational autoencoder (GPVAE) uses high-dimensional data (e.g. images)
accompanied by auxiliary information, like viewing angle, lighting, object identity, or observation
time. This auxiliary information provides the indices in the GP prior latent representation, specifying
correlations across the latent space and allowing for out-of-sample predictions at new auxiliary values
(Casale et al., 2018} [Fortuin et al.,|2020; Ramchandran et al.l 2021). However, in our case we consider
continuously observed time-series data in experimental neuroscience experiments, so our auxiliary
information here is evenly sampled time-bins. Because of this, we can leverage the advantages of the
Fourier-domain GP representation (Aoi and Pillow, [2017; [Keeley et al., [2020bj [Paciorek, [2007).

Formally, consider smoothly-varying image data across timepoints, represented by the pixels-by-time
matrix Y € NVXT_ For latent variable z(t) € IRFeach latent z,(t) (t € {1,2...T}) evolves
according to a Gaussian process, z,(t) ~ GP(0, kq(-,-)), with covariance kernel ky. The time-by-
time covariance matrix of each z,(¢) is then given by the Gram matrix Ky corresponding to ky. We
use a squared exponential (RBF) kernel for K governed by a marginal variance and length scale
6 = {p, ¢} with an additive diagonal term oI to help with inference (Yu et al.,[2009; Casale et al.,
2018). The likelihood of the image data is Gaussian with mean given by the latent values at any
timepoint ¢ passed through a deep neural network g, (-) with parameters ) and whose covariance is
0'51 .

The GP-VAE is learned using standard VAE amortized inference (Kingma and Welling, [2013)), where
the parameters /.4 and ai of a variational distribution g4 are given as neural network functions of the
observed data Y, parameterized by ¢. Here, the evidence lower bound (ELBO) is maximized with
respect to the variational parameters ¢, model parameters 1, and GP hyperparameters. In this work,
« s set to a fixed value of 1e—2 for all experiments except for the final data analysis example, where
it is set to a value of 1e—4. While the ELBO may be expressed in a variety of ways, we will follow
the form that includes the variational entropy term. For details about this approach for the standard
GP-VAE, see|Casale et al.| (2018]).

2.1 FOURIER-DOMAIN REPRESENTATION OF THE GP-VAE

We consider a version of the GP-VAE whose auxiliary variables are a Fourier frequency representation
of the time domain, as opposed to timepoints sampled on a regular lattice. This allows us to
parameterize a frequency representation of the latent variables that is Gaussian distributed according
to z, ~ N(0, K, 9) where the original RBF GP covariance matrix K may be diagonalized by
K = BKBT Here, B is the orthonormal discrete Fourier transform matrix and Z, is a single
Fourier-domain latent vector whose length is equal to F', the total number of Fourier frequencies
representing the latent. The model prior can now be written as

P
p(Z|6,0) =[N (zp 10, Ky + aIF) 1)
p=1

Where Z represents a P x F' matrix of the frequency representation of the P latent variables at the

F frequencies and K, is an F x F covariance matrix. The model likelihood retains the same form
as the standard GP-VAE,

T
p(Y|Z,,0%) = [[N(9s(2),0°Ir) ©)

t=1

where z; represents the t™ time index of Z, a P x T matrix where each row is the time-domain
representation of the p latent, given by z, = BZ,.

We define the variational posterior so that it factorizes over the Fourier frequencies. The variational
distribution can be written as

46(Z" | Y) =[NV (Z | s (Y7) , diag (6 (Y7))), )

where ¢ indexes a trial of times-series images Y and w indexes the Fourier frequencies (w €
0,1,2... F). In contrast to the standard GP-VAE (Casale et al., 2018]), the Fourier representation
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Figure 1: (a) schematic for the Fourier domain GP-VAE. All images at all timepoints for a given trial
are encoded via a deep neural network into variational parameters of a pruned Fourier representation
of the latent space. This Fourier representation is then mapped back into the time domain before
being passed through a decoder network to give the image reconstruction at each timepoint. (b) Image
reconstructions of the standard VAE, GP-VAE and Fourier domain GP-VAE. (c) Estimated latent for
each model alongside the true underlying latent angle. (d) Mean squared error (MSE) of estimated
latents and true latents for 60 held-out trials. Error bars indicate standard error.

requires that, for each trial, images at all timepoints are mapped to a single P x F'-dimensional
Fourier representation. We accomplish this in two steps - first, we use a deep neural network for
each image at each time point y, which will result in 7" total network embeddings for a single trial,
each of dimension P. We follow that with a single linear layer each for the mean and variance of the
variational distribution, I;(-), [52(-), that will map from the number of timepoints to the number of
Fourier frequencies. [z, l52 : IRP*T — IRP*¥ . A schematic for the Fourier domain variational and
generative architecture is displayed in Figure Eka).

There are a number of advantages to representing the GP-VAE latents and variational parameters
in the Fourier domain. For one, the diagonal representation of K means we avoid a costly matrix
inversion when evaluating the GP prior (Aoi and Pillow, 2017} Paciorek| [2007; Hensman et al.,|2017;
Wilson and Adams)|,2013; Loper et al.,2021). Secondly, we can prune the high frequencies in the
Fourier domain, effectively sparsifying the variational parameters, and hence frequencies (F' < 7)),
while enforcing a smooth latent representation. Lastly, the Fourier representation of the variational
parameters mean we can retain both temporal correlations as well as the advantages of using a
mean-field approximation for the variational posterior ¢4.These advantages have been seen in simpler
GP models. For more information, see (Aoi1 and Pillow, 2017} |Keeley et al., [2020a)).

The Fourier-represented GP-VAE dramatically improves the ability of the GP-VAE to learn a true
underlying smoothly evolving latent for high-dimension data in a non-linear model. We demonstrate
this on a simulated example using an MNIST digit that rotates by a time-varying angle given by
a draw from a GP with an RBF kernel. We fit our Fourier GP-VAE model as well as the standard
VAE and standard GP-VAE models to these trials. In each case, we are looking to recover the true
underlying generative latent angle and hence we assert a one-dimensional latent dimensionality for
the model. For more information on training and testing, see appendix.

