
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See appendix.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

appendix.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See appendix.
(b) Did you include complete proofs of all theoretical results? [Yes] See appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5 and appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report the standard deviation for all experiments. See
appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See appendix.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

A APPENDIX: Derivation of Objectives

For the notational convenience, we use f(x) to represent f(x; θ) in the Appendix.

A.1 Training Dynamics for Cross-Entropy Loss

The partial derivative for softmax function can be defined with the following,

∂σi(f(x))

∂f j(x)
=

{
σi(f(x))

(
1− σi(f(x))

)
, i = j,

−σi(f(x))σj(f(x)), i ̸= j
(24)

Then, we have:

∂ℓ(f(x), y)

∂t
= −

∑
i

yi
∂ log σif(x)

∂σi(f(x))

∂σi(f(x))

∂t

= −
∑
i

yi
1

σi(f(x))

∑
j

∂σi(f(x))

∂f j(x)

∂f j(x)

∂t

= −
∑
i

yi
∑
j

(
1[i == j]− σj(f(x))

)∂f j(x)

∂t

= −
∑
i

(
yi − σi(f(x))

)
∇θf

i(x)∇tθ

(25)

A.2 Derivation for Cross-Entropy Loss

∂ℓ(f(x), y)

∂θ
=

∂ℓ

∂f(x)

∂f(x)

∂θ
= −

∑
i

yi
1

σi(f(x))

∂σi(f(x))

f(x)

∂f(x)

∂θ

= −
∑
i

yi
1

σi(f(x))
σi(f(x))

∑
j

(
1[i == j]− σj(f(x))

)∂f j(x)

∂θ

=
∑
j

(
σj(f(x))− yj

)∂f j(x)

∂θ

(26)

A.3 APPENDIX: Training Dynamics for Mean Squared Error

For the labeled data set S, we define the Mean Squared Error(MSE) as:

LMSE(S) =
∑

(x,y)∈S

ℓMSE(f(x), y) = −
∑

(x,y)∈S

∑
i∈[K]

1

2
(f i(x)− yi)2

Then the training loss dynamics for each sample can be defined as:

∂ℓMSE(f(x), y)

∂t
= −

∑
i

(
yi − f i(x)

)
∇θf

i(x)∇tθ

Because neural networks are optimized by gradient descent, thus:

∇tθ = θt+1 − θt =
∑

(x,y)∈S

∂ℓ(f(x), y)

∂θ
=

∑
(x,y)∈S

∑
j

(
f j(x)− yj

)∂f j(x)

∂θ

Therefore, the training dynamics of MSE loss can be expressed as:

GMSE(S) = −1

η

∂
∑

(x,y)∈S ℓMSE(f(x), y)

∂t
= (f(X)− Y)⊤K(X,X)(f(X)− Y)

16

A.4 APPENDIX: Decomposition of the Change of Training Dynamics

According to the definition of training dynamics (Equation (8)), we have,

G(S) =
∑
i,j

∑
(xl,yl)∈S

(
σi(f(xl; θ))− yi

l

) ∑
(x

l
′ ,y

l
′)∈S

∇θf
i(xl; θ)

⊤∇θf
j(xl

′ ; θ)
(
σj(f(xl

′ ; θ))− yj

l
′
)

G(S ∪ Q̂) =
∑
i,j

∑
(x,y)∈S∪Q̂

(
σi(f(x; θ))− yi) ∑

(x′,y′)∈S∪Q̂

∇θf
i(x; θ)⊤∇θf

j(x′; θ)
(
σj(f(x′; θ))− y′j)

The change of training dynamics, ∆(Q̂|S) = G(S ∪ Q̂)−G(S), can be further simplified as:

∆(Q̂|S) = G(S ∪ Q̂)−G(S)

= 2
∑
i,j

∑
(xu,ŷu)∈Q̂

(
σi(f(xu; θ))− ŷi

u

) ∑
(xl,yl)∈S

∇θf
i(xu; θ)

⊤∇θf
j(xl; θ)

(
σj(f(xl; θ))− yj

l

)
+
∑
i,j

∑
(xu,ŷu)∈Q̂

(
σi(f(xu; θ))− ŷi

u

)
∇θf

i(xu; θ)
⊤∇θf

j(xu; θ)
(
σj(f(xu; θ))− ŷj

u

)
+
∑
i,j

∑
(xu,ŷu)∈Q̂

(
σi(f(xu; θ))− ŷi

u

) ∑
(xu′ ,ŷu′)∈Q̂,u′ ̸=u

∇θf
i(xu′ ; θ)⊤∇θf

j(xu′ ; θ)
(
σj(f(xu′ ; θ))− ŷj

u′
)

