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Abstract1

The analysis of temporal networks heavily depends on the analysis of time-2

respecting paths. However, before being able to model and analyze the time-3

respecting paths, we have to infer the timescales at which the temporal edges4

influence each other. In this work we introduce an information theoretic measure,5

the causal path entropy, with the aim to detect the timescales at which the causal6

influences occur in temporal networks. The measure can be used on temporal net-7

works as a whole, or separately for each node. We find that the causal path entropy8

has a non-trivial dependency on the causal timescales of synthetic and empirical9

temporal networks. Furthermore, we notice in both synthetic and empirical data10

that the entropy tends to decrease at timescales that correspond to the causal paths.11

Our results imply that timescales relevant for the dynamics of complex systems12

can be detected in the temporal networks themselves, by measuring higher-order13

correlations. This is crucial for the analysis of temporal networks where inherent14

timescales are unavailable and hard to measure.15

The research of dynamic complex systems has in recent years advanced beyond static graph repre-16

sentations [1, 2]. The focus has shifted to various generalizations of diadic interactions in graphs:17

multiple types of interactions in multilayer network [3], multibody interactions in the form of simpli-18

cial complexes and hypergraphs [4] and models that incorporate concepts of memory [5–7]. Such19

generalized relationships allow us to model richer data, without losing possibly important features of20

the data.21

Temporal networks record not only who interacted with whom, but also when each interaction22

happened, which allows (and often requires) analysis beyond the standard network approach [8, 9].23

The time information can yield valuable insights on its own [10], and, although the temporal and24

topological aspects of temporal networks were initially mostly studied independently, even richer25

insights are hidden in the coupling of the temporal and topological patterns. Such coupling can affect26

the statistics of time-respecting paths [8] in temporal networks and thus complicate the analysis of27

temporal networks, e.g., analysis of accessibility [11], reachability [12], spreading [5, 6, 13, 14],28

clustering [15], centralities [16], and visualization [17]. In cases when the statistics of time-respecting29

paths deviate significantly from the statistics of random walks in static graphs, the static graph can30

become a misleading representation of the temporal network.31

Although, there are many possible ways in which temporal and topological patterns can couple in32

complex systems, one of the most basic cases is when the occurrence of a temporal edge causes33

a change in the frequencies of subsequent edges emanating from the target node within a given34

time-window. For instance, in a communication network we expect an incoming message to induce35

a outgoing message on the same topic, e.g. in the form of a reply, within a certain time window36

reflecting the minimal reaction time and memory of the recipient. Knowing the timescale at which37

such causal influence take place would allow us to capture the time-respecting paths that correspond to38

casual influences; this would in turn improve the analysis of the temporal network, e.g. the detection39

of time central nodes or community detection. However, information on the timescales relevant for40

the temporal network dynamics is rarely available in a real world settings.41

We define an information theoretic measure aimed at detecting the prevalence of causal interactions42

at various timescales of complex systems. We demonstrate that our measure can be used to infer43
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timescales that are relevant to the dynamics of temporal networks in both synthetic and real world44

data.45

Let Γ = (V, E) be a temporal network consisting of a set of nodes V and a set of time-stamped edges46

E ⊆ V × V × R. A temporal edge (v, w, t) ∈ E represents a direct link from node v to node w at47

time t. For simplicity, we assume that the temporal edges are instantaneous, however the method and48

algorithms can be modified in a straightforward fashion to the case where edges have finite duration.49

Formally, we call a sequence of time-stamped edges (v1, w1, t1), . . . , (vk, wk, tk) a time-respecting50

path iff for all i ∈ {2, . . . , k} they satisfy the following conditions [8, 18, 19]:51

wi−1 = vi (1)
δmin < ti − ti−1 < δmax. (2)