Because the Fourier variational distribution preserves temporal correlations and prunes the high-
frequency components of the latents z, the Fourier GP-VAE model shows much smoother underlying
latent representations on held-out trials (Fig[T](c)), though each model retains the ability to accurately
reconstruct the images through the network mapping from the latent space (Fig[T[b)). When the latent
space is mapped through an affine transform to align latents on held-out trials to the true latent space,
the Fourier domain GP-VAE does much better uncovering the true generative latent angle (Fig|[T] (c),

(d)).

3 THE MULTI-MODAL GAUSSIAN PROCESS VARIATIONAL AUTOENCODER

We now focus on extending the GP-VAE to model data of two modalities simultaneously. The
examples we will emphasize here involve neural activity alongside some other experimental variable
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Figure 2: (a) Graphical model of the multimodal GP-VAE. A set of Fourier frequencies describe the
Fourier representation of shared and independent latents across modality with a GP prior over each
latent. Latents are transformed to the time domain and combined to generate data for each modality.
(b) Schematic of the MM-GPVAE.

such as naturalistic movement or high-dimensional stimuli. The observations of our model are

two distinct data modalities represented by matrices y';' € R¥*T and y'? € RM*T. Here,

€ (1,2...T) denotes time-bin indices, 7 denotes trials, and N and M denote the dimension of
the observations for each modality. We assume, as before, that all data are generated by smoothly
varying low-dimensional latent variables that are now either independent to or shared between data
modalities. As before, latents are initially parameterized in a pruned Fourier representation before
being mapped to the time domain. The latents are then partitioned by a loadings matrix W which
linearly combines the shared latent representation with the independent latents.

Ty| _ |Wa Wsi 0 zA
[ms} - [ 0 Wse WB} z; td @

Here, zg refers to latents that are shared between modalities, while z4 and zp denote modality-
specific latent variables and d represents an additive offset. The outputs after this linear mixing result
in modality-specific embeddings which we call x 4 and x 3. Here, modality A, the "neural modality",
is passed through a pointwise nonlinearity f to enforce non-negativity of Poisson rates, and modality
B, the "behavioral modality", is passed through a deep neural network. The likelihood of the data
given the embedding is:

p(yalza) ~P(f(xa)), plysles) ~N(gs(xp), oily), ©)

Where the function gy, (-) represents a decoder neural network for the behavioral data and we use
the exponential nonlinearity for f. Learning is performed as before - the mean and variance of a
mean-field Gaussian variational distribution is given by the data passed through a neural network
with parameters ¢. Here, our lower bound is similar to that found in (Casale et al.|(2018)) with an
additional term for the neural data modality.

Poisson Likelihood (Neural Rates) Gaussian Likelihood (other modality)

ELBO=E; [ Zlog (yalf(@a)) +> logN (ys | gy (x5),0o1IN)
t

(6)

GP Prior Entropy

/_:\— /_/\
+logp(Z | T.6) | +Hay)

A graphical depiction of the generative model of the MM-GPVAE is shown in Figure 2(a). The
hyperparameters of the model are the latent-specific kernel parameters 6 that provide the GP co-
variance structure as well as a constant « additive diagonal offset (fixed during inference). The
entire schematic of the MM-GPVAE model, including the generative and variational distributions, is
depicted in Figure 2|b).
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Figure 3: (a) True and estimated latents for the MM-GPVAE trained on simulated neural spiking data
as well as a smoothly scaling and rotating MNIST digit. (b) Estimated neural rates on an example
trial for 3 example neurons as well as 4 example reconstructed images of the MNIST digit at different
angles and scales. (c) (left) Reconstruction accuracy from the image data trained on the images
alone (GPVAE) compared to training with both modalities simultaneously (MM-GPVAE). (middle)
Accuracy of estimated neural rates (left) trained on neural activity alone (Poisson - GPFA) compared
to MM-GPVAE. (right). Accuracy of shared latent estimated from the MM-GPVAE compared to
single-modality model variants. Error bars are standard error.

4 EXPERIMENTS

4.1 SIMULATED DATA

We first assess the performance of the MM-GPVAE model using a simulated dataset of two modalities:
a smoothly rotating and scaling MNIST digit, and simultaneously accompanied Poisson spike counts
from 100 neurons. A total of three latents were drawn from an underlying GP kernel to generate
single-dimensional shared, neural, and image subspaces. There were a total of 300 trials, each trial
consisting of 60 timebins. The data was split into 80% for training and 20% for testing. For this
simulated example, one latent represents an interpretable modulation of the image as it directly
affects the scaling of the MNIST digit. So as the latent values change along the trial the image scales
smaller and larger continuously. Another latent, corresponding to the independent component of
the neural modality, provides one component of the log rates of the Poisson spiking data. The final
latent reflects the shared variability between both modalities. Here, the latent is again interpretable
with respect to the image in that this latent corresponds to the angle of the smoothly rotating MNIST
digit. This shared latent also linearly combines with the neural-only subspace to provide the log rates
of the spiking Poisson population. The MM-GPVAE trained simultaneously on both images and
spikes can successfully recover the three-dimensional latent structure across these two modalities.
Figure 3[a) shows the underlying true latent in a held-out trial alongside the estimated latent structure
extracted from the MM-GPVAE. As before, the held-out latent space is scaled to align with the true
latent space as closely as possible, as the MM-GPVAE model latent space is invariant to scaling
transform. In addition to accurately extracting the latent structure, the MM-GPVAE also has the
ability to accurately reconstruct both neural rates and images across the time series from the latent
space. Four example images and three example neural rates are shown in Figure [3(b). For more
examples, see Figure[§]and 0]

