
Published as a conference paper at ICLR 2025

ACKNOWLEDGMENT

Sihong Xie was supported by the Department of Science and Technology of Guangdong
Province (Grant No. 2023CX10X079), the National Key R&D Program of China (Grant No.
2023YFF0725001), the Guangzhou-HKUST(GZ) Joint Funding Program (Grant No. 2023A03J0008),
and Education Bureau Guangzhou Municipality.

REFERENCES

Salim I Amoukou and Nicolas JB Brunel. Adaptive conformal prediction by reweighting nonconfor-
mity score. arXiv preprint arXiv:2303.12695, 2023.

Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Anastasios N Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal
risk control. arXiv preprint arXiv:2208.02814, 2022.

Liviu Aolaritei, Nicolas Lanzetti, Hongruyu Chen, and Florian Dörfler. Distributional uncertainty
propagation via optimal transport. arXiv preprint arXiv:2205.00343, 2022.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
prediction beyond exchangeability. The Annals of Statistics, 51(2):816–845, 2023.

Alberto Bernacchia and Simone Pigolotti. Self-consistent method for density estimation. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 73(3):407–422, 2011.

Pope D. Brooks, Thomas and Michael Marcolini. Airfoil Self-Noise. UCI Machine Learning
Repository, 2014. DOI: https://doi.org/10.24432/C5VW2C.

Maxime Cauchois, Suyash Gupta, and John C Duchi. Knowing what you know: valid and validated
confidence sets in multiclass and multilabel prediction. Journal of machine learning research, 22
(81):1–42, 2021.

Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. Robust validation: Confident
predictions even when distributions shift. Journal of the American Statistical Association, pp.
1–66, 2024.

Nicolo Colombo. Normalizing flows for conformal regression. arXiv preprint arXiv:2406.03346,
2024.

Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale traffic learning and
forecasting. IEEE Transactions on Intelligent Transportation Systems, 2019.

Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning. Cola-gnn: Cross-
location attention based graph neural networks for long-term ili prediction. In Proceedings of the
29th ACM international conference on information & knowledge management, pp. 245–254, 2020.

Richard Mansfield Dudley. The speed of mean glivenko-cantelli convergence. The Annals of
Mathematical Statistics, 40(1):40–50, 1969.

Bat-Sheva Einbinder, Stephen Bates, Anastasios N Angelopoulos, Asaf Gendler, and Yaniv Romano.
Conformal prediction is robust to label noise. arXiv preprint arXiv:2209.14295, 2, 2022a.

Bat-Sheva Einbinder, Yaniv Romano, Matteo Sesia, and Yanfei Zhou. Training uncertainty-aware
classifiers with conformalized deep learning. Advances in Neural Information Processing Systems,
35:22380–22395, 2022b.

Shai Feldman, Stephen Bates, and Yaniv Romano. Improving conditional coverage via orthogonal
quantile regression. Advances in neural information processing systems, 34:2060–2071, 2021.

11



Published as a conference paper at ICLR 2025

Di Feng, Ali Harakeh, Steven L Waslander, and Klaus Dietmayer. A review and comparative
study on probabilistic object detection in autonomous driving. IEEE Transactions on Intelligent
Transportation Systems, 23(8):9961–9980, 2021.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. The limits of
distribution-free conditional predictive inference. Information and Inference: A Journal of the
IMA, 10(2):455–482, 2021.

Robert E Gaunt and Siqi Li. Bounding kolmogorov distances through wasserstein and related integral
probability metrics. Journal of Mathematical Analysis and Applications, 522(1):126985, 2023.

Asaf Gendler, Tsui-Wei Weng, Luca Daniel, and Yaniv Romano. Adversarially robust conformal
prediction. In International Conference on Learning Representations, 2021.

Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. Advances
in Neural Information Processing Systems, 34:1660–1672, 2021.

Isaac Gibbs and Emmanuel J Candès. Conformal inference for online prediction with arbitrary
distribution shifts. Journal of Machine Learning Research, 25(162):1–36, 2024.

Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional
guarantees. arXiv preprint arXiv:2305.12616, 2023.

Leying Guan. Localized conformal prediction: A generalized inference framework for conformal
prediction. Biometrika, 110(1):33–50, 2023.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 922–929, 2019.

Xing Han, Ziyang Tang, Joydeep Ghosh, and Qiang Liu. Split localized conformal prediction, 2023.
URL https://arxiv.org/abs/2206.13092.
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A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 1

Proof. We define f × g by f × g(x1, x2) = (f(x1), g(x2)) = (y1, y2). Let IdX be the identity
mapping function on X , and let πi be the mapping function to the i-th marginal. The proof follows
Proposition 3 in the work by Aolaritei et al. (2022).