The parameters δmin and δmax naturally introduce a timescale that affects all analyses of temporal52

networks that are based on time-respecting paths. Examples of such analyses include detection53

of cluster structures in temporal networks, measures of temporal centrality used to rank nodes in54

temporal networks, as well as results about dynamical processes like epidemic spreading, or diffusion55

processes. The timescale has to be defined differently for processes on the temporal network or the56

processes of the temporal network [8]. In the former case, the timescale is defined by the process57

running on the temporal network, e.g. in the case of an epidemic that is spreading over a temporal58

network of contacts, the timescale is a property of a disease, related to the time interval in which a59

person is contagious and not related to the timescales at which contacts occur 1. In the latter case, the60

timescale is part of the process of edge activation, and thus shapes the temporal network itself, e.g.61

information that is spreading between persons is also affecting the persons’ choice with whom to62

share the information: a person would be more likely to share the family-related information with a63

family member and work-related information with a colleague. We are investigating this latter case,64

more specifically, we consider the problem of detecting the time window ∆t = [δmin, δmax] at which65

causal correlations between temporal edges take place.66

Timescales in temporal networks. In the literature, there exist a variety of definitions of timescales67

in temporal networks, as well as a variety of methods aimed at detecting them. The various definitions68

of timescales are based on the different structural features of temporal networks. One popular69

definition of timescales in temporal networks is the approach based on splitting the network into time-70

slices and aggregating the edges inside the time-interval [21]. In the same framework, Ghasemian et al.71

[22] and Taylor et al. [23] investigate the limitations of detectability of cluster structures dependent72

on the timescales of aggregation. Since this framework is based on aggregating the temporal network73

into a sequence of static time-aggregated networks, it loses information of the time-respecting paths74

and is therefore not in line with our aims. Other lines of research often related to timescale detection75

are change point detection [24], and analysis of large-scale structures. Gauvin et al. [25] detects76

clusters and their temporal activations in a temporal network using tensor decomposition. Similarly,77

Peixoto [26] proposed a method to detect the change points of cluster structure in a temporal network.78

Peixoto and Rosvall [27] proposed a method to simultaneously detect the clusters and timescales in79

temporal network, however, they model the temporal network as a single sequence of tokens (similar80

to [24]) that represent temporal edges, and their timescale inference refers to the number of tokens81

in the memory of a Markov chain that models such a sequence. In our view, these works focus82

on mesoscale structures, and take a coarse grained view of temporal networks, while in this work,83

we propose a complementary approach by focusing on local correlations between temporal edges84

incident on a node and subsequent temporal edges emanating from it. Among the works that took a85

fine-grained view, Williams et al. [7] investigated correlations between the temporal edges, however,86

they, too, considered sequences of edges that do not have any nodes in common, and therefore are not87

directly related to time-respecting paths. Scholtes et al. [16] found that correlations between edges88

on time-respecting paths affect centralities, and modeled the time-respecting paths with higher-order89

models, and found that this approach improves the centrality rankings, and identified the issue of90

timescale detection, which our work complements. Our work also complements Pfitzner et al. [28]91

which introduces betweenness preference that can be used to study over- and under-represented time-92

respected paths in temporal networks, but does not address the problem of detecting the timescales at93

which these paths occur. To the best of our knowledge, our work is the first to address the problem of94

causal timescale detection in temporal networks.95

1We note that the processes on and of the temporal network may interact [20], and thus blur the distinction.
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The causal path entropy. We address the issue of timescale detection by analysing time-respecting96

paths P∆t of length k for different timescales ∆t = [δmin, δmax]. Assuming casual interactions where97

paths incident on a given vertex effect the subsequent edges emanating from it, such time-respecting98

paths correspond to potential causal influences. In the context of timescale detection we are interested99

in the timescales where such paths become most predictable given their first k − 1 steps. To quantify100

this dependence we propose the “causal path entropy” which, given the set of all of time-respecting101

paths P∆t of length k and timescale ∆t, is defined as the conditional entropy of the last node vk102

given the sub-path (v0, v1, . . . , vk−1):103

H(P∆t) = H(vk|v0, . . . , vk−1) = H(v0, . . . , vk)−H(v0, . . . , vk−1), (3)