The MM-GPVAE is also able to exploit information across modalities to better model the observed
data. The left side of Figure [3[c) shows the mean squared error (MSE) across pixels for reconstructed
images in held-out trials. By leveraging latent information from the spiking modality, the MM-
GPVAE is able to reconstruct the images better than a single-modality GP-VAE trained on the images
alone (Casale et al.,[2018)). This improvement is additionally dependent on the number of neurons
analyzed (Fig[I2). Similarly, the held-out neural rates are better estimated when the image data is
included, though the effect here is more modest. Finally, we also show that the shared latent variable
can be more accurately identified when data from both modalities is used (Fig[3[c)). Here we assess
the accuracy of the shared latent estimate on test trials when we use data from each modality alone
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Figure 4: (a) Limb position tracking in Drosophila (b) (top) Contribution of the variability in the
data across trials of the neural (leff) and behavioral (right) modalities due to shared and independent
subspaces (c) (fop) Limb position estimates and true values and (bottom) six randomly selected
calcium trace estimates and true values for a given trial. (d) Visualization of average latent value
across time in the neural, behavioral and independent subspaces for 3 behavioral categories.

(akin to standard GP-VAE and GPFA) compared to both modalities simultaneously (MM-GPVAE).
As expected, data from both modalities better identifies shared structure across the data types. This
additionally does not depend on the structure of nature of the encoding distributions, (Fig|10), and is
markedly improved by representing the MM-GPVAE with pruned Fourier frequencies (Flig%.

4.2 APPLICATION TO FLY EXPERIMENTAL DATA

Next, we look to evaluate the MM-GPVAE on a real-world multi-modal dataset. Here, we consider a
whole-brain calcium imaging from an adult, behaving Drosophila (Schaffer et all, 2021). We isolate
1000 calcium traces recorded using SCAPE microscopy (Voleti et al.,2019) from an animal while it
performs a variety of distinct behaviors fixed on a spherical treadmill. These 1000 calcium traces
are dispersed widely and uniformly across the central fly brain and were randomly picked from
the dataset to use in our model. Alongside the neural measurements, eight 2-D limb positions are
extracted from a recorded video using the software tool DeepLabCut (Mathis et al., 2018)). These
simultaneously recorded calcium traces and limb position measurements are split into 318 trials
of 35 time-bins sampled at 70hz. Each trial has one of 5 corresponding behavioral labels (still,
running, front grooming, back grooming and abdomen bending) determined via a semi-supervised
approach from the tracked limb position measurements (Whiteway et al.},[2021)). Importantly, these
behavioral labels are not used when fitting the MM-GPVAE. For additional information on how we
isolate this behavioral data and neural traces, see the appendix. We consider a 7-dimensional latent
behavioral subspace and 26-dimensional neural subspace, with 5 of these dimensions being shared
across modalities. These choices were made through initial exploration of the model and examining
cross-validated model performance (see appendix), though the results we show are robust to a wide
range of dimensionality choices for each of the subspaces.

The MM-GPVAE is able to successfully reconstruct both behavioral trajectories and calcium traces
in held-out trials for these data. The top of Figure dfc) shows the true and decoded 16 limb position
measurements with 3 highlighted for clarity. The bottom part of Figurec) shows 6 randomly selected
calcium traces alongside their model reconstructions. In each case, the MM-GPVAE can roughly
capture the temporal trends in this multi-modal dataset. To analyze the shared and independent latent
subspaces of these data we consider a 2d projection of each latent space, and plot the mean latent value
in that subspace calculated each trial. We additionally color-code the trial according to the behavioral
label. In these shared and independent latent subspaces, we find that the "still" behavioral state is well
separated from many of the other behavioral conditions in the neural and shared subspaces. Here, we
show two others (bending and running) as an illustration (Fig[d(d)). (For visualizing all 5 behaviors
in the latent space, see Figure[T9). Lastly, we illustrate how much each subspace contributes to the
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Figure 5: (a) Experimental set-up for Manduca sexta. Spikes from 10 muscle groups are recorded as
an animal tracks a 1 Hz moving flower stimulus (b) fop: Spikes from 3 example motor neurons middle:
estimated Poisson rates botfom: The neural latent along torque measurement from the hawkmoth. The
~22Hz modulation reflects wing-flapping. (c) Visual stimulus and reconstructions from MM-GPVAE
(d) Weights of hawkmoth spike decoder for neural-only and shared latents. (¢) A one-dimensional
latent from the visual-modality subspace closely tracks the stimulus position. (f) The shared latent
between modalities plotted alongside the torque measurement.

overall variability of neural and behavioral data. Figure Ekb) shows the variance of the neural (left)
and behavioral (right) data calculated for each trial where the reconstruction of the data is generated
either from the shared subspace, or either of the independent subspaces. We find that the shared
subspace for each modality contributes more to the overall variability in the data than either of the
independent subspaces, suggesting a large fraction of shared variability between the data modalities.

4.3  APPLICATION TO MOTH EXPERIMENTAL DATA

Next, we evaluate the MM-GPVAE on a dataset of a hawkmoth (Manduca sexta) tracking a moving
flower. The hawkmoth is an agile flier that is able to closely follow swiftly moving targets while
hovering in midair, making it a model organism for the study of sensorimotor control
2007). The modalities in our dataset consist of a time series of images of a visual stimulus
temporally paired with electromyography (EMG) signals recorded during 20-second experimental
trials. Each image is an event-based reconstruction (inspired by insect visual system) of a white
floral target moving laterally during a trial as viewed in the hawkmoth’s frame of reference (Sikandar]
(FigPla)). The floral target moves sinusoidally at 1 Hz against a black background.
Each pixel in a video frame can occupy a polarity of -1, 0 or +1 based on whether its luminosity has
respectively decreased, unchanged or increased as compared to the previous frame in the temporal
sequence. Temporally paired with the floral stimulus, EMG recordings are precisely measured spike
trains from the 10 major flight muscles of the hawkmoth responding to the floral target while flying
on a tether and flapping at about 22 Hz. Altogether, the 10-muscle recordings form a near-complete
motor program that controls its flight during target tracking response (Putney et al., 2019).