First, we prove the inclusion that (f × g)#Γ(µ, ν) ⊂ Γ(f#µ, g#ν). Consider γ ∈ Γ(µ, ν), so it is
equivalent to prove that (f × g)#γ ∈ Γ(f#µ, g#ν), which means the marginals of (f × g)#γ are
f#µ and g#ν. For any continuous and bounded function ϕ : Y → R, we have∫

Y×Y
ϕ(y1) d((f × g)#γ)(y1, y2) =

∫
X×X

ϕ(f(x1)) dγ(x1, x2)

=

∫
X
ϕ(f(x1)) dµ(x1) =

∫
Y
ϕ(y1) d(f#µ)(y1),

(20)

so we obtain π1#((f × g)#γ) = f#µ and similarly derive π2#((f × g)#γ) = g#ν.

Secondly, we need to prove Γ(f#µ, g#ν) ⊂ (f × g)#Γ(µ, ν). With γ′ ∈ Γ(f#µ, g#ν), we
seek γ ∈ Γ(µ.ν) such that (f × g)#γ = γ′. To do so, let γ12 := (IdX × f)#µ ∈ Γ(µ, f#µ),
γ23 := γ′ ∈ Γ(f#µ, g#ν), and γ34 := (g × IdX )#ν ∈ Γ(g#ν, ν). As π2#γ12 = π1#γ23 = f#µ,
and π1#γ34 = π2#γ23 = g#ν, Santambrogio (2015) ensures a joint probability measure γ̄ on
X × Y × Y × X satisfying (π1 × π2)#γ̄ = γ12, (π2 × π3)#γ̄ = γ23, and (π3 × π4)#γ̄ = γ34. We
demonstrate that γ := (π1 × π4)#γ̄ is the probability measure we are seeking. For this, we prove
γ ∈ Γ(µ, ν) with any continuous and bounded function ϕ : X → R by∫

X×X
ϕ(xi) dγ(x1, x2) =

∫
X×Y×Y×X

ϕ(x1) dγ̄(x1, y1, y2, x2)

=

∫
X×Y

ϕ(x1) dγ12(x1, y1) =

∫
X
ϕ(x1) dµ(x1) .

(21)

Eq. (21) indicates π1#γ = µ. Similarly, we can derive π2#γ = ν. As a result, we can prove
(f × g)#γ = γ′ with any continuous and bounded function ϕ : Y × Y → R by∫

Y×Y
ϕ(y1, y2) d((f × g)#γ)(x1, x2)

=

∫
X×X

ϕ(f(x1), g(x2)) dγ(x1, x2)

=

∫
X×Y×Y×X

ϕ(f(x1), g(x2)) dγ̄(x1, y1, y2, x2)

=

∫
X×Y×Y×X

ϕ(y1, y2) dγ̄(x1, y1, y2, x2)

=

∫
Y×Y

ϕ(y1, y2) dγ23(y1, y2) =

∫
Y×Y

ϕ(y1, y2) dγ
′(y1, y2).

(22)

As (f × g)#Γ(µ, ν) ⊂ Γ(f#µ, g#ν) and Γ(f#µ, g#ν) ⊂ (f × g)#Γ(µ, ν), we obtain (f ×
g)#Γ(µ, ν) = Γ(f#µ, g#ν). Finally, we prove Theorem 1 by

W (µf , νg) = W (f#µ, g#ν)

= inf
γ′∈Γ(f#µ,g#ν)

cY(y1, y2) dγ
′(y1, y2)

= inf
γ′∈(f×g)#Γ(µ,ν)

∫
Y×Y

cY(y1, y2) dγ
′(y1, y2)

= inf
γ∈Γ(µ,ν)

∫
Y×Y

cY(y1, y2) d((f × g)#γ)(y1, y2)

= inf
γ∈Γ(µ,ν)

∫
Y×Y

cY(f(x1), g(x2)) dγ(y1, y2)

(23)
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A.2 PROOF OF THEOREM 2

Proof. Let γ′ ∈ Γ(µf , νf ) be the pushforward of γ ∈ Γ(µ, ν) via function f × f . We can apply
Theorem 1 to W (µf , νf ) and obtain

W (µf , νf ) = inf
γ∈Γ(µ,ν)

∫
X×X

cY(f(x1), f(x2)) dγ(x1, x2) . (24)

If the optimal transport plan for W (µ, ν) is γ∗, and κ bounds the Lipschitz continuity of f , we have

W (µf , νf ) ≤
∫
X×X

cY(f(x1), f(x2)) dγ
∗(x1, x2)

≤
∫
X×X

κcX (x1, x2) dγ
∗(x1, x2) = κW (µ, ν).

(25)

In Eq. (25), the first inequality holds because γ∗ may not be the optimal transport plan for W (µf , νf ),
and the second inequality holds due to the definition of κ.

