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1. Introduction 

Working memory is the ability to maintain and 
manipulate information derived from past sensory 
experiences, while motor preparation is the ability to 
retain and manipulate information derived from past 
decision-making processes. The lateral prefrontal 
cortex (LPFC) and the prearcuate cortex (PAC) are 
key regions in the brain network associated with 
working memory and motor preparation [1, 2]. The 
LPFC contains both working memory and motor 
preparation signals [3, 4], while the PAC is primarily 
involved in motor preparation [5].  

While much is known about the neural 
mechanisms of the maintenance of working memory 
and motor preparation information, less is known 
about how this information is manipulated. Human 
behavioral studies have shown that tasks that require 
working memory updating can be performed 
employing different strategies. One strategy is to 
retrieve from passive storage at the time of recall 
(R@R) [6]. Neurologically, Panichello and Buschman 
[7] showed that the selection of one out of multiple 
memory items, similar to the R@R strategy, led to a 
rotation process that transferred the selected 
information from a "memory" subspace that encoded 
multiple pre-selected memory items, to a "readout" 
subspace that was common for the selected memory 
items.  

Another strategy is to rehearse and update the 
memory online as the items are shown (R&U), i.e. the 
replacement of one memory for another [8]. 
Rehearsing and updating online would presumably 
involve directly encoding and updating memories in a 
common activity space (e.g., motor preparation), but 
few studies has investigated this mechanism.  

To quantitatively understand the 
representational properties of neural networks 
employing different strategies, we trained artificial 
recurrent neural network models (RNNs) to solve a 
spatial working memory task and compared the 
hidden unit activities to the neural activities recorded 
in the LPFC and the PAC of monkeys. In both brain 
regions we observed patterns that were consistent 
with the RNNs trained with the R&U strategy. This 
study shows that latent behavioral strategies can be 
inferred using RNNs. 
 
2. Substantial section 

We trained two monkeys with a 2-item delayed 
response task (Fig. 1). Two memory items were 
sequentially presented on 1 out of 4 spatial locations 
on the screen, each followed by a 1s delay. Item 1 (I1) 
in each trial was always a target (red), while Item 2 
(I2) could be either a new target (red, T/T) or a 
distractor (green, T/D). A saccadic response was 
required at the end of each trial to the location of the 
most recent target (i.e., I2 in T/T, I1 in T/D). We then 
trained RNNs to solve the same problem with two 
different strategies, namely the R@R and the R&U. 

We first investigated the cross-temporal 
decodability characteristics of memory items by the 
full space neural activities from RNN hidden units 
and prefrontal populations of monkeys. Dynamic 
coding of target was only found in RNNs trained with 
the R@R strategy during the delay 1 (D1), whereas 
the R&U RNNs, LPFC and PAC exhibited stable code 
throughout the trial. In T/D trials, target code was 
found morphed significantly between D1 and D2 (i.e. 
lack of generalisation across time) only in the R@R 
RNNs, but not in the R&Us and the prefrontal 
populations. 

Next we examined the geometry of the encoding 
subspaces of memory items at different stages of task. 
The encoding subspace geometries were predicted to 
be different with different strategies: specifically in 
the T/T trials where retargeting was required, the 
R&U strategy predicted the encoding space of I1 
during D1 (I1D1 T/T) to be equivalent to the space of 
I2 during D2 (I2D2 T/T), while the R@R predicted 
these two spaces to be varied. (For conceptual 
illustration, see Fig 2.) Consistent with the 
predictions, we found I1D1 T/T equivalent (coplanar, 
aligned, and with transferable code) to the subspace 
of I2D2 T/T in R&U RNNs but not in the R@Rs (Fig. 2). 
LPFC and PAC also obtained equivalent geometry 
between I1D1 T/T and I2D2 T/T, suggesting that target 
information was directly encoded and updated on a 
shared subspace in these regions and were similar to 
the R&U models.  

Finally we directly estimated the shared subspace 
and projected the state evolvement across time. 
Based on the previous findings, we hypothesised that 
memory update in the R&U model would involve 
drifted projections from the representational locus of 
location of I1 to I2; in contrast, projection drifts were 
expected from the R@R models regardless of the 
need of updating memory. As expected, we found that 
R&U RNNs obtained projections unchanged between 
D1 and D2 in the T/D trials and drifted only in T/T 
trials (Fig. 3). LPFC and PAC exhibited similar drifting 
patterns to the R&U model. In contrast, the R@R 
RNNs had drifted projections during D2 in both T/T 
and T/D trials. This result suggests that memory 
update under the R&U strategy, and also in the 
monkey prefrontal populations, could be manifested 
as projection drifts on the readout space. 

Overall, our results revealed the neural 
mechanism of working memory rehearsal and update. 
In the present study, prefrontal populations ofs 
monkeys showed activity patterns that were 
analogous to the models based on the rehearse and 
update strategy rather than the retrieve at recall 
strategy. Our results also show the potential use of 
RNN simulations in inferring latent cognitive 
strategies. 
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2.2 Figures and tables 

 

 
Fig. 1: Task Design. 
 

 
Figure 2. Quantifications of Subspace Geometry 

between I1D1 T/T and I2D2 T/T. Left: Coplanarity; Right: 
Code Transferability. 

 

 
Figure 3. Projection drifts in example 

RNNs/cortical populations on the “readout” subspace 
for trials with I1 presented at location 1. Round dots 
and stars represent the projections at the end of D1 
and D2, respectively. Solid and dash (hollow) 
lines/marks represent average of T/T and T/D trials. 
Representational locus of each spatial location is 
color-outlined: location 1 (blue), location 2 (green), 
location 3 (red), location 4 (orange). 
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