We fit the MM-GPVAE model to these data using a 2-dimensional latent space to describe the moving
visual stimulus and a 2-dimensional latent space to describe the Poisson rates from the 10 motor units.
Of these, one latent dimension is shared between modalities. Here, a small number of dimensions are
used because only a few dimensions were needed to be able to accurately reconstruct the data of each
modality (for more information about dimensionality selection, see appendix).

We find that the MM-GPVAE is able to accurately reconstruct both the neural rates (Fig[5[b)) and
visual stimulus (Fig[5|c)) from its low dimensional latent space. We see that the neural rates are
strongly modulated by the wing-flap oscillation at approximately 22 Hz. This is also seen in the
neural latent space identified by the MM-GPVAE. At the bottom of Figure [5(b) we see that the
1-dimensional latent space closely aligns with the torque measurement along the z-axis of the moth
motion, a measurement previously identified to be closely associated with wing beating
[2019). The MM-GPVAE is also able to reconstruct the visual stimulus data, as seen in[3(c). When
viewing the latent space corresponding to the visual stimulus modality, we find that the value of the
smoothly evolving latent variable closely tracks the position of the stimulus in x dimension (the only
dimension along which it moves, see Fig[5[e)). Finally, the shared latent dimension shows some
modulation with wing-flapping but exhibits temporal structure not obviously related to the flapping
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frequency or stimulus motion. This may correspond to a longer-timescale motor behavior such as
the variation in how strongly the hawkmoth is responding to track the stimulus, which could depend
on the degree of its attention to the stimulus and its state of motivation. Importantly, we find that
including a shared dimension better reconstructs the data than not including one, suggesting that
there is a component of neural dynamics shared with stimulus dynamics. Specifically, we find that if
we remove the shared latent we see approximately a 70% reduction the reconstruction accuracy of
the image modality and about a 5% reduction in the reconstruction of the rates (Fig[2I). Because
the neural rates have a strong wing-flapping modulation, we expect the slower-moving dynamics to
account for only a small amount of the variability here. Lastly, to demonstrate the interpretability
advantage of linear decoder layer used for the neural likelihood, we visualize how each of the 10
motor neurons is loaded onto either the neural-only dynamics or the dynamics shared with the moving
stimulus Figure [5(d). For a closer look a individual neurons modulations by shared and independent
latent components, see Figure 21|(b).

5 CONCLUSION

In this work, we have introduced the multi-modal Gaussian Process variational autoencoder (MM-
GPVAE) to identify temporally evolving latent variables for jointly recorded neural activity and
behavioral or stimulus measurements. We first parameterize the model in the Fourier domain to better
extract identifiable temporal structure from high-dimensional time-series data. We then combine a
linear decoder for neural data with a deep neural network decoder for behavioral or stimuli data to
enhance the applicability of the MM-GPVAE across experimental settings while retaining the ability
to identify neural tuning with respect to shared and independent temporally evolving latents.We
show that our multi-modal GPVAE can accurately recover latent structure across data modalities,
which we demonstrate using a smoothly rotating and scaling MNIST digit alongside simulated neural
spike trains. We then show that the MM-GPVAE can be flexibly adapted to multiple real-world
multi-modal settings. First, we analyze calcium imaging traces and tracked limb positions of fruit
flies (Drosophila) exhibiting various distinct behaviors. Then, we apply the model to spike trains
from hawkmoth flight muscles as well as the oscillating visual stimulus the animal tracks during
flight.

Comparison to multi-modal approaches in neuroscience: Our work contrasts in important ways
with two similar recently-developed multi-modal latent variable models for time series data in
neuroscience. One closely related model, Targeted Neural Dynamical Modeling (TNDM) (Hurwitz
et al.| 2021)), was specifically designed to non-linearly separate the neural latent representation into
behaviorally relevant and irrelevant subspaces using a latent space governed by a recurrent neural
network (RNN). However, this work was evaluated on a dataset with a relatively simple behavioral
paradigm, and fails to accurately model the behavioral modality when it is higher dimensional or
more complex (Fig[6). Another related multi-modal time-series neuroscience model, Preferential
Subspace Identification (PSID) (Sani et al.,|2021), linearly separates the neural latent representation
into behaviorally relevant and irrelevant subspaces. However, PSID may be limited in that uses latent
dynamics are governed by a linear state-space model, and, similar to TNDM, is restricted in capturing
complex behavioral modalities well due a linear decoder to behavioral data (Fig[6). For a more
thorough evaluation and discussion to these approaches, see the appendix.

Choice of prior: In this work we focus on the use of GP priors to describe latent dynamics, though
other temporal dependencies are of course possible. Though TNDM and PSID have certain limitations
when compared with the MM-GPVAE (Fig6), these are not necessarily due to their latent temporal
prescriptions. These models could be modified with more flexible decoding schemes to better isolate
the role of the different latent dynamics in characterizing shared and independent subspaces compared
to the MM-GPVAE. In addition, other choices such as switching linear or non-linear latent dynamics
models are powerful in single modality settings (Hernandez et al., 2018}, |[Linderman et al., 2017}
Glaser et al., [2020) and could also be adapted to multi-modal settings. Our choice of a GP prior
specifically is well suited to experimental paradigms where the latent dynamics are hypothesized
to be smooth. Other approaches might be more appropriate when this smoothness assumption is
unlikely to hold. Thus, development of multi-modal versions of different latent dynamical models in
neuroscience and evaluating their strengths and limitations alongside the MM-GPVAE remains an
important avenue of future work in neuroscience.
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6 REPRODUCIBILITY STATEMENT

All models in this manuscript were trained end-to-end in PyTorch using the ADAM optimizer.
Training was done on a Macbook Pro with Apple M1 max chip and all evaluations took less than an
hour to fit. All encoder and decoder neural networks were standard feedforward neural networks with
ELU activation functions. Additional details on neural network architectures for the experiments can
be found in the appendix. An implementation of MM-GPVAE can be found at: \GitHub Repository
for MM-GPVAEI