A.3 PROOF OF THEOREM 3

Proof. As Wasserstein distance satisfies triangle inequality, W (µ, ν) and W (µ̂n, ν̂m) follow

W (µ, ν) ≤ W (µ̂n, µ) +W (µ̂n, ν) ≤ W (µ̂n, µ) +W (µ̂n, ν̂m) +W (ν̂m, ν). (26)

Given E[W (µ, µ̂n)] ≤ λµn
−1/σµ and E[W (ν, ν̂m)] ≤ λνm

−1/σν from Proposition 2, with probabil-
ities at least 1− e−2ntµ

2

and 1− e−2mtν
2

, respectively, we have

W (µ, µ̂n) ≤ λµn
−1/σµ + tµ, W (ν, ν̂m) ≤ λνm

−1/σν + tν . (27)

It is reasonable to assume the two events in Eq. (27) are independent, so we can apply them to
Eq. (26), and thus obtain Eq. (15) with probability at least (1− e−2ntµ

2

)(1− e−2mtν
2

).

A.4 PROOF OF THEOREM 4

Proof. We denote Fµ, Fν , and Fν(i) the corresponding CDFs of µ, ν, and ν(i) for i = 1, ..., k.

When two distributions are on the real number set R with Euclidean distance, W of the two distribu-
tions equals the area between their CDFs. Therefore, the 1-Wasserstein distance between µ and ν is
given by

W (µ, ν) =

∫
X
|Fµ(x)− Fν(x)|dx . (28)

Since ν =
∑k

i=1 wiν
(i), we have Fν(x) =

∑k
i=1 wiFν(i)(x). As ν, ν(i), and µ are definded on

X ⊆ R, we can derive

W (µ, ν) =

∫
X
|Fµ(x)− Fν(x)|dx =

∫
X

∣∣∣∣∣Fµ(x)−
k∑

i=1

wiFν(i)(x)

∣∣∣∣∣ dx
=

∫
X

∣∣∣∣∣
k∑

i=1

wiFµ(x)−
k∑

i=1

wiFν(i)(x)

∣∣∣∣∣dx =

∫
X

∣∣∣∣∣
k∑

i=1

wi (Fµ(x)− Fν(i)(x))

∣∣∣∣∣dx
≤

∫
X

k∑
i=1

wi |Fµ(x)− Fν(i)(x)|dx =

k∑
i=1

wi

∫
X
|Fµ(x)− Fν(i)(x)|dx

=

k∑
i=1

wiW (µ, ν(i)).

(29)
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B COMPARISON BETWEEN TOTAL VARIATION AND WASSERSTEIN DISTANCE

The total variation (TV) distance between two univariate distributions is defined as half of the absolute
area between their probability density functions (PDFs). For instance, given two distributions µ and
ν with PDFs pµ and pν , respectively, on space R≥0, the TV distance is given by

TV (µ, ν) =
1

2

∫
R≥0

|pµ(x)− pν(x)|dx . (30)

In contrast, we expand W (µ, ν) according to Eq. (28) by

W (µ, ν) =

∫
R≥0

|Fµ(x)− Fν(x)|dx =

∫
R≥0

∣∣∣∣∫ x

0

pµ(t) dt−
∫ x

0

pν(t) dt

∣∣∣∣dx
=

∫
R≥0

∣∣∣∣∫ x

0

pµ(t)− pν(t) dt

∣∣∣∣dx . (31)

The inner integration between 0 and x indicates Wasserstein distance cares where two distributions µ
and ν differ, whereas the total variation distance in Eq. (30) does not take this into consideration.

We would like to introduce a toy example to illustrate further why total variation distance can not
consistently capture the closeness between two cumulative distribution functions (CDFs). Consider
three conformal score distributions PV , Q

(1)
V , Q

(2)
V on space R≥0 with their PDFs:

pPV
(v) = 1, v ∈ [0, 1];

p
Q

(1)
V

(v) =

{
1 if v ∈ [0, 0.9],

2 if v ∈ (0.9, 0.95];

p
Q

(2)
V

(v) =

{
2 if v ∈ [0, 0.04],

1 if v ∈ (0.04, 0.96].

Therefore, we calculate TV (PV , Q
(1)
V ) = 0.05 and TV (PV , Q

(2)
V ) = 0.04, while W (PV , Q

(1)
V ) =

0.0025 and W (PV , Q
(2)
V ) = 0.0384. In this example, a reduction in total variation distance results

in a larger Wasserstein distance between two CDFs. Intuitively, TVD only measures the overall
difference between two distributions without accounting for the specific locations where they diverge.
In contrast, the Wasserstein distance will be high when divergence occurs early (i.e., at a small
quantile), especially if the discrepancy persists until the ”lagging” CDF catches up. We visualize the
example in Figure 6.
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Figure 6: Comparison between total variation distance and Wasserstein distance: a reduction in the total
variation distance does not necessarily result in CDFs becoming closer.
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C RATIONALE FOR DIFFERENTIATING COVARIATE AND CONCEPT SHIFTS