=
∑

(xu,ŷu)∈Q̂

∆({(xu, ŷu)}|S) +
∑

(xu,ŷu),(xu′ ,ŷu′)∈Q̂

di(xu, ŷu)
⊤Kij(xu, xu′)di(xu′ , ŷu′)

A.5 APPENDIX: Simplification of the Change of Training Dynamics

∆({(xu, ŷu)}|S) =2
∑
i,j

∑
(xu,ŷu)∈Q̂

(
σi(f(xu; θ))− ŷi

u

) ∑
(xl,yl)∈S

∇θf
i(xu; θ)

⊤∇θf
j(xl; θ)

(
σj(f(xl; θ))− yj

l

)
+
∑
i,j

∑
(xu,ŷu)∈Q̂

(
σi(f(xu; θ))− ŷi

u

)
∇θf

i(xu; θ)
⊤∇θf

j(xu; θ)
(
σj(f(xu; θ))− ŷj

u

)
The derivative of loss with respect to model parameters can be written as:

∂
∑

(x,y)∈S ℓ(f(x; θ), y)

∂θ
=

∑
(x,y)∈S

∑
j∈[K]

(
σj(f(x; θ))− yj)∇θf

j(x; θ)

Therefore, the change of training dynamics caused by {(xu, ŷu)} can be written as:

∆({(xu, ŷu)}|S) = ∥∇θℓ(f(xu; θ), ŷu)∥2 + 2
∑

(x,y)∈S

∇θℓ(f(xu; θ), ŷu)
⊤∇θℓ(f(x; θ), y)

B APPENDIX: Proofs for Theoretical Analysis

B.1 Proofs for Theorem 1

Lemma 1 (Convergence Analysis with NTK, Theorem 4.1 of [13]). Suppose λ0 = λmin(Θ) > 0 for
all subsets of data samples. For δ ∈ (0, 1), if m = Ω(n7

λ4
0δ

4ϵ2
) and η = O(λ0

n2), with probability at
least 1− δ, the network can achieve near-zero training error,

∥Y − ft(X; θ(t))∥2 =

√√√√ K∑
k=1

n∑
i=1

(1− ηλi)2t(v⃗⊤i Y k)2 ± ϵ (27)

where n denotes the number of training samples and m denotes the width of hidden layers. The NTK
Θ = V ⊤ΛV with Λ = {λi}ni=1 is a diagonal matrix of eigenvalues and V = {v⃗i}ni=1 is a unitary
matrix.

17

Proof. According to [13], if m = Ω(n7

λ4
0δ

4ϵ2
) and learning ratio η = O(λ0

n2), then with
probability at least 1 − δ over the random initialization, we have, ∥Yl − ft(X; θ(t))∥2 =√∑K

k=1

∑n
i=1(1− ηλi)2t(v⊤i Y

k
l)2 ± ϵ. We decompose the NTK using Θ = V ⊤ΛV with

Λ = {λi}ni=1 a diagonal matrix of eigenvalues and V = {vi}ni=1 a unitary matrix. At each training
step in active learning, the labeled samples will be updated by S = S ∪ Q. We can apply the
convergence result in each of this step and achieve near zero error.

Theorem 1 (Relationship between convergence rate and alignment). Under the same assumptions as
in Lemma 1, the convergence rate described by Et satisfies,

Tr[Y ⊤Y]− 2tηA(X,Y) ≤ E2
t (X,Y) ≤ Tr[Y ⊤Y]− ηA(X,Y) (28)

Proof. We first prove the inequality on the right hand side. It is easy to see that (1−ηλi)
2t ≤ (1−ηλi)

for each λi and t ≥ 1, based on the fact that ∀λi, 0 ≤ 1− ηλi ≤ 1. Then we can obtain,

Et(X,Y) =

√√√√ K∑
k=1

n∑
i=1

(1− ηλi)2t(v⊤i Y
k)2 ≤

√√√√ K∑
k=1

n∑
i=1

(1− ηλi)(v⊤i Y
k)2

=
√
Tr[Y ⊤(I − ηΘ)Y] =

√
Tr[Y ⊤Y]− ηA(X,Y)