7 ETHICS STATEMENT

Our work provides a general model for exploratory data analysis for multi-modal time-series data.
Though we develop the model with neuroscience experiments in mind, in principle the model could
be adapted to other settings where the assumption of smoothly evolving latent dynamics holds across
distinct data modalities. We do not anticipate any potential negative societal impacts of our work.
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APPENDIX

CONTRASTING THE MM-GPVAE WITH EXISTING APPROACHES

We evaluate our MM-GPVAE model alongside both Targeted Neural Dynamical Modeling (TNDM)
(Hurwitz et al., |2021) and Preferential Subspace Identification (PSID) (Sani et al., [2021) using
our synthetic data of a rotating and scaling MNIST digit ‘3’ and corresponding Poisson neural
rates. In Figure [§] we show the reconstruction of both the behavioral modality, the MNIST digit
‘3’, and Poisson neural rates for each model. In addition to these, we also provide the error of the
reconstruction performance on both data modalities on held-out trials. We find that the MM-GPVAE
is able to better reconstruct data from both modalities in this simulated example than the competing
approaches.
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Figure 6: (a) Reconstruction of the scaling/rotating MNIST digit ‘3’ with MM-GPVAE, TNDM and
PSID. (b) Reconstruction of neural rates with MM-GPVAE, TNDM, and PSID. (c) MSE for neural
rate reconstruction (left), and MSE for image reconstruction (right). Here, each dot indicates one trial
mse from MM-GPVAE vs a competing model. The majority of the trials errors fall above the unity
line for both models, indicating overall better reconstruction with MM-GPVAE.

Next, to compare these models in a real-world setting, we implement PSID, TNDM, and MM-GPVAE
on data from a simpler neuroscience experiment where all models are capable of recovering both
behavioral trajectories as well as neural rates. We focus on a simpler behavioral task because these
competing approaches are not well-suited to reconstruct complex behavioral modalities due to a
lack of neural network decoder. We use the primate reaching data from [Hurwitz et al.| (2021) for
these evaluations. Here, a linear decoder as well as our deep neural network can reconstruct both
modalities well. The visualizations of the latent spaces for these data can be seen in Figure[7} While
both TNDM and PSID can provide only two subspaces in which only one can separate the 8 reaching
positions (relevant subspace), MM-GPVAE can provide visualization for 3 subspaces, 2 modality
specific, and 1 shared, and we can see a clear separation with both the behavioral-only subspace as
well as shared subspace.
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Figure 7: (a) Separation of all 8 reaching directions in the relevant subspace using PSID. (b) Separation
of all 8 reaching directions in the relevant subspace using TNDM. (c) Separation of all 8 reaching
directions in behavior-only and shared subspaces. Dots here indicate the mean latent value across
the entire trial. The neural subspace shows no behavioral separation in the latent-space whereas the
behavioral and shared subspaces show strong behavioral separation. This result closely parallels with

(Hurwitz et al., 2021}, [Sani et al.},[2021)), which isolates behaviorally relevant and irrelevant neural

subspaces. However, in contrast to (Hurwitz et al.}, 2021}, [Sani et al.|, 2021)) the MM-GPVAE isolates

a distinct shared subspace as well as both neural and behavioral independent subspaces from a raw

unsupervised partitioning of both the behavioral and neural data.
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Figure 8: (a) Additional estimated images and neural rate trajectories of the MNIST digit ‘3’ as well
as independent and shared latent estimates.

ADDITIONAL EVALUATIONS OF THE MM-GPVAE ON SIMULATED DATA

To provide a more complete picture of the ability of the MM-GPVAE to both reconstruct simulated
behavioral and neural data, and to accurately recover the true underlying latent trajectories, we show
additional performance evaluations here in a simulated setting. Figure[§]shows an example of 24
reconstructed 3s from the evaluation shown in Figure 3 of the manuscript. Again, here we reconstruct
a scaling and rotating MNIST digit ‘3’ alongside 100 neural spike trains, where one latent dimension
is shared across modalities. Figure[§]also shows latent reconstructions and 5 example neural rates in
5 held out trials. Using the same set-up, we additionally run the MM-GPVAE with MNIST digit ‘2°,
and show an example of 24 reconstructed images as well as 3 example neural rates (of 100 neurons)
on 5 held-out trials in Figure[9]

In addition to these, we extend Figure [3{(a) from our manuscript with all the latent trajectories for our
simulated data comparisons. Because in our unimodal (GPFA and GP-VAE) comparisons, there is
ambiguity as to which latent is “shared”, we simply select the latent trajectory which most closely
matches the true underlying latent variable for each comparison. Panels (b) and (c) in Figure [I0]
show the reconstruction mean squared error of the MM-GPVAE compared to the unimodal models
GP-VAE and GPFA. Here, we include a version of each of the unimodal models with two different
encoder representations, one which represents what the GPFA and MM-GPVAE would typically
have access to - simply the data of their own modality (i.e. neural data for GPFA, image/behavioral
data for GP-VAE) - and a second where the encoding distribution is a function of data from both
modalities, matching the encoder exactly with that of the MM-GVPAE. In each of these cases, we
find that the encoding representation has little effect on model performance. We visualize both the
average mean-squared error on held-out data (c) as well as a per-trial mean-squared error scatter-plot
(b) to provide a better sense of performance across all models and encoders. We note though that the
extent to which MM-GPVAE more accurately identifies latent structure than the unimodal variants is
sensitive to the nature of the simulated data and can vary across model fits. For (b) and (c) specifically,
we average model performance across 4 random seeds to report overall reconstruction accuracy.
We also found through model exploration that GPFA specifically often does comparatively well in
identifying latent structure when neural rates are high or have large variance. This is likely true
because identifying latents within a linear map is trivial under the standard GPFA model, and so
latent accuracy can be very good here if the neural data is sufficiently robust. This means that the
metrics reported for the identification of latent structure in Figures [[0]and [3| are somewhat dependent
on the statistics of the neural rates used to generate and fit the model.
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Figure 9: (a) Example of MNIST digit ‘2’ with reconstructed digits and neural rates as well as
independent and shared latent estimation.
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Figure 10: (a) Extension of Fig 3(a) from the manuscript with best latent trajectories, showing
the best matched latent from GPFA and GP-VAE to the true shared and independent latents. (b)
Identification acccuracy of the best performing latents estimating the shared latent for GPFA (left)
and GP-VAE (right). Each dot indicates a trial. (c) Average MSE for recovery of shared latent for the
best possible latents from GP-VAE, GP-VAE (encoding both modalities) GPFA, and GPFA (encoding
both modalities).