There are two key reasons to differentiate between covariate and concept shifts. First, making this
distinction enables the application of importance weighting. Minimizing the Wasserstein regulariza-
tion term inevitably increases prediction residuals. By applying importance weighting, we expect
to reduce the distance, mitigating the adverse effects of regularization on optimizing the regression
loss function in Eq. (19). Figure 3 shows this expectation is met on five out of the six datasets.
This occurs because, in most cases, covariate shifts exacerbate the distance caused by concept shifts
(fP ̸= fQ). Consequently, importance weighting effectively reduces this distance, as illustrated in
Figure 7(a) and evidenced by the results for the airfoil self-noise, PeMSD4, PeMSD8, U.S.-States,
and Japan-Prefectures datasets in Figure 3. However, there are instances where covariate shifts can
alleviate the Wasserstein distance induced by concept shifts. In such cases, applying importance
weighting may increase the distance, as demonstrated in the results for the Seattle-loop dataset in
Figure 3. This phenomenon is further illustrated in Figure 7(b).
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Figure 7: Effect of importance weighting on Wasserstein distance: (a) Scenario where importance weighting
reduces Wasserstein distance; (b) Scenario where importance weighting enlarges Wasserstein distance.

Secondly, in multi-source CP, different training distributions D(i)
XY can suffer from different degrees

of covariate and concept shifts. Importance weighting allows the regularized loss in Eq. (19) to
minimize the distance between training conformal score distribution D

(i)
V and its correspondingly

weighted calibration conformal score distribution D
(i)
V,sP

, so the model can be more targeted on
those whose remaining Wasserstein distances are large. Also, since various non-exchangeable test
distributions will weight calibration conformal score distribution differently in the inference phase,
prediction set sizes can be adaptive to different test distributions. In contrast, without importance
weighting, the model can only regularize

∑k
i=1 W (PV , D

(i)
V ), and use the same quantile of PV to

generate prediction sets for samples from all test distributions, resulting in the same prediction set
size and lack of adaptiveness.

To further demonstrate the two reasons we mentioned above, we modify Wasserstein-regularization
based on unweighted calibration conformal scores (i.e.

∑k
i=1 W (PV , D

(i)
V )) during training. Also,

the weighting operation in the prediction phase in Algorithm 1 is removed accordingly. This method
is denoted as WR-CP(uw). We performed WR-CP(uw) on the sampled data from the 10 trials of each
dataset at α = 0.2 and compared its results with those of WR-CP.

The comparison is depicted in Figure 8. Although the average coverage gaps between WR-CP
and WR-CP(uw) are quite similar, at 3.1% and 2.3% respectively, the average prediction set size
for WR-CP is 28.0% smaller than that of WR-CP(uw). This observation proves our first reason
that importance weighting effectively reduces the Wasserstein distance between calibration and test
conformal scores. By doing so, it mitigates the side effect of optimizing the regularized objective
function in Eq. (19), which increases prediction residuals. Since larger residuals result in larger
prediction sets, reducing residuals directly helps minimize prediction set size. Additionally, the
standard deviations of the prediction set sizes observed in WR-CP(uw) are typically smaller than
those found in WR-CP. This proves the second reason that removing importance weighting will make
prediction sets less adaptive to different test distributions.
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Figure 8: Comparison between WR-CP and WR-CP(uw) at α = 0.2. Both methods were implemented using
the same β values of 4.5, 9, 9, 6, 8, and 20 across the datasets.

D GEOMETRIC INTUITION OF η

To provide a geometric intuition of η, we expand the definition of η as

η = max
x1,x2∈X

|sP (x1)− sQ(x2)|
|fP (x1)− fQ(x2)|

= max
x1,x2∈X

|s (x1, fP (x1))− s (x2, fQ(x2)) |
|fP (x1)− fQ(x2)|

= max
x1,x2∈X

||h(x1)− fP (x1)| − |h(x2)− fQ(x2)||
|fP (x1)− fQ(x2)|

.

(32)

We first simplify the definition by assuming x1 = x2, so the denominator is the absolute difference
between two ground-truth mapping functions fP and fQ at x1, and the numerator is the absolute
difference of the residuals of fP and fQ with a given model h at x1. η is the largest ratio between
the two absolute differences. A small η means even if fP and fQ differ significantly, h results in
similar prediction residuals on fP and fQ. When x1 ̸= x2, η is the largest ratio of the two absolute
differences at two positions, x1 and x2, so a small η means that h can lead to similar residuals when
fP (x1) and fQ(x2) differ. The expanded definition above includes both x1 = x2 and x1 ̸= x2

conditions and Figure 9 (a) and (b) present the two conditions, respectively. Intuitively, the residual
difference caused by concept shift will be constrained by η.
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Figure 9: Geometric intuition of η when (a) x1 = x2 and (b) x1 ̸= x2: Intuitively, the residual difference
caused by concept shift will be constrained by η.

