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A EXPERIMENTS DETAILS

A.1 DATASETS

We used 4 real-world public datasets and 2 simulated datasets. Stocks is a daily stock data from
Google spanning from 2004 to 2019 with 6 features, such as trading volume, high, low, opening,
closing, and adjusted closing prices Energy is a dataset from the UCI Appliances Energy prediction
repository. It contains 28 features related to household energy consumption, such as temperature,
humidity, and energy usage, among others. ETTh; is a dataset that records electricity transformer
temperature data, which serves as a crucial indicator for long-term power system deployment. This
dataset is collected at 1-hour intervals, with each data point consisting of the oil temperature and
six power load-related features. fMRI is a simulated blood-oxygen-level-dependent (BOLD) time
series dataset designed to estimate brain networks by analyzing interactions between nodes. In our
experiments, we used data with 50 features, representing the activity of different brain regions or
nodes over time. Sines is a simulated multivariate time series dataset consisting of five features.
Each feature is generated using different frequencies and phases, allowing for a variety of periodic
behaviors within the dataset. MuJoCo is a dataset generated using the MuJoCo physics simulator,
consisting of 14 features.

Table 4: Characteristics of dataset.
Dataset | Dimension | Samples

Stocks 6 3773
Energy 28 19711
ETTh; 7 17420
fMRI 50 10000
Sines 5 10000
MuJoCo 14 10000

A.2 EVALUATION METRICS

In time series data generation, evaluation metrics typically focus on three main aspects: diversity
(how well the model has learned the data distribution), fidelity (whether the model captures the
temporal dependencies and spatial relationships), and usefulness (how well the model performs
in prediction tasks). These aspects provide a comprehensive evaluation of the model’s ability to
generate realistic and useful time series data, ensuring it not only mimics the data distribution but
also captures essential temporal and spatial dependencies while remaining applicable to downstream
tasks like prediction. Accordingly, we employ the following 4 evaluation metrics:

* Discriminative score (Yoon et al.,|2019): To assess similarity, a 2-layer LSTM-based post-
hoc time series data classification model is trained. The model is tasked with classifying
original data as “real” and generated data as “fake”. After labeling the data accordingly,
the RNN model is trained to distinguish between the two classes. The classification error
on the test dataset is then measured, which serves as an indicator of the fidelity of the
generated data, reflecting how well the synthetic data replicates the characteristics of the
real data.

* Predictive score (Yoon et al.,[2019): In addition, to evaluate the predictive capability, which
is a key characteristic of time series data, a post-hoc sequence prediction model using a 2-
layer LSTM is trained on the synthetic datasets. This model is trained to predict the value
at the next time point. Its performance is then evaluated on the original dataset, and the
prediction accuracy is measured using the Mean Absolute Error (MAE), providing insights
into how well the synthetic data has captured the temporal dependencies of the original
data.

e Context-FID score (Jeha et al., 2022): Context-FID is a modified version of the Fréchet
Inception Distance (FID), originally used in image generation tasks but adapted for time
series data where direct application is challenging. A lower Context-FID score indicates
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a closer match between the distributions of real and generated data, which positively im-
pacts the performance of downstream tasks. Specifically, instead of using Inception V3 (as
in image-based FID), we leverage TS2Vec (Yue et al., [2022)), a time series representation
learning model, to derive embeddings for the data. The FID score is then calculated us-
ing these TS2Vec-encoded representations, enabling an effective similarity comparison for
time series.

* Correlational score (Liao et al.,|2020): To measure the change in correlation between vari-
ables over time in multivariate data, we compute a cross-correlation score. Specifically, the
covariance between the ¢—th variable and the j—th variable is calculated as follows:

RS AR R
coviy = 7 > XiXi = (7 2X1) (7 2o X)), (12)
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where 7' is the total time length. Then, the correlation is calculated:
COVy,j
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Finally, the MAE of the correlation between the real and generated data is computed. This

cross-correlation score captures how the relationship between the two variables evolves
over time.
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A.3 EXPERIMENTS SETUP

Model details As described in Section 4] our proposed method consists primarily of a signal energy-
based frequency selection module and a backbone network. The backbone network, as depicted
in Figure [3] follows an encoder-decoder structure augmented by temporal-spectral attention. The
encoder is built using self-attention, feed-forward layers, and activation function layers, while the
decoder incorporates self-attention and cross-attention layers applied to the encoded representations.
The model performs cross-attention on the embedded frequencies, then concatenates these represen-
tations and passes them through a feed-forward layer to output the final X(. During this process, the
diffusion step ¢ is injected into the network, as seen in prior studies |Ho et al.| (2020); 'Yuan & Qiao
(2024).