ASSESSING THE IMPORTANCE OF PRUNING THE FOURIER FREQUENCIES

Figure [TT]demonstrates the necessity of pruning the Fourier frequencies when evaluating the MM-
GPVAE on our simulated data. Here, we present standard and pruned Fourier MM-GPVAE model
fits (Fig[[T{(a)) and show their ability in reconstructing the true generative smooth latent across each
latent subspace (Fig[TT(b)). Without constraining the number of Fourier features for these data, the
latent identification fails, akin to what is seen when we ignore the Fourier representation entirely. We
note here that this feature is a function of the length of the trial, and the failure is not as stark for
shorter-length trials. For these trials, our pruned condition the length scale of the GP to a value of 10
(i.e. the hyperparameter ¢ can go no smaller than 10).
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Figure 11: (a) Accuracy of identification of all three latents for the pruned and standard version
of the Fourier MM-GPVAE. (b) Example latent trajectories for each subspace. The time-domain
formulation fails to identify the true underlying latents accurately, similar to what is seen in Fig|[T]

VARYING THE NUMBER OF NEURONS

To demonstrate how the recovered latent of the shared and independent subspaces might trade-off with
the amount of data a practitioner may have for a given modality, we consider fits of our MM-GPVAE
in our simulated setting with a varying number of neurons. As expected, increasing the number of
neurons increases the ability of the MM-GPVAE to identify the neural latent, as well as its ability
to accurately reconstruct neural data. Importantly, because structure is shared across modalities,
increasing the number of neurons also increases the ability of the MM-GPVAE to identify shared
latent structure, as well as shows some improvement in the MM-GPVAE to generate image data.
Increasing the number of neurons has no effect on identifying the image latent structure. (See Fig[T2)
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Figure 12: (a) Latent identification accuracy as a varying number of neural rates are available to the
model. (b) image and rate reconstruction accuracy as a varying number of neural rates are available
to the model.

ROBUSTNESS TO MEASUREMENT ERROR

To assess how the MM-GPVAE might perform in the presence of noisy or imperfect behavioral
measurements, we consider a simulated experiment where a randomly selected 20% of the images
are greyed on either the top or bottom half. We fit the MM-GPVAE jointly to the image data of
this form as well as uncorrupted neural rates of the same form as in the main manuscript. We find
that the MM-GPVAE is able to exploit smoothness, rendering well-generated images even during
these occluded trials (Fig ﬂ_?[a)). As expected, we find that a standard MM-VAE (without a GP prior
over time) is not able to reconstruct the true image as well, but does a better job reconstructing the
occluded image, as it treats each frame independently (Fig[I3b)). We also show that this occlusion
procedure has no bearing on the ability of the MM-GPVAE or MM-VAE to reconstruct the neural

rates (Fig[[3]c)).
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Figure 13: (a) Image reconstructions of MM-VAE and MM-GPVAE trained on occluded threes
alongside the true and occluded threes. (b) (left) MSE of MM-GPVAE and MM-VAE for the true,
not occluded data. (right) MSE of MM-GPVAE and MM-VAE for the occluded data. (c) MSE of rate
reconstructions.
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NEURAL NET ARCHITECTURES

For the MM-GPVAE, both the simulated and real-world multi-modal evaluations used similar neural
net architectures. However, there were some modifications of the nodes/layers that were unique to
each evaluation. This was necessary as the latent dimensionality was different across our different
evaluations, and certain behavioral reconstructions, especially those that were higher-dimensional,
required richer neural network parameterizations. The schematic for the MM-GPVAE neural network
architecture in our simulated example can be found in Figure[T4] and the schematics for the neural
network architectures for the real-world multi-modal datasets can be found in Figure [T3](fly) and
Figure @ (hawkmoth). For our evaluation on the dataset used in (Hurwitz et al.l[2021), whose results
are above, the architecture can be found in Figure[T7] Note that for all experiments, each modality is
encoded to its own set of variational means and variances (transformed into the Fourier domain). The
encoded means and variances representing the shared latents are then summed to give the encoded
shared latents means and variances. Across all evaluations, we parameterized our latents in the
Fourier domain and converted back to the time domain before decoding.
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Figure 14: MM-GPVAE architecture for simulated data. (a) Encoder network of the MNIST digit. (b)
Encoder network of the neural information. (c) Decoder network of the MNIST digit. (d) Decoder
network of the neural information.
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Figure 15: Neural network architecture for evaluation on fly dataset. (a) Encoder network for behavior.
(b) Encoder network for neural data. (¢) Decoder network for behavior. (d) Decoder network for

neural data.
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Figure 16: Neural network architecture for evaluation on hawkmoth dataset. (a) Encoder network
for behavior. (b) Encoder network for neural data. (¢) Decoder network for behavior. (d) Decoder
network for neural data.
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Figure 17: Neural network architecture for Monkey reaching data, evaluated above. (a) Encoder
network for the behavior. (b) Encoder network for the neural activity. (c) Decoder network for the
behavior. (d) Decoder network for the neural activity.
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ADDITIONAL INFORMATION ON FLY EXPERIMENTAL DATA