where H(P ) = −∑i pi log(pi) is the Shannon entropy. The identity in Eq. 3 can be obtained by104

applying the chain rule (see Appendix for derivation). By definition H(P∆t) measures the average105

uncertainty in the last step of time-respecting paths given the k − 1 previous steps. As the causal106

path entropy measures the strength of time ordered correlations it can be also related to the concept107

of Granger causality [29]. A lower value of the entropy indicates a high correlation between the108

memory of time-respecting paths and subsequent steps. Hence the ∆t for which the entropy reaches109

its minimum gives us the timescale for which causal paths become most predictable, i.e. where the110

correlations between subsequent temporal edges are the most pronounced. The entropy can also be111

defined for a single node v, by simply fixing vk−1 = v, allowing for a more fine grained analysis that112

could be important if nodes differ significantly with respect to the timescales they operate on. Given113

a timescale ∆t, the entropy can be estimated using the counts of time-respecting paths of length k114

e.g. using the methods from [30, 31].115
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Figure 1: Top: causal path entropy as a function of causal temporal scales in datasets Synthetic-2,
WB-DE, and HC-email (transparent red) and in the temporal networks with shuffled timestamps
(transparent blue). The height of a bar represents causal path entropy (error bars represent the
estimation error) and the x-limits of a bar represent the interval ∆t = [δmin, δmax] on which the
causal path entropy was measured. We indicate on x-axis the timescales of one minute (m), hour (h),
day (d), week (w), and year (y). We observe that the causal path entropy differs more between the
original and the shuffled network at causal timescales. Bottom: histogram of causal inter-event times.

In practice the causal path entropy is estimated from path counts by assuming multinomial distribu-116

tions with respective probabilities p(v0, . . . , vk−1) and p(v0, . . . , vk). The estimation of the entropy117

can be challenging especially for small ranges of timescales, since the temporal network can get118

temporally disconnected resulting in very few paths of order k being observed. As a result we require119

an efficient method for estimating the entropy that performs well even in such under-sampled regimes.120

The simplest estimator of a multinomial distribution, called the plug-in estimator, is based on the121

maximum likelihood estimation which however is known to severely underestimate the entropy in122

the undersampled regime and has various corrections (e.g. [32, 33]). An alternative to the plug-in123

estimator is to follow a Bayesian approach which results in entropy estimators that strongly depend on124

the choice of prior. To counteract this dependency the NSB estimator [34] directly infers the entropy125

from the counts by averaging over different priors for the transition probabilities, rather than inferring126

transition probabilities. Being a Bayesian method, the NSB estimator can also be used to quantify127

the uncertainty of the estimate. More specifically, assuming that the estimates of H(v0, . . . , vk) and128

H(v0, . . . , vk−1) have independent errors σk and σk−1, we can approximate the total error of the129

estimate as σ = (σ2
k + σ2

k−1)
1/2. As the NSB estimator requires the size of the alphabet to be known130

it is most suitable for cases where the number of nodes is fixed and improves further if the set of131
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edges that can occur are known a priori as this further restricts the number of potential paths. In cases132

when the number of nodes in the system is unknown, the Pitman-Yor Mixture entropy estimator [35]133

could be used instead. The details of our implementation and the computational complexity can be134

found in the Appendix.135

Experiments. We first perform synthetic experiments in order to observe the behavior of the causal136

path entropy in a controlled setting. We simulate temporal network Synthetic-2 with ground truth137

timescale ∆̄t = [100, 200] using the procedure described in the Appendix. We also generate a shuffled138

temporal network, by randomly shuffling edge timestamps, thus destroying the correlations between139

topological and temporal patterns (while preserving the distribution of edges and the distribution of140

timestamps). The values of the causal path entropy for the synthetic network and the shuffled network141

along with the histogram of inter-event times between causal paths is shown in Fig.1. More synthetic142

examples including results for networks with higher order correlations and multiple timescales found143

in the Appendix. In the synthetic data sets we find that the causal path entropy behaves as expected144

and is able to fully recover the timescales of the planted casual interactions from the data. Moreover,145

this pattern disappears when the timestamps of edges are shuffled, demonstrating that measure146

correctly captures the dependencies between temporal and topological patterns.147