Hyperparameter settings We conducted a search for hyperparameter settings and selected the op-
timal configuration based on the discriminative score. The specific hyperparameters for model train-
ing, chosen for each dataset, are listed in Table@ Additionally, the batch size was set to 128, and the
learning rate was set to le-5. Regarding the hyperparameter gamma for frequency selection, as de-
scribed in Section [d] most information is concentrated in low frequencies, so y was set to 0.8. With
this setting, frequencies were separated in a ratio of 1:9, except for fMRI data, where the separation
ratio was 3:7.

Table 5: Hyperparameter settings.

Parameter | Sines | Stocks | ETTh | MuJoCo | Energy | fMRI
attention heads 4 4 4 4 4 4
attention dimension 16 16 16 24 24 24
encoder layers 1 2 3 3 4 4
decoder layers 2 2 2 2 3 4
timesteps 500 500 500 1000 1000 1000
training steps 12000 | 12000 | 18000 | 20000 27000 | 20000
v 0.8 0.8 0.8 0.8 0.8 0.8

B ADDITIONAL EXPERIMENTS

Our methodology can be broadly categorized into two key tasks: time-series data generation and
task-specific generation, which includes imputation and forecasting. Both tasks follow the learning
process illustrated in Figure [2] where the distribution of time-series data is modeled with consid-
eration of frequency information. During training, complete data without missing values is input,
sampled through a diffusion process, and output.
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B.1 TIME SERIES GENERATION

Due to space constraints, a simplified version of our experimental results is presented in Table
and Table E] above. Hence, the full set of experimental results, which includes context-FID and
correlational scores, can be found in Table |6 and Table[7]

Table 6: Performance of long-term time series data generation for all evaluation metrics.
Dataset ‘ Length ‘ Ours Diffusion-TS  TimeGAN TimeVAE Diffwave DiffTime

Context-FID 64 0.010£.001  0.631£.058  1.1304.102 0.827+.146 1.543+.143  1.279+.083
Score | 128 0.015+.001  0.787+£.062  1.553+.169 1.062+.134 2.354+.170  2.554+.318

256 0.046+.004  0.423+.038 5.8724+.208 0.8264.093 2.899+.289  3.5244.830

Correlational 64 0.0284+.009  0.082+.005  0.483+.019 0.0674.006 0.186+.008 0.094+.010
Score | 128 0.026+.012  0.088+.005  0.188+.006 0.054+.007 0.203+£.006 0.222+.010

E 256 0.017£.006  0.064+.007  0.5224+.013  0.046+.007 0.199£.003  0.135+.006
M| Discriminative 64 0.010£.007  0.106+.048  0.2274.078 0.171+£.142  0.254+.074  0.150+£.003
Score | 128 0.009+.003  0.144+.060  0.188+.074 0.154+.087 0.274+.047 0.176+.015

256 0.021£.017  0.060+.030  0.4424+.056 0.178+.076 0.304+.068  0.243+.005

Predictive 64 0.081+.003 0.116+.000  0.1324+.008 0.118+.004 0.133£.008 0.118+.004

Score |, 128 0.074+.005  0.110£.003  0.153+.014 0.113+.005 0.129£.003  0.120+.008

256 0.071£.006  0.109+.013  0.220£.008 0.110+.027 0.132£.001  0.118+.003

Context-FID 64 0.011+.001  0.135+.017  1.230+.070 2.662+.087 2.697+.418 0.762+.157
Score | 128 0.019+.001  0.087+.019  2.5354+.372  3.125+.106 5.5524.528  1.344+.131

256 0.010£.001  0.126+.024  5.0324+.831 3.768+.998 5.572+.584 4.735+.729

Correlational 64 0.493+.057 0.672+.035 3.668+.106 1.653+.208 6.847+£.083 1.281+.218

o Score |, 128 0.556+.085  0.451+.079 4.790+.116  1.820+.329 6.663+.112  1.376+.201
%‘3 256 0.504£.087  0.361+.092 4.487+.214 1.279+.114 5.690£.102 1.800+.138
5 Discriminative 64 0.068+.014 0.078+.021  0.498+.001 0.499+.000 0.4974.004 0.328+.031
Score | 128 0.128+.028  0.143+.075  0.499+.001 0.499+.000 0.499+.001 0.396+.024

256 0.2574+.021  0.290+.123  0.4994+.000 0.499+.000 0.4994+.000  0.4374.095

Predictive 64 0.242+.000  0.249+.000  0.291£.003 0.302+.001  0.252+.001  0.252+.000