Then we use Bernoulli’s inequality to prove the inequality on the left hand side. Bernoulli’s inequality
states that, (1 + x)r ≥ 1 + rx, for every integer r ≥ 0 and every real number x ≥ −1. It is easy to
check that (−ηλi) ≥ −1, ∀λi. Therefore,

Et(X,Y) =

√√√√ K∑
k=1

n∑
i=1

(1− ηλi)2t(v⊤i Y
k)2 ≥

√√√√ K∑
k=1

n∑
i=1

(1− 2tηλi)(v⊤i Y
k)2

=
√
Tr[Y ⊤(I − 2tηΘ)Y] =

√
Tr[Y ⊤Y]− 2tηA(X,Y)

B.2 Proof for Theorem 2

Lemma 2 (Generalization bound with NTK, Theorem 5.1 of [13]). Suppose data S = {(xi, yi)}ni=1

are i.i.d. samples from a non-degenerate distribution p(x, y), and m ≥ poly(n, λ−1
0 , δ−1). Consider

any loss function ℓ : R × R → [0, 1] that is 1-Lipschitz, with probability at least 1 − δ over the
random initialization, the network trained by gradient descent for T ≥ Ω(1

ηλ0
log n

δ) iterations has
population risk Lp = E(x,y)∼p(x,y)[ℓ(fT (x), y)] that is bounded as follows:

Lp ≤
√

2Tr[Y ⊤Θ−1(X,X)Y]

n
+O

(√
log n

λ0δ

n

)
. (29)

Proof. We first show that the generalization bound regrading our method on ultra-wide networks.
The distance between weights of trained networks and their initialization values can be bounded
as, ∥wr(t) − wr(0)∥ = O(n√

mλ0

√
δ
). We then give a bound on the ∥W (t) − W (0)∥F , where

W = {w1, w2, . . . } is the set of all parameters. We definite Z = ∂f(t)
∂W (t) , then the update function

is given by W (t+ 1) = W (t)− ηZ(Z⊤W (t)− Y). Summing over all the time step t = 0, 1, . . . ,
we can obtain that W (∞) −W (0) =

∑∞
t=0 ηZ(I − ηΘ)y = ZΘ−1Y . Thus the distance can be

measured by ∥W (∞)−W (0)∥2F = Tr[Y ⊤Θ−1Y].

Then the key step is to apply Rademacher complexity. Given R > 0, with probability at least 1− δ,
simultaneously for every B > 0, the function class FB,R = {f : ∥wr(t) − wr(0)∥ ≤ R (∀r ∈
m), ∥W (∞)−W (0)∥2F ≤ B} has empirical Rademacher complexity bounded as,

RS(FB,R) =
1

n
Eϵi∈{±1}n

[
sup

f∈FB,R

n∑
i=1

ϵif(xi)

]
≤ B√

2n

(
1+(

2 log 2
δ

m
)1/4

)
+2R2

√
m+R

√
2 log

2

δ

18

where B =
√
Tr[Y ⊤Θ−1(X,X)Y], and R = n√

mλ0

√
δ

.

Finally, Rademacher complexity directly gives an upper bound on generalization error [52],

supf∈F{Lp(f) − LS(f)} ≤ 2RS + 3c
√

log(2/δ)
2n , where LS(f) ≤ 1√

n
. Based on this, we ap-

ply a union bound over a finite set of different i’s. Then with probability at least 1 − δ/3 over

the sample S, we have supf∈FR,Bi
{Lp(f) − LS(f)} ≤ 2RS(FBi,R) + O(

√
log n

λ0δ

n), ∀i ∈
{1, 2, . . . , O(n

λ0
)}. Taking a union bound, we know that with probability at least 1 − 2

3δ over

the sample S, we have, fT ∈ FB∗
i ,R

for some i∗, RS(FB∗
i ,R

) ≤
√

Tr[Y ⊤Θ−1(X,X)Y]
2n + 2√

n
and

supfT∈FB∗
i
,R
{Lp(fT)− LS(fT)} ≤ 2RS(FB∗

i ,R
) +O(

√
log n

λ0δ

n). These together can imply,

Lp(f) ≤
1√
n
+ 2RS(FB∗

i ,R
) +O(

√
log n

λ0δ

n
) ≤

√
2Tr[Y ⊤Θ−1(X,X)Y]

n
+O

(√
log n

λ0δ

n

)
.