18



Published as a conference paper at ICLR 2025

E DISTRIBUTION ESTIMATION

E.1 KERNEL DENSITY ESTIMATION

P̂X and D̂
(i)
X for i = 1, ..., k are obtained by kernel density estimation (KDE), and based on the

estimated distributions we calculate the likelihood ratio.

In our experiments, we applied the Gaussian kernel, which is a positive function of x ∈ X ⊆ Rd

given by

K(x, b) =
1

(
√
2πb)d

e−
∥x∥2

2b2 , (33)

where ∥·∥ is Euclidean distance and b is bandwidth. Given this kernel form, the estimated probability
density, denoted by p̂, at a position xa within a group of points x1, ..., xn is

p̂(xa,K) =
∑n

i=1
K(xa − xi, b). (34)

To find the optimized bandwidth value of P̂X and D̂
(i)
X for i = 1, ..., k on each dataset, we applied the

grid search method with a bandwidth pool using scikit-learn package (Pedregosa et al., 2011). With
the approximated marginal distribution densities, we can calculate the likelihood ratio to implement
the weighting technique proposed by Tibshirani et al. (2019).

E.2 POINT-WISE DISTRIBUTION ESTIMATION

D̂
(i)
V and D̂

(i)
V,sP

for i = 1, ..., k are estimated as discontinuous, point-wise distributions to ensure

differentiability during training. Specifically, as D̂(i)
V and D̂

(i)
V,sP

are conformal score distributions on

real number set R, W (D̂
(i)
V , D̂

(i)
V,sP

) is equal to area between their CDFs, as Eq. (28) shows. Hence,

our focus is on estimating the CDFs of D̂(i)
V and D̂

(i)
V,sP

for i = 1, ..., k.

For the details of point-wise distribution estimation, consider we have a x1, ..., xn drawn from a
probability measure µ in space X ⊆ R, so the approximated CDF of µ is given by

Fµ̂(x) =
1

n

∑n

j=1
δxi1xi<x, (35)

where 1 is the indicator function and δxi
represents the point mass at xi (i.e., the distribution placing

all mass at the value xi). In other words, Eq. (35) counts the partition of samples that are smaller
than x. This point-wise estimation ensures that the Wasserstein-1 distance between the estimated
distributions is differentiable.

F SUPPLEMENTARY EXPERIMENTAL INSIGHTS

F.1 DATASETS

The airfoil self-noise dataset from the UCI Machine Learning Repository (Brooks & Marcolini, 2014)
was intentionally modified to introduce covariate shift and concept shift among them. It includes
1503 instances. The target variable is the scaled sound pressure level of NASA airfoils, and there are
5 features: log frequency, angle of attack, chord length, free-stream velocity, and log displacement
thickness of the suction side. To introduce covariate shift, we divided the original dataset into three
subsets based on the 33% and 66% quantiles of the first dimension feature, log frequency, and partially
shuffled them. Therefore, k = 3 for this dataset. We further introduced concept shifts among the
three subsets by modifying target values. With ξ following a normal distribution N(0, 10), for y in
the first set, y+ = y/1000 ∗ ξ; for y in the second set, y+ = y/ξ; for y in the third set, y+ = ξ.
With the modified data, we conducted sampling trials to generate 10 randomly sampled datasets.

The Seattle-loop dataset Cui et al. (2019), as well as the PeMSD4 and PeMSED8 datasets Guo et al.
(2019), consist of sensor-observed traffic volume and speed data gathered in Seattle, San Francisco,
and San Bernardino, respectively. The data was collected at 5-minute intervals. Our goal for each
dataset is to forecast the traffic speed of a specific interested local road segment in the next time step
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by utilizing the current traffic speed and volume data from both the local segment and its neighboring
segments. Before sampling, we selected 10 segments of interest for each dataset randomly, setting
k = 10 for them. There are natural joint distribution shifts present among these segments because of
the varying local traffic patterns.

The U.S.-States and Japan-Prefectures datasets Deng et al. (2020) contain data on the number of
patients infected with influenza-like illness (ILI) reported by the U.S. Department of Health and
Human Services, Center for Disease Control and Prevention (CDC), and the Japan Infectious Diseases
Weekly Report, respectively. The data in each dataset is structured based on the collection region.
Our objective is to utilize the regional predictive features, including population, the increase in
the number of infected patients observed in the current week, and the annual cumulative total of
infections, to forecast the rise in infections for the following week in the corresponding region.
We also randomly selected 10 regions for both datasets, so k = 10. Due to the diverse regional
epidemiological conditions, there are inherent joint distribution shifts among these regions.

For each dataset, we began by sampling S(i)
XY from each subset i, for i = 1, ..., k, without replacement.