In general, testing in real world data is more challenging due to the lack of a ground truth timescale.148

In order to circumvent this problem, we consider two types of temporal networks for which we149

were able to extract ground truth causal paths. First, we consider the public data set of Hillary150

Clinton’s emails [36], for which we extract causal paths in the form of email chains with common151

subject headers i.e. emails that are forwards or replies to each other. Second, we consider Wikibooks152

co-editing data sets [37, 38] which contain the editor, the edited article and the timestamp of each153

edit. We preprocess this data to obtain a temporal network between editors: by placing an edge154

(v, w, t) whenever editor w edits a given article at time t after it’s last editor v. We then define causal155

inter-event times based on the time intervals between successive edits of each article in the data set.156

More details on these data sets along with results for additional Wikibooks data sets can be found in157

the Appendix. In both the HC-email and WB-DE data sets we observe that the deviation of the causal158

path entropy from the baseline closely mirrors the frequency of causal paths and that decreases in the159

causal path entropy coincide with peaks in the number of causal paths. Moreover, the HC-emails160

data set, which is an ego-network, demonstrates that the causal path entropy is able to identify causal161

timescales for individual nodes and that it can be used in cases where the networks is only partially162

known. We also consider additional temporal networks, namely the email data sets [39, 40] and the163

SocioPatterns datasets [41–46], for which were unable to obtain ground truth causal paths in the164

Appendix. Nevertheless for these networks we obtain similar significant timescales for networks of165

the same type that in accordance with our expectations e.g. typical response times in emails.166

We identify three limitations of our approach. First, being based on directed paths the current method167

is restricted in the types of causal interactions it considers, namely interactions where an incoming168

link into vertex effects the subsequent links emanating from the vertex. The method could potentially169

be generalized to other types of casual interactions by considering other temporal patterns. The170

second limitation of the method is that it can not detect timescales at which the incoming edges171

to a node change the overall activity of the node without changing the relative frequencies of the172

outgoing edges. Detecting timescales of such causal influences is thus an open problem. Third, real173

data can contain time-varying timescales, e.g. during day or night, which might be addressed using174

time warping techniques.175

Conclusion. To summarize, the analysis of temporal networks heavily depends on the analysis176

of time-respecting paths [8, 9, 13, 16, 18, 30]. However, in order to model and analyze the time-177

respecting paths, we first need to identify the correct timescale. In this work we address this178

problem by introducing an information theoretic measure, the causal path entropy, that is able to179

capture timescales at which causal influences occur in temporal networks. Using real world data we180

demonstrated that the measure can be applied to temporal networks as a whole as well a single nodes181

and showed that the causal path entropy accurately captures the causal timescales in both synthetic182

and empirical temporal networks. We further support our findings by observing that the decreases183

in the causal path entropy coincide with increases in the number of causal paths. The causal path184

entropy allows system relevant timescales to be inferred from the temporal networks themselves185

which is crucial for the analysis of temporal networks where inherent timescales are unavailable and186

hard to measure.187
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1 Datasets301

In this work we considered synthetic and empirical temporal networks. The details of each temporal302

network are in Table 1.303

dataset |V | |E| |E| Ttotal [s]
DNC-16 1891 5598 39264 8.49e+07
EU-email-1 309 3031 61046 6.94e+07
EU-email-2 162 1772 46772 6.94e+07
EU-email-3 89 1506 12216 6.93e+07
EU-email-4 142 1375 48141 6.94e+07
EU-email-A 986 24929 332334 6.95e+07
Gallery 10972 89034 831824 6.95e+06
HC-email 326 385 8313 1.19e+08
Hospital 75 2278 64848 3.48e+05
Hypertext 113 4392 41636 2.12e+05
Primary 242 16634 251546 1.17e+05
School-13 327 11636 377016 3.64e+05
Synthetic-1 50 500 30000 1e+05
Synthetic-2 50 500 40000 1e+05
Synthetic-3 50 500 60000 1e+05
Synthetic-4 50 898 40000 1e+05
Synthetic-5 50 500 50000 1e+05
WB-AR 1124 3334 27166 3.89e+08
WB-DE 10999 54700 464089 4.87e+08
WB-FR 9735 53606 362094 4.88e+08
Work-13 92 1510 19654 9.88e+05