More proof details can be found in [13].

Theorem 2 (Relationship between the generalization bound and alignment). Under the same assump-

tions as in Lemma (2), if we define the generalization upper bound as B(X,Y) =

√
2Tr[Y ⊤Θ−1Y]

n ,
then it can be bounded with the alignment as follows,

Tr2[Y ⊤Y]

A(X,Y)
≤ n

2
B2(X,Y) ≤ λmax

λmin

Tr2[Y ⊤Y]

A(X,Y)
(30)

Proof. We first expand the following expression:

n

2
B2(X,Y)A(X,Y) =

K∑
k=1

n∑
i=1

λi(v
⊤
i Y

k)2
K∑

k=1

n∑
i=1

1

λi
(v⊤i Y

k)2

Then we use this expansion to prove the inequality on the left hand side,

K∑
k=1

n∑
i=1

λi(v
⊤
i Y

k)2
K∑

k=1

n∑
i=1

1

λi
(v⊤i Y

k)2 =

K∑
k=1

K∑
k′=1

(n∑
i=1

λi(v
⊤
i Y

k)2
n∑

i=1

1

λi
(v⊤i Y

k′
)2
)

≥
K∑

k=1

K∑
k′=1

(n∑
i=1

(v⊤i Y
k)2

n∑
i=1

(v⊤i Y
k′
)2
)

=
(K∑
k=1

Y k⊤V ⊤V Y k
)(K∑

k=1

Y k⊤V ⊤V Y k
)

= Tr2[Y ⊤Y]

The second line is due to quadratic mean is greater or equal to geometric mean. Finally, we prove the
inequality on the right hand side,
K∑

k=1

n∑
i=1

λi(v
⊤
i Y

k)2
K∑

k=1

n∑
i=1

1

λi
(v⊤i Y

k)2 =

K∑
k=1

K∑
k′=1

(n∑
i=1

λi(v
⊤
i Y

k)2
n∑

i=1

1

λi
(v⊤i Y

k′
)2
)

≤
K∑

k=1

K∑
k′=1

λmax

λmin

(n∑
i=1

(v⊤i Y
k)2

n∑
i=1

(v⊤i Y
k′
)2
)

=
λmax

λmin

(K∑
k=1

Y k⊤V ⊤V Y k
)(K∑

k=1

Y k⊤V ⊤V Y k
)

=
λmax

λmin
Tr2[Y ⊤Y]

B.3 Derivation for Maximum Mean Discrepancy

The difference between truth risk over p(x) and q(x) can be defined as,

Lp − Lq =

∫
x

g(x)p(x)dx−
∫
x

g(x)q(x)dx

19

where g(x) =
∫
y
ℓ(f(x; θ), y)p(y|x)dy. Follow [34], we assume that the prediction functions

have bounded norm ∥f∥F . Thus, the function g is bounded. By given the loss function, g is also
measurable. Then, ∃ ĝ ∈ C(x), such that,

∫
x

g(x)p(x)dx−
∫
x

g(x)q(x)dx =

∫
x

ĝ(x)p(x)dx−
∫
x

ĝ(x)q(x)dx

≤ sup
ĝ∈C(x)

∫
x

ĝ(x)p(x)dx−
∫
x

ĝ(x)q(x)dx = MMD
(
p(x), q(x), C

)
where C(x) is the function class of bounded and continuous functions of x. To make the MMD term
be measurable, we empirically restrict the MMD on a reproducing kernel Hilbert space (RKHS) with
the characteristic kernel HΘ. Following [53], we know that the relationship between the true MMD
and the empirical MMD is,

P
(∣∣MMD

(
p(x), q(x), C

)
− MMD(S0, S,HΘ)

∣∣ ≥ ϵ+ 2(

√
C

n0
+

√
C

n
)
)

≤ 2e
−ϵ2n0n

2C(n0+n)

where MMD(S0, S,HΘ) is the empirical measure for MMD(p(x), q(x),HΘ). Slightly overloading
the notation, we denote S ∼ q(x), which may not be i.i.d., and the initial label set S0 ∼ p(x).
Then, in the active learning setting, S0 ⊆ S. Further, we denote |S0| = n0, |S| = n and ∀x, x′ ∈
S,Θ(x, x′) ≤ C. Therefore, we have,

