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1. Introduction 
    In recent years, the advent of large language 
models (LLMs) such as GPT-4, Gemini, and DeepSeek 
has revolutionized the field of natural language 
processing by demonstrating unprecedented 
capabilities across various disciplines, including 
materials science[1, 2,3]. These state-of-the-art LLMs 
excel at extracting structured information from 
unstructured text and are increasingly deployed as AI 
agents to automate data collection and management 
in scientific research. The rapid expansion of 
scientific literature in materials science poses 
significant challenges, as traditional databases 
struggle to capture the intricate relationships among 
experimental data, synthesis routes, and material 
properties. At the same time, this wealth of 
unstructured scientific data presents unprecedented 
opportunities to develop advanced data mining and 
machine learning techniques, which can extract 
meaningful insights and drive innovation in materials 
discovery and optimization[4]. This situation 
motivates the exploration of knowledge graphs, 
which provide a flexible framework for representing 
interconnected data, and knowledge fusion 
techniques that integrate heterogeneous sources into 
a cohesive, semantically rich repository, thereby 
enabling advanced semantic search and reasoning 
capabilities[5, 6]. 
 
2. Methodology 
 

 
Fig. 1: The workflow of information extraction with LLM 
and multi-source data integration with knowledge graph 

 
2.1 Literature Text Mining 
     The process begins when a researcher submits a 
search query to a platform such as the Web of Science 
API, which returns a list of article DOIs. Using web 
scrapers, the system retrieves the articles and 
processes them into a dataset in JSON format that 
includes full text, tables, figures, and metadata. This 
initial step establishes the raw material necessary for 
subsequent extraction and integration. 
 
2.2 Large Language Model Information Extraction 
    Domain experts design a specialized ontology that 

guides the LLM agent in identifying and extracting 
relevant information from both the full text and 
tables of each article[7]. The agent performs named 
entity recognition (NER) and relationship extraction 
(RE) based on the predefined ontology, ensuring that 
key elements such as materials, synthesis methods, 
properties, and experimental conditions are 
accurately captured [8, 9]. In this process, the 
ontology is incorporated into the NER and RE process 
through prompt engineering inspired by domain 
knowledge in materials science, thereby enhancing 
extraction precision and contextual relevance[10]. 
 
2.3 Knowledge Graph Construction and Cleaning 
     Extracted information is converted into triplets 
and imported into a knowledge graph using 
Neo4j[11]. During this stage, an automated agent 
performs deduplication and entity linking to 
consolidate redundant entries and align semantically 
similar concepts under unified, canonical labels. By 
leveraging text embeddings, the agent identifies 
similar terms and assigns a confidence score to each 
resolution: high-confidence conflicts are 
automatically resolved, medium-confidence cases are 
flagged for human review, and low-confidence 
instances are rejected. This semi-automated process 
not only ensures that the knowledge graph maintains 
high data quality and consistency but also alleviates 
some of the considerable human labor and time 
required to manage a large, evolving knowledge 
graph. 
 
2.4 Enrichment through AI Agents and External 
Databases 
     To further enrich the knowledge graph, AI agents 
perform targeted web searches and access external 
databases that complement the initial literature-
derived dataset. In this step, the system incorporates 
data from PubChem, CAS SciFinder, Reaxys, NIST, and 
the Open Catalysis Project. CAS SciFinder contributes 
detailed references to related publications and 
patents, as well as reaction schemas and relevant 
experimental data, while PubChem offers chemical 
structure information, physical properties, and 
standardized compound identifiers that facilitate 
cross-referencing. Reaxys provides reaction 
pathways, yields, and step-by-step synthesis 
procedures, allowing the system to validate or refine 
existing entries in the knowledge graph. By 
integrating these complementary datasets, the 
enriched knowledge graph offers a more 
comprehensive view of the materials science domain. 
 
2.5 Case Studies 
     One case study focuses on electrocatalytic urea 
synthesis from carbon dioxide and nitrate using a 
multi-metallic coupling site catalyst. In this study, the 
knowledge graph integrates detailed information on 
synthesis procedures, including key parameters such 
as reaction temperature, pH, precursor ratios, and 
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synthesis steps like hydrothermal treatment and 
thermal annealing. It also captures performance 
metrics of the catalyst, including Faradaic efficiency, 
urea yield, current density, and overpotential. By 
leveraging active learning, predictive models are 
trained on this knowledge graph to forecast optimal 
synthesis parameters and procedural steps, thereby 
guiding experimental design toward achieving 
superior catalyst performance. This integrated 
approach not only supports advanced machine 
learning tasks for material property estimation but 
also facilitates targeted question-answering systems, 
underscoring its potential to drive innovation in 
materials discovery and design. 
 
3. Conclusion 
    This integrated methodology systematically 
addresses challenges inherent in materials science 
research, including the utilization of data in rapid 
expansion of unstructured literature, the complexity 
of domain-specific terminologies, and the 
heterogeneity of data sources such as textual, tabular, 
and image-based information. The proposed 
approach systematically captures, standardizes, and 
links domain-specific data—from experimental 
procedures and synthesis parameters to performance 
metrics—into a robust, semantically rich knowledge 
graph. The resulting resource not only enhances data 
accessibility and supports advanced machine 
learning applications but also provides a reliable 
foundation for predictive modeling and targeted 
question-answering systems.  
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