Table 1: The details about temporal networks that we analyzed in the experiments.

To generate synthetic temporal networks Synthetic-1, Synthetic-2 and Synthetic-3 with a ground truth304

timescale ∆̄t =
[
δ̄min, δ̄max

]
, we start from a static Erdős-Rényi random graph with 50 nodes and305

500 directed edges. We sample a random subset Pcausal of nu.p. = 500 unique paths of length k = 2306

in the static network which correspond to causal influences in the system. We sample with repetition307

np = 5000 paths from Pcausal to generate dataset Synthetic-1, np = 10000 paths to generate dataset308

Synthetic-2 and np = 20000 paths to generate dataset Synthetic-3. To add each path (v0, v1, v2)309

to the temporal network, we sample a random starting time t uniformly from
[
0, Ttotal − δ̄max

]
and310

create a temporal edge (v0, v1, t); we then sample temporal distance δ between edges on the path311

(inter-event time) uniformly from ∆̄t and create the temporal edge (v1, v2, t+ δ). We choose ∆̄t with312

δ̄min = 100 and δ̄max = 200. To add some noise to the system, we uniformly sample nr. e. = 20000313

edges from the static graph, and sample their timestamps uniformly from [0, Ttotal]. The temporal314

network Synthetic-4 contains two timescales relevant for the dynamics. To do so, we generated two315

different temporal networks based on two random graphs of 50 nodes (with the same node names)316

and 500 edges and based on the different timescales ∆t1 = [50, 100] and ∆t2 = [150, 200]. We used317

the same procedure as above with parameters nu.p. = 500; np = 5000; Ttotal = 105; nr.e. = 10000.318

We merged the two temporal networks into one; the details of the resulting network are in Table 1.319

The dataset Synthetic-5 contains paths of length three. Again, there are 50 nodes and 500 edges in320

the static Erdős Rényi graph. We sample nu.p. = 20 unique paths, we sample np = 20000 of them,321

and spread them across Ttotal = 105 using the same procedure and timescale ∆t = [100, 200]. We322

add nr.e = 10000 random edges to the network as noise.323

We also use empirical dataset where can get access to the ground truth causal path structure. We324

consider the bipartite temporal network of Wikibooks co-edits in Arabic (WB-AR), French (WB-FR)325

and German (WB-DE) [37, 38]. This data contains information about edits on the Wikibooks website:326

for each edit, we know the editor, the article that was edited, and the time at which the edit occurred.327

We preprocess this data to obtain a temporal network of editors: if editor v edited an article prior328

to editor w who edited the same article at time t, we assume that a link (v, w, t) occurred in the329

temporal network of editors. We define causal inter-event times based on the articles: we extract the330

time intervals between successive edits of each article. In these data, we analyse the timescales of331

the whole temporal network. Another dataset where we can get access to the ground truth causal332
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structure is the public data set of Hillary Clinton’s emails (HC-email) [36], which contains the sender,333

the receiver, the timestamp, and the subject of each email. In this data set we analyse the timescales334

of node representing Hillary Clinton. While sender, receiver and the timestamp form a temporal335

network, email subjects allow us to obtain causal inter-event times: for each incoming email, we336

extract the time duration until an email with the same subject was sent. We use the inter-event times337

between emails with the same subject and the inter-event times of articles for evaluation; the temporal338

networks contain only the temporal edges and not any additional information about the ground truth339

timescales.340

Finally, we also use empirical temporal networks where we do not know the ground truth causal341

path structure. Dataset DNC-16 [40] contains emails of the US Democratic National Committee342

leaked in 2016. Datasets EU-email-1, EU-email-2, EU-email-3, EU-email-4, and EU-email-A343