√
C
n +

√
C
n0

≥ 2
√

C
n . For constant factor γ = M

M+B , we
have the following inequality,

P
(
MMD

(
p(x), q(x), C

)
≥ MMD(S0, S,HΘ) + ϵ+ 4

√
C

n

)
≤ 2e

−γϵ2n
4C

Denoting 2e
−γϵ2n

4C = δ/2, then we have ϵ =
√

4C ln(4/δ)
γn . Combining all the above results, we show

that with probability at least 1− δ, the following inequality holds:

Lp − Lq ≤ MMD(S0, S,HΘ) + 4

√
C

n
+

√
4C ln(4/δ)

γn

Then, we can get,

Lp − Lq ≤ MMD(S0, S,HΘ) +O

(√
C ln(1/δ)

n

)

C APPENDIX: More details of experimental settings

C.1 Implementation Detail

For simple CNN model, we utilize the same architecture used in Pytorch CIFAR10 Image Classi-
fication Tutorial 1. For ResNet model, we use the Pytorch Offical implementation of ResNet-18 2

and set the output dimension to the number of classes. For VGG model, we use the Pytorch Offical
implementation of VGG-11 3. Besides, we leverage the library BackPACK [54] to collect the gradient
of samples in batch.

We keep a constant learning rate of 0.001 for all three datasets and all three models. All the codes
mentioned above use the MIT license. All experiments are done with four Tesla V100 SXM2 GPUs
and a 12-core 2.2GHz CPU.

1https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
2https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
3https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py

20

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py

C.2 Computation of Acquisition Function

The acquisition function employed by dynamicAL can be written as the Equation 15. Furthermore,
we simplify it into the following form:

∆({(xu,ŷu)}|S) = ∥∇θℓ(f(xu; θ), ŷu)∥2 + 2∇θℓ(f(xu; θ), ŷu)
⊤∇θℓ(f(XS ; θ), YS). (31)

where ∇θℓ(f(XS ; θ), YS) =
∑

(x,y)∈S ∇θℓ(f(x; θ), y). The computational requirement of the
Equation 31 is mainly composed of two parts, the computation of gradient and the computation of
the inner product. While PyTorch [55] can compute efficiently batch gradients, BackPACK [54]
optimizes the computation of individual gradient and compute the gradient norm, sample per sample,
at almost no time overhead. Thus, the acquisition function can be computed at low computational
costs. Note, the efficiency of BackPACK has been verified by several recent works with extensive
experiments[56, 57].

D APPENDIX: Verification Experiments under Ultra-wide Condition

D.1 Experiment Setting and Computational Detail for the Empirical Comparison between
NTK and MMD

Experiment Setting For the verification experiment shown in Figure 1, we employ a simple CNN
as the target model, in which there are three convolutional layers following with global average
pooling layer, on the CFAIR10 data set. Note, this CNN architecture is widely used in NTK analysis
works [33, 58]. To make the verification experiment close to the application setting, we keep size of
initial labeled set and query batch size same as what we used in Section 5.

Computational Detail We follow [35] to compute the MMD with NTK kernel. The MMD term,
MMD(p(x), q(x),HΘ), can be simplified into the following form:

MMD2(p(x), q(x)) = E[Θ(xi, xj) +Θ(x′
i, x

′
j)− 2Θ(xi, x

′
j)] (32)

where xi, xj ∼ p(x) and x′
i, x

′
j ∼ q(x). Then, we define set S0 as {x1, ..., xn0

} ∼ p(x) and
set S as {x′

1, ..., x
′
n} ∼ q(x), where n0 ≤ n. The MMD2(S0, S) is an unbiased estimation for

MMD2(p(x), q(x)), can we explicitly computed by:

MMD2(S0, S) =
1

m2 −m
a+

1

n2 − n
b− 2

m(n− 1)
c

a =

(
m∑
i,j

Θ(xi, xj)−
m∑
i

Θ(xi, xi)

)

b =

(
n∑
i,j

Θ(x′
i, x

′
j)−

n∑
i

Θ(x′
i, x

′
i)

)

c =

(
m∑
i

n∑
j

Θ(xi, x
′
j)−

m∑
i,j

Θ(xi, x
′
i)

)
(33)

Therefore, the MMD term of Equation (23), MMD(S0, S,HΘ) , can be empirically approximated

by
√
MMD2(S0, S).