Pre-processing: We isolated 1000 raw calcium traces from (Schaffer et al.|[2021) for use with our
model for the evaluations on the Drosophila dataset. For this set-up, we consider a variant of the
MM-GPVAE where we have removed the non-linearity for the neural data modality, and instead
consider Gaussian observations with an additional parameter controlling the observation variance
for the fluorescence traces (akin to the original formulation of GPFA (Yu et al.}2009))). This dataset
also contained x,y positions from 8 tracked limbs positions (Mathis et al.,[2018)). The data came as
one continuous recording, and at every time point there was a behavioral categorization probability
for one of 6 distinct behaviors (undefined, still, running, front grooming, back grooming, abdomen
bending) determined via the algorithm outlined in (Whiteway et al., [2021)). To split this continuous
recording into trials, we found segments of the recording where, for 35 continuous samples, a single
behavior was estimated at a > %60 probability. This generated 318 total trials where each trial was
of one of 5 possible behaviors. There was no section of the recording where there was an ‘undefined’
behavior for 35 continuous samples, so there are no undefined behavioral trials in our analysis.

Additional evaluation: Though we show the time-course of the behavioral reconstruction in the main
manuscript, we show a 2-d reconstruction on 2 example trials in Figure[I8] Here we plot true x,y
positions for 2 trails for each of the 8 limb positions alongside our model’s reconstruction. We can
see here that our model also captures the spatial information in the limb-position data. We also show
for comparison the 2-d depiction of the shared and independent latent representation of all trials in the
dataset (Figure @) with all five of the behaviors labelled. You can see here that the "still" behavior
separates well from all other behaviors in the shared and neural subspaces.
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Figure 18: (a) Reconstruction of 8 fly limb positions in 2 held-out trials. Here, we see the MM-
GPVAE is able to reconstruct the spatial information of the behavioral modality in the 8 tracked limb
positions.
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Figure 19: (a) Separation of all 5 fly behaviors in the behavior-only, neural-only, and shared subspaces.
Similar to what is seen in the main manuscript, the ‘still” behavior is well separated from trials with
other behavioral labels in the neural and shared latent subspaces.
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ADDITIONAL INFORMATION ON HAWKMOTH EXPERIMENTAL DATA

Pre-processing: For our hawkmoth data, the original synthetic visual stimuli were sampled at 125 Hz
and the neural and torque recordings were sampled at 10K Hz (Sprayberry and Daniel, |2007} Sikandar|
et al.| [2023}; |Putney et al.,|2019). To prepare these data for evaluation with the MM-GPVAE, we first
downsampled neural information and torque measurements to 1K Hz by binning the spike counts and
averaging the torque measurements at this temporal resolution. To align these measurements with
the visual stimuli, we upsampled the images 8-fold. The entire recording was 20 seconds long and
was split into 6 evenly-divided trials. Here, it is worth noting that the trials are much longer (~ 3300
timebins) than in the other experiments in this work.

The visual stimuli contained 3024 pixels and there were ten total hawkmoth motor neurons. We set the
neural-independent subspace to 1-dimensional, the images-independent subspace to 1-dimensional,
and an additional 1 dimension for the shared subspace. To encourage slow-evolving smooth latents in
the shared and image subspaces, and faster-evolving neural latents, we initialized the length scale
parameters for each latent dimension to different values. The length scale was set to 10 for the neural
latents, 150 for the shared latent, and 300 for the image latent. This biased the model fits to capture
slower dynamics in the image subspace and the faster dynamics in the neural subspace.

Additional evaluation: The neural rates are well-captured by the MM-GPVAE for all 10 hawkmoth
motor neurons, which each show strong periodicity. Figure[20]shows the strong fast-oscillation spike
rates captured by the MM-GPVAE for all ten hawkmoth neurons alongside the recorded spikes for a
1.5 second period. Similar periodicity exists across the entire 20 second recording.

To emphasize the added interpretability we get from the linear layer in the neural likelihood and
the role of the shared latent in generating the data from each modality, in Figure [2T| we show the
reconstructions for both modalities using one or no shared latent variables (Fig[21] (a)) as well as
2 example neurons’ tuning to the neural and shared latent. Here we can see that neuron 5 is more
positively modulated by the shared latent while neuron 9 is negatively modulated by the shared latent.
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Figure 20: (a) True spikes and estimated rates of all 10 hawkmoth neurons over 1500 time points.

ADDITIONAL MODEL FITTING INFORMATION

All data had a 80-20 split for training and testing respectively. The Fourier frequency pruning
was set to the minimum length scale of 10, 10, 3, and 16 for GP-VAE (simulated), MM-GPVAE
(simulated), MM-GPVAE (fly), and MM-GPVAE (moth) respectively. GP length scales parameters
were initialized to a value of 30 for all except for the hawkmoth evaluations (where initial values are
indicated above), and jointly optimized with the ELBO. The covariance parameter o was set at a fixed
value of le-2, le-2, le-3, and le-4 for GP-VAE (simulated), MM-GPVAE (simulated), MM-GPVAE
(fly), and MM-GPVAE (moth) respectively. We additionally initialized the offsets d of the neural
modality to the average log-rate of the neural data.

Latent dimensionality selection: In the case of the simulated examples in this work, the dimension-
ality was always set to the true generative dimensionality. For the real neural dataset examples in
the main paper, the dimensionality was chosen using a distinct approach for each modality. For the
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Figure 21: (a) Stimulus reconstructions using one shared latent vs no shared latent variables (left).
Neural rate reconstructions using one shared latent vs no shared latent (right). (b) Fast moving neural
latent (top) along with slow moving shared latent (bottom). The loadings matrix (right) display the
tuning of each neuron to our latents, here we highlight neuron 5 which is positively modulated by the
shared latent and neuron 9 which is negatively modulated modulated by the shared latent.

neural dataset, we use PCA and select the number of dimensions that capture greater than 97% of
the variance. For the other modality (limb position or visual image) the dimensionality was chosen
by increasing the number of dimensions in a unimodal Fourier GP-VAE until cross-validated perfor-
mance did not show significant improvement. Then, we identify the appropriate number of shared
dimensions by fitting the full MM-GPVAE model to both modalities and systematically increasing
the number of dimensions shared between datasets until predictive performance no longer improved.
Across both datasets, we always saw that adding some shared dimensions increased overall predictive
performance compared to none, suggesting shared structure across the data modalities for these
experiments.