Score | 128 0.241+.001  0.247+.001  0.3034+.002 0.3184+.000 0.2524+.000 0.251.%£.000

256 0.238+.002  0.245+.001  0.3514.004 0.353+.003 0.251£.000  0.251+£.000

Through ablation studies, we demonstrated that incorporating frequency information significantly
enhances performance in the generation task. Moreover, adaptively separating low and high-
frequency components, rather than relying solely on specific frequencies, proved to be more ef-
fective. Specifically, low-frequency components contribute to capturing global trends, improving
overall prediction capabilities, while high-frequency components provide semantic details, enhanc-
ing fine-grained generation. This adaptive separation aligns with the inductive bias of the diffusion
process, facilitating better data synthesis. Experimental results in Table [/| supported this claim: the
predictive score was lower when low-frequency information was excluded, and the discriminative
score suffered without high-frequency information due to the absence of semantic priors. Although
experiments were conducted with a 24-window length, which had minimal impact on outcomes, the
consistent results across trials reinforce our conclusions.

We additionally performed an ablation study on the hyperparameter +. Specifically, we conducted
experiments varying «y from 0.8 (the original setting) down to 0.1, focusing particularly on the fMRI
dataset, which exhibits a more evenly distributed power spectrum compared to other datasets. The
results, presented in Table [8] demonstrate that the best performance is achieved with ~ set to 0.8.
This indicates that the model performs optimally when the power spectrum reflects an 8:2 ratio, that
is, when 80% of the information is concentrated in low frequencies.

B.2 TASK-SPECIFIC GENERATION

For a task-specific generation, the conditional distribution is approximately sampled using the
pre-trained diffusion model and the gradient of the classifier, following the sampling method in
Diffusion-TS (Yuan & Qiaol [2024). However, frequency information, one of central to our method,
is not directly accessible during inference. This limitation is particularly pronounced in data with
missing values, where acquisition distortions prevent obtaining normal frequency information. To
address this, we leverage the training dataset used for pre-training to calculate spectral density and
use this frequency information during inference. In task-specific generation, the process involves
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Table 7: Ablation study results for all evaluation metrics.

Metric | Methods | Sines | Stocks | ETTh | MuloCo | Energy | fMRI
Ours 0.001+.000 | 0.024+.000 | 0.014+.000 | 0.004+.003 | 0.007+.000 | 0.071+.076
Context-FID w/o l(')W frequency | 0.001+.000 | 0.026+.001 | 0.021+£.000 | 0.017£.001 | 0.011£.002 | 0.216+.012
Score | w/o high frequency | 0.002+.000 | 0.025+£.002 | 0.025+£.000 | 0.009£.001 | 0.007£.000 | 0.193£.009
w/o adaptive 0.001+.000 | 0.0244+.001 | 0.023+.000 | 0.006+.001 | 0.006+.000 | 0.209+.017
w/o frequency 0.0104.002 | 0.1484+.017 | 0.166+.014 | 0.017+£.000 | 0.140+.019 | 0.291+£.009
Ours 0.0114+.002 | 0.004+.001 | 0.025+.007 | 0.192+.014 | 0.524+.028 | 0.628+.695
Correlational w/o 1(?W frequency | 0.014+£.005 | 0.009+.003 | 0.027+.012 | 0.209+£.036 | 0.438+.019 | 1.496+.022
Score | w/o high frequency | 0.014£.003 | 0.013+.002 | 0.025+.004 | 0.180+.011 | 0.467+.099 | 1.256+.023
w/o adaptive 0.0184+.002 | 0.010+.002 | 0.027+.012 | 0.192+.016 | 0.469+.081 | 1.389+.023
w/o frequency 0.0154.003 | 0.004%.003 | 0.055+.007 | 0.197+£.031 | 0.936+£.085 | 1.626+£.032
Ours 0.005+.004 | 0.017+.016 | 0.006+.003 | 0.004+.003 | 0.012+.005 | 0.083+.077
Discriminative w/o lc_)w frequency | 0.0074.002 | 0.017+.011 | 0.0094.006 | 0.009+.008 | 0.058+.020 | 0.272+4.149
Score | w/o high frequency | 0.005+.004 | 0.024+.014 | 0.007+.003 | 0.0164.008 | 0.014+£.005 | 0.282+.065
w/o adaptive 0.005+.004 | 0.012+.008 | 0.009+.006 | 0.007+.004 | 0.014+£.008 | 0.221+£.092
w/o frequency 0.0154+.010 | 0.115£.013 | 0.077£.005 | 0.023£.005 | 0.180+.016 | 0.259+.070
Ours 0.094+.000 | 0.036+.000 | 0.119+.001 | 0.008+.000 | 0.249+.000 | 0.066+.032
w/o low frequency | 0.094+.000 | 0.037£.000 | 0.120+.002 | 0.008£.001 | 0.2504.000 | 0.102+.000
Predictive w/o high frequency | 0.094+.000 | 0.036£.000 | 0.119+.005 | 0.008£.000 | 0.249+.000 | 0.101+.000
Score | w/o adaptive 0.094+.000 | 0.037+.000 | 0.1204+.002 | 0.008+.001 | 0.249+.000 | 0.102+.000
w/o frequency 0.0954+.000 | 0.0384+.000 | 0.123+.001 | 0.008+.000 | 0.251+.000 | 0.101+.000
| Original | 0.094+.001 | 0.036£.001 | 0.121+.005 | 0.007+.001 | 0.250+.003 | 0.090+.001