D.2 Experiment for the Correlation Study between Training Dynamics and Alignment

Experiment Setting. For the verification experiment shown in Figure 2, we also use the simple
CNN on CIFAR10. And to keep consistent with the application setting, we set |S| = 500 and
|Q| = 250. The Q is randomly sampled from the unlabeled set and the labeled set S is fixed. We
independently sample Q 150 times to compute the correlation between between GMSE(S ∪Q) and
A(X∥XQ, Y ∥YQ).

Correlation between Training Dynamics computed with pseudo-labels and Alignment.

21

Figure 6: Relation between Align-
ment and Training Dynamics com-
puted with the pseudo-label.

In Figure 2, we compute the training dynamics with the
ground-truth label. To study the effect of pseudo-labels,
we further provide the relation between training dynamics
computed with pseudo-labels GMSE(S ∪Q) and alignment
A(X∥XQ, Y ∥YQ), in which we compute the pseudo-labels
with Θ(XQ, X)⊤Θ(X,X)−1Y . The result is shown in the
Figure 6. Note that we keep hyperparameters the same as pre-
viously described. Compared with Figure 2, we find that the
positive relationship between A and the G computed with
ground-truth labels is stronger than the G computed with
pseudo-labels. The result is aligned with our expectations,
because the extra noise is introduced by the pseudo-labels.
But, the Kendall τ coefficient still achieves 0.46 for A and
the G computed with pseudo-labels which indicates the utility
of using G calculating with pseudo-labels as the acquisition
function to query samples.

D.3 Correlation Study
between Training Dynamics and Generalization Bound

We present the relation between the training dynamics and the
generalization bound in Figure 7. Same as the previous, we set |S| = 500 and |Q| = 250 and the Q
is randomly sampled from the unlabeled set. The result shows that with the increase of G, B will
decrease. This empirical observation is aligned with our expectation, because Theorem 2 indicates
that the alignment A is inverse proportional to B and Figure 2 tells us that the G is proportional to
A. Besides, the τ achieves -0.253 which indicates that the A is moderately inverse proportional to
B [59].

Figure 7: Relationship between Training Dynamics and Generalization.

E APPENDIX: More details of experimental results

E.1 Baselines

1. Random: Unlabeled data are randomly selected at each round.
2. Coreset: This method performs a clustering over the last hidden representations in the

network, and calculates the minimum distance between each candidate sample’s embedding
and embeddings of labeled samples. Then data samples with the maximum distances are
selected. [60].

3. Confidence Sampling (Conf): The method selects b examples with smallest predicted class
probability maxKi f i(x; θ) [61].

22

4. Margin Sampling (Marg): The bottom b examples sorted according to the example’s multi-
class margin are selected. The margin is defined as f i(x; θ)− f j(x; θ), where i and j are
the indices of the largest and second largest entries of f(x; θ) [62].

5. Entropy: Top b samples are selected according to the entropy of the example’s predictive
class probability distribution, the entropy is defined as H((f i(x; θ))Ki=1), where H(p) =∑K

i pi ln
1
pi

[61].

6. Active Learning by Learning (ALBL): The bandit-style meta-active learning algorithm
combines Coreset and Conf [63].

7. Batch Active learning by Diverse Gradient Embeddings (BADGE): b samples are selected by
using k-means++ seeding on the gradients of the final layer, in order to query by uncertainty
and diversity. [11].

E.2 Experiment Results

The results for ResNet18, VGG11, and vanilla CNN on CIFAR10, SVHN, and Caltech101 with
different batch sizes have been shown in the Figure 3 and 8. Note, for the large batch size setting
(b = 1000) on Caltech101, we set the number of query round R = 4, in which 49.2% images will be
labeled after 4 rounds.