After this step, we allocated the remaining elements within each subset for calibration and testing
purposes. The parts intended for calibration across all subsets were then unified to form SP

XY .
Lastly, to create diverse testing scenarios, we generated multiple test sets by randomly mixing the
parts designated for testing from each subset with replacement. For each dataset, we conducted the
sampling trial for 10 times, and calculated the mean and standard deviation of the results from these
trials, as shown in Figure 3, Figure 4, and Figure 5. For efficiency, all CP methods were conducted as
split conformal prediction.

We introduce a toy example to further illustrate that exchangeability does not hold. Consider we have
two training distributions:

D
(1)
XY = N

(
[0, 0],

[
1 0.7
0.7 1

])
;D

(2)
XY = N

(
[1, 1],

[
1 −0.6

−0.6 1

])
.

A calibration distribution is a mixture of these two training distributions with known weights, such as
a uniformly weighted mixture (w1 = w2 = 0.5). A test distribution is a mixture of D(1)

XY and D
(2)
XY

with unknown random weights. To visualize the non-exchangeability in Figure 10, we assume the
unknown test distribution has weights of 0.2 for D(1)

XY and 0.8 for D(2)
XY .
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Figure 10: Calibration and test samples are not exchangeable as they are from different distributions.

F.2 SPEARMAN’S COEFFICIENT

We first provide the definition of Pearson coefficient.
Definition 5 (Pearson coefficient). With n pairs of samples, (xi, yi) for i = 1, ..., n, of two random
variables X and Y , Pearson coefficient, rp, is calculated as the covariance of the samples divided by
the product of their standard deviations. Formally, it is given by

rp =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (36)

where x and y are the means of the samples of X and Y , respectively.
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Based on Pearson coefficient, the definition of Spearman’s coefficient is given as follows.
Definition 6 (Spearman’s coefficient). With n pairs of samples, (xi, yi) for i = 1, ..., n, of two
random variables X and Y , letting r(·) be the rank function (i.e., r(x1) = 3 indicates that x1 is
the third largest sample among x1, ..., xn), Spearman’s coefficient, rs, is defined as the Pearson
coefficient between the ranked samples:

rs =

∑n
i=1 (r(xi)− r(x)) (r(yi)− r(y))√∑n

i=1 (r(xi)− r(x))
2
√∑n

i=1 (r(yi)− r(y))
2
, (37)

where x and y are the means of the samples of X and Y , respectively.

We calculated Spearman’s coefficient between each distance measure and the largest coverage gap in
Section 6 to confirm that Wasserstein distance holds the strongest positive correlation compared with
other distance measures.

F.3 ADDITIONAL EXPERIMENT RESULTS OF SUBSECTION 6.4

In addition to the results shown in Figure 4, we present further experimental findings from Subsec-
tion 6.4 with α values of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 on Figure 11, 12, 13, 14, 15, 16, 17,
and 18, respectively. Clearly, WR-CP demonstrates the ability to generate more tightly concentrated
coverages near 1− α compared to vanilla CP and IW-CP. Additionally, it yields smaller prediction
set sizes than the state-of-the-art method WC-CP. These figures also reveal a trend where as the α
value increases, WR-CP requires a smaller β to achieve acceptable coverages around 1− α, so the
prediction set sizes produced by WR-CP are closer with those of vanilla CP and IW-CP, as evidenced
by the results on the PeMSD4 in Figure 11 and Figure 18. This phenomenon could be attributed
to the trade-off between conformal prediction accuracy and efficiency under joint distribution shift.
The Wasserstein regularization term in Eq. (19) tends to prioritize aligning smaller conformal scores
initially, as it reduces the Wasserstein penalty with a lesser increase in the empirical risk minimization
term. Hence, as the hyperparameter β increases, the model gradually aligns larger conformal scores
from two different distributions, which will adversely impact the risk-driven term more. When
considering a higher α value, the focus is on ensuring that the coverages on test data are close to the
smaller 1− α, indicating the importance of aligning small conformal scores. Consequently, a high β
value is not necessary in this case, leading to smaller prediction set sizes being achieved.

F.4 EXPERIMENT SETUPS IN ABLATION STUDY

To visualize a comprehensive and evenly-distributed set of optimal solutions on Pareto fronts, we
utilized WR-CP with varying values of β to produce the results depicted in Figure 5. As mentioned
in Section 5, it is worth noting that when β = 0, WR-CP reverts to IW-CP. The selected β values for
the results of Figure 5 are shown in Table 2.

Table 2: β values of WR-CP in ablation study

Dataset β values
Airfoil 1, 1.5, 2, 2.5, 3, 3.5, 4.5, 6, 8, 9, 13, 20.