We also note that the dimensionality selection procedure was used to approximate shared and
independent dimensionality as best as possible, but across CV folds the variance in cross validated
log-likelihood was high. However, small changes to the number of shared and independent dimensions
did not change latent representations or decoding performance much in our models.

For the evaluation where we compare MM-GPVAE to TNDM and PSID, we choose approximately
the same dimensionality as in the original TNDM paper (Hurwitz et al.| (2021)) so readers can easily
compare fits across models.

CHOICE OF GAUSSIAN OBSERVATION VARIANCE INITIALIZATION, o?

We found that how we initially set the value of o® could effect the performance of the MM-GPVAE,
especially regarding the reconstruction of the behavioral data. Although we learned the o2 value
jointly with the other parameters during optimization, the value of o tended to vary minimally from
its initial value. Therefore, our setting of o tended to act as a reconstruction penalty, balancing the
ability of the MM-GPVAE to prefer to reconstruct either the behavioral or neural data. Such a scaling
term in the ELBO reconstruction has been seen in other models (Hurwitz et al.| [2021)), and in the
original GP-VAE this parameter was chosen carefully through a specific cross-validation approach
(Casale et al., [2018). Here, we simply set o2 to a value proportional to the dimensionality of the
behavioral modality, which tended to balance the neural and behavioral terms in the ELBO, and
generate good reconstructions for each modality. The initial values for o2 were 1000, 100, le-6, and
1 for GP-VAE (simulated), MM-GPVAE (simulated), MM-GPVAE (fly), and MM-GPVAE (moth)
respectively.

DERIVATION OF THE EVIDENCE LOWER BOUND (ELBO)

Here we show the derivation of the evidence lower bound used for the MM-GPVAE. For clarity, we
will start by deriving the ELBO for the MM-GPVAE in the time domain, and ignore the Fourier
representation in this derivation. The derivation trivially applies to the Fourier representation as well,
as the mapping between the two domains is linear. We set the GP prior parameters 8 = {a, 6}, W to
be the loadings matrix and offsets from equation 4 in the manuscript, T" to be the observed timepoints,
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and Z to be the collection of all the shared and independent latents Z = {z,, Zs, Zp }-

Ing (YAvYB | Ta ¢aW70-270) =
. /p<YA,YB | Z,6,W,0%) p(Z | T, 0)
& 0(Z [ YA, YD)

- /) p(YAYP| 2,6, W.0%) p(Z|T.0)
=) 0(Z | YA, YD)

= ]EZqu [Ing(YB | ¢7U27Z55 Zb) + logp(YA | W7ZSa Za) + logp(Z | Ta 0)]

- / log 4y (Z | Y)gu(Z | Y)dZ

w(Z | YA YP)dz

)qw(Z YA YP)dz

—Ezeg, [Zlog/v s 66 (2 0*Tx) + 3 los(Pual(20)

+lop(Z | T.6)| + Hi(ay)
The Fourier domain representation of the ELBO only requires sampling over variational parameters

in the Fourier space, but only changes the expression of the GP prior term p(Z).

GP prior: The expectation of the GP prior term can be expressed in the Fourier domain as:

Eey, {p(z 6, w)} =N "Es.,. [log/\/ (s,,,w|o, [f(p]w,w)}
p,w

_ Z]EZNq){log plw ,w+a)+([1{p]~f:+a)}

_ S o T () ALY
2 Zlog([KP]w,w + ) + ([Kp]w,w + a)

where the double sum is due to the variational distribution g being a mean field Gaussian, and p here
indexes latents and w indexes Fourier frequencies.

9

Neural likelihood: Since the estimated log-rates of the neural data is a linear transform of the shared
and neural latent variables, we can also evaluate the expectation of the neural-modality likelihood
term in closed form. Recall that

X=WZ=WZB',
where X is the matrix of embeddings, and Z is the P x F matrix of Fourier-domain latent variables.
We may therefore write the embedding for measurement 7 at time ¢ as

Tip = wiTth,
where w; is the " row of W and b/ is the t" column of BT. If we let iy, = E5_, [Z],
and correspondingly let i be the P x F matrix of /i, .’s then Ez_ [z;4] = w, 1b;. We may
equivalently write x; + as
x; = vec(x; ;) = vec(w,; Zby)

= vec(b] ZTw;)

= (w] ®b])z,
where z = vec(Z 7). We may therefore we may derive the variance of x; ; as

Varg . [i4] = VarZqu[('wZT ® b/ )z]
—Ey, (W] ©b))2)2 —E;_, [(w] b))

=Bz, [Trace[(w; ® b)(w, @b )z2z"]] — (w, fib,)?
= Trace[(w; @ by)(w;' @b )(V + vec(ft)vec(ir) ] — (w,; fib;)?
= (w] ®b) )V (w; @ by),
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where V is the diagonal posterior covariance of zZ whose elements are the encoded Fourier variational

variances, 62 (Y'). Therefore, we observe that under the variational posterior z; ;|Y ~ N (mj ¢, v; ),

where m; ; = w, fib; and v; ; = (w; @ b )V (w; @ by).

We note that for \; ; = e”i* follows a long-normal distribution, meaning that, for z; ; ~ N (m; ¢, v; +)
1. . . . . .

then E[\; ;] = et T2%:t - This allows us to specify the posterior expectation of the Poisson

likelihood in closed form. Namely,

Ez.q, [l08 P(yi,t|f($i,t))} =Ez.,, [yi,t log A + )\i,t:| — log y; ¢!

— yi,tEZqu [l'i,t] + E2~qw [)\i,t] + const 3

1
=YitMit + et 4 const >
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