Table 8: Ablation study results for various v on the fMRI dataset.

Context-FID  Correlation  Discriminative  Predictive
v Score | Score | Score |. Score |
0.8 | 0.071+.076 0.628+.695 0.0834.077 0.066+.032
0.6 | 0.1484+.004 1.316+.017 0.1494.021 0.1024.000
0.4 | 0.1934£.008 1.303+.038 0.1084.048 0.1024.000
0.3 | 0.1774+.008 1.288+.028 0.1334.057 0.1014.000
0.2 | 0.1614+.011 1.330+.034 0.1324.061 0.1024.000
0.1 | 0.154+.014 1.312+.042 0.125+.048 0.1024.000

inputting data with missing values alongside the frequency information extracted during training
into the approximate sampling method of the conditional distribution via the pre-trained diffusion
model. The output is a complete dataset with the missing values imputed or future values predicted,
ensuring continuity and coherence in the data.

To enhance the reliability of the proposed method, we conducted additional imputation and fore-
casting experiments following the settings outlined in SSSD (Alcaraz & Strodthoff] 2023)). For im-
putation, we evaluated performance at 70%, 80%, and 90% missing values on the MuJoCo dataset,
with the results measured using MSE presented in Table[9] All MSE values are in the order of le-3,
and the proposed method achieved the best performance at 80% and 90% missing rates.

For forecasting, we utilized the Solar dataset from GluonTS (Alexandrov et al.} 2020), maintaining
the same experimental settings as SSSD (Alcaraz & Strodthoff, |2023)) to ensure a fair comparison in
Table[I0] Using 168 observations, the model generated predictions for the next 24 time steps. The
proposed method demonstrated superior performance, particularly when compared to transformer-
based models such as iTransformer and PatchTST. These results further confirm the efficacy and
robustness of the proposed method for task-specific generation tasks.

C ADDITIONAL VISUALIZATION

We provide additional visualizations in Figures[6|to[T0] In Figure[6] alongside Figure d] we include
the results of t-SNE, PCA, and kernel density estimation for all datasets. Furthermore, in Figures
through we present visualizations showcasing performance across different imputation ratios
and forecasting windows.
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Table 9: Performance of time series imputation on the MuJoCo dataset.
Model | 70% Missing  80% Missing  90% Missing

RNN GRU-D 11.34 14.21 19.68
ODE-RNN 9.86 12.09 16.47
Neural CDE 8.35 10.71 13.52
Latent-ODE 3 2.95 3.6
NAOMI 1.46 2.32 4.42
NRTSI 0.63 1.22 4.06
CSDI 0.24(3) 0.61(10) 4.84(2)
SSSD 0.59(8) 1.00(5) 1.90(3)
Diffusion-TS 0.37(3) 0.43(3) 0.73(12)
Ours 0.31(4.5) 0.35(5) 0.45(1.6)

Table 10: Performance of time series forecasting on the Solar dataset.

Model MSE
GP-copula 9.8e2+5.2el
TransMAF 9.3¢e2

TLAE 6.8e247.5el

CSDI 9.0e2+6.1el

SSSD 5.03e241.06¢el
Diffusion-TS  3.75e2+3.6el

PatchTST 3.80e2
iTransformer 3.73e2
Ours 3.41e2+1.4el

Stocks

ETTh
esne

MuJoCo

Energy fMRI
esepit

Figure 6: Visualization of synthetic time series.
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Figure 8: Visualization of imputation for 90% missing values on the energy dataset.
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Figure 10: Visualization of forecasting results for sequence length of 36 on the energy dataset.
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