PeMSD4 1, 1.5, 2, 2.5, 3, 5, 7, 9, 11, 15, 20.
PeMSD8 1, 1.5, 2, 2.5, 3, 4, 5, 7, 9, 17.
Seattle 1, 2, 3, 4, 4.5, 5, 5.5, 6, 7, 8, 10, 13, 15, 20.
U.S. 1, 1.5, 2, 2.5, 3, 5, 6, 8, 13.
Japan 1, 2, 3, 4, 6, 8, 10, 13, 20.
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Figure 11: Coverages and set sizes of WR-CP and baselines with α = 0.1: The β values for the WR-CP
method are 9, 11, 9, 8, 13, and 20, respectively.
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Figure 12: Coverages and set sizes of WR-CP and baselines with α = 0.3: The β values for the WR-CP
method are 3, 5, 5, 5, 8, and 13, respectively.
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Figure 13: Coverages and set sizes of WR-CP and baselines with α = 0.4: The β values for the WR-CP
method are 3, 5, 5, 5, 8, and 13, respectively.
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Figure 14: Coverages and set sizes of WR-CP and baselines with α = 0.5: The β values for the WR-CP
method are 3, 5, 3, 5, 8, and 13, respectively.
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Figure 15: Coverages and set sizes of WR-CP and baselines with α = 0.6: The β values for the WR-CP
method are 3, 5, 3, 5, 8, and 13, respectively.
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Figure 16: Coverages and set sizes of WR-CP and baselines with α = 0.7: The β values for the WR-CP
method are 2, 2, 2, 5, 8, and 10, respectively.
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Figure 17: Coverages and set sizes of WR-CP and baselines with α = 0.8: The β values for the WR-CP
method are 2, 2, 2, 5, 5, and 10, respectively.
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Figure 18: Coverages and set sizes of WR-CP and baselines with α = 0.9: The β values for the WR-CP
method are 2, 1, 1, 5, 2, and 6, respectively.
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G PREDICTION EFFICIENCY WITH COVERAGE GUARANTEE

Although Wasserstein-regularized loss in Eq. (19) offers a controllable trade-off with significantly
improved prediction efficiency and a mild coverage loss, it is worth investigating if this efficiency can
be achieved with a coverage guarantee. In this section, we first derive a coverage lower bound of
WR-CP via the multi-source setup in Appendix G.1. Then, we show that the combination of WC-CP
and the Wasserstein-regularized loss can not achieve small prediction sets with ensured coverage in
Appendix G.2.

G.1 COVERAGE GUARANTEE FROM MULTI-SOURCE SETUP

Under the setup of multi-source conformal prediction, with τ as the 1− α quantile of the weighted
calibration conformal score distribution QV,sP , we can derive the coverage gap upper bound by

|FQV,sP
(τ)− FQV

(τ)| =

∣∣∣∣∣
k∑

i=1

wiFD
(i)
V,sP

(τ)−
k∑

i=1

wiFD
(i)
V

(τ)

∣∣∣∣∣
≤

k∑
i=1

wi|FD
(i)
V,sP

(τ)− F
D

(i)
V

(τ)|

≤ sup
i∈{1,...,k}

|F
D

(i)
V,sP

(τ)− F
D

(i)
V

(τ)|.

(38)

In other words, the coverage gap on a test distribution must be less or equal to the largest gap at τ
among multiple training distributions. Denoting αD = supi∈{1,...,k} |FD

(i)
V,sP

(τ) − F
D

(i)
V

(τ)|, we

have a coverage guarantee Pr(Yn+1 ∈ Xn+1) ≥ 1− α− αD.

The regularization term
∑k

i=1 W (D
(i)
V,sP

, D
(i)
V ) in Eq. (19) can minimize αD, and thus making

1− α− αD closer to the desired 1− α. It is important to highlight that αD is adaptive to variations
in test distribution QV , as evident from Eq. (38). This adaptivity ensures that the lower bound
dynamically adjusts to different QV . To evaluate the prediction efficiency of WR-CP under this
guarantee, we set α = 0.1 and computed the corresponding αD for various test distributions.
Additionally, we calculated the coverage and prediction set size of WC-CP on each test distribution,
using the corresponding guarantee at 1− α− αD for comparison.
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Figure 19: Coverages and set sizes of WC-CP and WR-CP with coverage guarantee at 1− α− αD .