[39] contain email correspondence between researchers of an EU institution from first, second,344

third, fourth and all deparments, repsectively. Datasets Gallery [44], Hospital [42], Hypertext [44],345

Primary [45, 46], Work-13 [41] and School-13 [43] contain human face-to-face interactions in346

different settings measured by the SocioPatterns collaborations.347

2 Implementation348

Our implementation is based on the path counting methods [30, 31] which we use to obtain counts349

nv0v1...vk of paths (v0, v1, . . . vk) of length k, and counts nv0v1...vk−1
=
∑

vk
nv0v1...vk−1

for a given350

timescale. Note that the computational complexity of the method is dominated by the path counting351

method whose complexity is upper bound by O(|E| · |V | · k2 · (mλk−2 + λk)), where k is the length352

of the paths, λ is the algebraic connectivity of the static network, and m is the maximal number of353

links within a timescale ∆t. Based on these counts we then estimate the entropies H(v0, v1, . . . vk)354

and H(v0, v1 . . . vk−1) along with their respective errors using the NSB estimator [34]. Finally, by355

repeating this procedure over a range of different timescales we identify the timescales for which the356

entropy is minimized. The code for computing the causal path entropycan be found at [47].357

3 Conditional entropy: The chain rule358

For discrete random variables X and Y , the definition of the entropy (in nats) is359

H(X) = −
∑
x

p(X = x) ln p(X = x)

and the definition of conditional entropy (in nats) H(Y |X) is:360

H(Y |X) = −
∑
x,y

p(X = x, Y = y) ln
p(X = x, Y = y)

p(X = x)

In the following, we use the above definitions to derive the chain rule of conditional entropy:361

H(Y |X) = −
∑
x,y

p(X = x, Y = y) (ln p(X = x, Y = y)− ln p(X = x)) =

= −
∑
x,y

p(X = x, Y = y) ln p(X = x, Y = y)

−
[
−
∑
x,y

p(X = x, Y = y) ln(p(X = x)))

]
=

= H(X,Y )−
[
−
∑
x,y

p(Y = y|X = x)p(X = x) ln(p(X = x)))

]
=

= H(X,Y )−

−∑
x

p(X = x) ln(p(X = x)))
�����������:1(∑

y

p(Y = y|X = x)

)  =

= H(X,Y )−H(X).
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4 Entropy estimation362

In this experiment we test four estimates of the entropy of a multinomial distribution: MLE,363

Miller [32], Grassberger, and NSB. We vary the sample size and measure the errors of the esti-364

mates. For each sample size we repeat the procedure n_repetitions (100) times. First, we generate365

a random 50-dimensional p⃗ from a Dirichlet distribution with all concentration parameters α (in code:366

gen_alpha) p⃗ ∼ Dir(α1⃗). The sampled vector p⃗ represents the ground truth probability distribution,367

and determines the ground truth entropy H =
∑

i pi ln pi. Then, we use the same p⃗ and generate368

a random multinomial sample. Using the sample, we infer the entropy rate Ĥ using four methods:369

MLE, Miller, Grassberger and NSB. We note the differences between the estimate and the ground370

truth value, and plot the average errors in those 100 repetitions. Error bars represent intervals between371

5th and 95th quantile of the distribution.372
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Number of samples