The experiment results are depicted in Figure 19, demonstrating improved prediction efficiency
on the PeMSD4, PeMSD8, U.S.-States, and Japan-Prefectures datasets. However, the efficiency
remains almost unchanged on the Seattle-loop dataset and even declines on the airfoil self-noise
dataset. This phenomenon can be attributed to the regularization mechanism. While WR-CP
enhances prediction efficiency by leveraging the calibration distribution to generate prediction sets,
regularization inevitably increases prediction residuals, leading to larger prediction sets. These two
opposing effects can interact differently depending on the dataset characteristics. When the efficiency
gains outweigh the drawbacks of regularization, we observe reduced prediction set size. Conversely,
in datasets like the Seattle-loop and airfoil self-noise, the benefits of regularization are outweighed by
the increased prediction residuals, resulting in unchanged or diminished efficiency. The averaged
prediction set size reduction across the six datasets is 26.9%.
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G.2 POOR COMPATIBILITY BETWEEN WASSERSTEIN-REGULARIZED LOSS AND WC-CP

Since the WC-CP is a conservative post-hoc uncertainty quantification method but the proposed
regularized loss in Eq. (19) is applied during training, one may consider applying WC-CP upon
the model trained by the regularized loss to obtain guaranteed coverage. However, WC-CP and the
model are not suitable for complementing each other. While regularization enhances the reliability of
calibration distributions, the worst-case approach depends exclusively on the upper bound of 1− α
test conformal score quantile, rendering it unable to benefit from regularization. In contrast, the
WC-CP may result in larger prediction sets under this condition, as the regularization inevitably
increases the prediction residuals, which in turn increases the upper bound of the test conformal score
quantile. Experiment results in Figure 20 demonstrate the analysis, where WC-CP is the worst-case
method based on a residual-driven model (same as the WC-CP method in Section 6.4), and Hybrid
WC-WR represents applying WC-CP to a model trained by Eq. (19).
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Figure 20: Coverages and set sizes of WC-CP and Hybrid WC-WR with coverage guarantee 1− α = 0.9.

H LIMITATIONS

H.1 SUSCEPTIBILITY TO DENSITY ESTIMATION ERRORS

Given that Wasserstein regularization relies on importance-weighted conformal scores, its perfor-
mance is greatly influenced by the accuracy of the estimated likelihood ratio obtained through KDE.
Inaccurate estimation can significantly impact the effectiveness of WR-CP. For instance, in Figure 4,
WR-CP yields larger prediction set sizes with less concentrated coverages on the airfoil self-noise
dataset compared to other datasets. This can be attributed to the airfoil self-noise dataset having the
highest feature dimension (5) and the smallest size of the sampled SP

XY (500). These challenges in
KDE lead to suboptimal performance of WR-CP on the airfoil self-noise dataset when compared to
its performance on others.

The main reason for KDE error is numerical instability, which can arise from several factors. A poor
choice of kernel is a critical contributor; for instance, kernels with sharp edges or discontinuities, such
as rectangular or triangular kernels, can result in jagged density estimates and amplify errors near
boundaries. Fat-tailed kernels, such as the Cauchy kernel, may assign excessive weight to distant data
points, leading to inaccuracies in density estimates and numerical precision challenges. Additionally,
the lack of feature normalization can exacerbate the effects of extreme values, skewing the density
estimation process and reducing computational stability. Lastly, inappropriate bandwidth selection,
either too small (overfitting) or too large (underfitting), can disrupt the balance between bias and
variance, further contributing to instability in the estimation.

In our work, we first adopted the Gaussian kernel, valued for its smoothness and numerical stability.
To mitigate the influence of extreme values, we applied feature normalization, ensuring a more stable
density estimation process. Additionally, we conducted a comprehensive grid search to fine-tune the
bandwidth, achieving an optimal balance between bias and variance for robust and accurate results.
The bandwidth candidates were selected from a logarithmically spaced range between 10−2 and
100.5, consisting of 20 evenly distributed values on a logarithmic scale.
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H.2 COMPUTATIONAL CHALLENGES IN KDE

We applied a grid search approach to identify the optimal bandwidth for KDE, which ensures an
effective balance between bias and variance in density estimation. However, this method often
involves extensive computational effort, particularly when working with high-dimensional datasets,
as it requires repeated calculations over a range of bandwidth values. To address this challenge,
Bernacchia–Pigolotti KDE (Bernacchia & Pigolotti, 2011) introduces an innovative framework that
combines a Fourier-based filter with a systematic approach for simultaneously determining both
the kernel shape and bandwidth. This method not only reduces subjectivity in kernel selection but
also offers a more efficient computational pathway. Building on this foundation, FastKDE (O’Brien
et al., 2016) adapts and extends the Bernacchia–Pigolotti approach for high-dimensional scenarios,
incorporating optimizations that significantly improve computational speed and scalability. These
advancements represent promising directions for mitigating the computational overhead in our own
work, where similar strategies could be leveraged to streamline the bandwidth selection process and
enhance the overall efficiency of KDE in complex datasets.

H.3 OTHER CHOICES OF THE CALIBRATION DISTRIBUTION

In the experiments conducted in Section 6, we specifically examine the scenario where the calibration
data follows a mixture distribution of D(i)

XY for i = 1, ..., k with equal weights. However, this
may not always be the case in real-world situations. Given that the calibration distribution plays a
crucial role in determining the difficulty of minimizing Eq. (19) during training, it is valuable to
investigate the performance of WR-CP with a calibration distribution different from a mixture of
training distributions.
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