−1.0

−0.5
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0.5

1.0

Ĥ
−
H

Miller

NSB

Grassberger

MLE

Figure 2: Entropy estimation error as a function of the number of samples. MLE underestimates the
entropy for small samples. Grassberger estimates always estimates entropy as ≈ 1.07 when there is
only one sample, and as the data size grows, it approaches the true value. Although NSB estimator
was on average a better estimator than the Grassberger estimator, it also had negative bias in our
experiments. In contrast, Miller method overestimates the entropy for small data sizes. Error bars
denote intervals between 5th and 95th quantile.
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5 Comparison of Entropy Estimates on the Second-Order Transition Matrix373
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Figure 3: We generate random two-hop transition matrix Tgt in the form of p(v3|v1, v2), where
every row of the matrix represents a different memory v1, v2 and every column represent different
final node v3. We first generate an α0 for that matrix as a draw from a gamma distribution with
hyper-parameter 2, then use it to generate every row of the matrix Tgt using α0 as the hyperparameters
of the Dirichlet distribution. We use the same hyperparameter to generate a probability distribution of
p(v1, v2). Given the transition matrix Tgt and a random probability distribution of memory v1, v2,
we generate a matrix of probabilities p(v1, v2, v3) and from it a matrix of counts c(v3|v1, v2), such
that the total number of counts is equal to the number of samples (x-axis). We compute the ground
truth entropy H(v3|v1, v2) to the entropies inferred from counts c. We present the average difference
between the two and the error of this average (bars represent quantiles 5-th and 95-th quantile of
the differences). For each number of samples (10, 20, 30, ... 150), we ran 100 trials. The temporal
network had 4 nodes, and all 12 edges were possible.

6 Additional synthetic data374

In this section we present results on additional synthetic datasets: Synthetic-1 in Fig. 4, Synthetic-3375

in Fig. 5, Synthetic-4 in Fig. 6, and Synthetic-5 in Fig. 7.376
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Figure 4: Top: causal path entropy as a function of the timescale ∆t in temporal network Synthetic-1
and in Synthetic-1 with shuffled timestamps. Timescale ∆t is represented with the x-limits of the bar,
and causal path entropy is represented as the height of the bar. Error bars indicate the error of the
causal path entropy estimates. Bottom: histogram of inter-event times of synthetic causal interactions.
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Figure 5: Equivalent of Fig. 4, for Synthetic-3.
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Figure 6: Equivalent of Fig. 4, for Synthetic-4 which contains two different timescales.
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Figure 7: Causal path entropy as a function of the timescale ∆t in temporal network Synthetic-5
and in Synthetic-5 with shuffled timestamps for orders k = 2 (top) and k = 3 (middle). Timescale
∆t is represented with the x-limits of the bar, and causal path entropy is represented as the height
of the bar. Error bars indicate the error of the causal path entropy estimates. Bottom: histogram of
inter-event times of synthetic causal interactions.
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7 Other empirical data with ground truth377

In this section we show results on other wikibooks datasets (Arabic and French) that we used to test378

the method.379
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Figure 8: Top: causal path entropy as a function of the timescale ∆t in WB-AR temporal network
and of WB-AR temporal network with shuffled timestamps. Timescale ∆t is represented with the
x-limits of the bar, and causal path entropy is represented as the height of the bar. Error bars indicate
the error of the causal path entropy estimates. Bottom: histogram of inter-event times for all articles
of edits of the same article.
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Figure 9: Equivalent of Fig. 8 for WB-FR.

8 Empirical data without the ground truth380

In this section, we show multiple datasets in which we do not have access to the ground truth temporal381

scale, but we observe circadian rhythms and expected patterns of human communications.382
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Figure 10: Causal path entropy as a function of the timescale ∆t in temporal networks of email
correspondence. For each temporal network, we show the causal path entropy of the original and of a
shuffled network. Timescale ∆t is represented with the x-limits of the bar, and causal path entropy is
represented as the height of the bar. Error bars indicate the error of the causal path entropy estimates.
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Figure 11: Causal path entropy as a function of the timescale ∆t in temporal networks of human
face-to-face interactions measured by the SocioPatterns collaboration. For each temporal network, we
show the causal path entropy of the original and of a shuffled network. Timescale ∆t is represented
with the x-limits of the bar, and causal path entropy is represented as the height of the bar. Error bars
indicate the error of the causal path entropy estimates.
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