0 1 2 3 4 5 6 7 8 9
Query Round

32

33

34

35

36

37

38

39

Te
st
 A
cc
ur
ac
y
(%

)

 CIFAR10, CNN, Query Batch Size:250, Initial Set Size:500

Random
Marg
Entropy
Coreset

Conf
ALBL
BADGE
dynamicAL

0 1 2 3 4 5 6 7 8 9
Query Round

30

35

40

45

50

Te
st
 A
cc
ur
ac
y
(%

)

 CIFAR10, ResNet, Query Batch Size:500, Initial Set Size:500

Random
Marg
Entropy
Coreset

Conf
ALBL
BADGE
dynamicAL

0 1 2 3 4 5 6 7 8 9
Query Round

30

35

40

45

50

55

60

Te
st
 A
cc
ur
ac
y
(%

)

 CIFAR10, ResNet, Query Batch Size:1000, Initial Set Size:500

Random
Marg
Entropy
Coreset

Conf
ALBL
BADGE
dynamicAL

0 1 2 3 4 5 6 7 8 9
Query Round

30

40

50

60

70

80

90

Te
st
 A
cc
ur
ac
y
(%
)

 SVHN, VGG, Query Batch Size:1000, Initial Set Size:500

Random
Marg
Entropy
Coreset

Conf
ALBL
BADGE
dynamicAL

0 1 2 3 4
Query Round

20

25

30

35

40

45

50

55

Te
st
 A
cc
ur
ac
y

(%
)

 Caltech101, ResNet, Query Batch Size:1000, Initial Set Size:500

Random
Marg
Entropy
Coreset

Conf
ALBL
dynamicAL

Figure 8: The evaluation results for different active learning methods under a range of conditions.

E.3 Numerical Result of Main Experiments

For the the main experiments, we report the means and standard deviations of active learning
performance under different settings in the the following tables.

Table 2: CIFAR10, CNN, Query Batch Size:250, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 32.32%±1.308% 32.48%±1.286% 32.32%±1.269% 32.41%±1.281% 32.27%±1.266% 32.50%±1.263% 32.66%±1.182% 32.57%±1.423%
1 33.00%±1.175% 33.16%±1.165% 32.74%±1.617% 32.75%±1.306% 33.00%±1.703% 32.98%±1.184% 33.45%±1.813% 33.52%±1.311%
2 34.14%±1.322% 34.41%±1.130% 34.06%±1.546% 33.77%±1.011% 34.21%±1.426% 34.02%±1.392% 34.66%±1.483% 34.70%±1.019%
3 35.05%±1.508% 35.50%±1.301% 35.16%±1.679% 34.44%±0.937% 35.25%±1.344% 34.97%±1.227% 35.75%±1.024% 35.78%±1.115%
4 35.64%±1.945% 36.55%±1.249% 36.14%±1.646% 35.08%±1.396% 36.59%±1.508% 35.58%±1.177% 36.33%±0.791% 36.72%±0.716%
5 36.28%±1.124% 37.18%±1.547% 36.77%±1.004% 35.68%±1.390% 37.19%±1.063% 36.15%±1.311% 37.29%±1.126% 37.45%±1.573%
6 36.88%±1.568% 37.73%±1.546% 37.28%±1.983% 36.18%±1.419% 37.65%±2.062% 36.65%±1.111% 37.90%±1.988% 37.95%±1.414%
7 37.29%±1.605% 38.01%±0.874% 37.67%±1.723% 36.57%±1.346% 38.09%±1.174% 37.07%±1.731% 38.28%±1.474% 38.41%±1.295%
8 37.59%±1.848% 38.43%±1.675% 38.01%±1.601% 36.98%±0.748% 38.58%±1.556% 37.35%±1.135% 38.51%±1.091% 38.70%±1.291%
9 37.85%±1.789% 38.75%±1.550% 38.29%±1.312% 37.25%±1.527% 38.91%±1.902% 37.57%±1.170% 38.78%±0.776% 38.91%±1.358%

23

Table 3: CIFAR10, CNN, Query Batch Size:500, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 32.26%±1.164% 32.31%±1.441% 32.29%±1.397% 32.54%±1.331% 32.32%±1.288% 32.41%±1.432% 32.49%±1.320% 32.37%±1.049%
1 34.87%±1.286% 34.89%±1.575% 34.58%±1.664% 33.84%±1.368% 34.75%±1.503% 34.08%±1.368% 34.44%±1.230% 34.88%±1.557%
2 36.45%±0.842% 36.69%±1.456% 36.50%±1.463% 35.96%±1.667% 36.73%±1.744% 35.62%±1.536% 36.41%±1.175% 36.78%±1.253%
3 37.16%±0.767% 37.99%±1.356% 37.30%±1.221% 36.20%±1.086% 38.12%±1.663% 36.55%±1.327% 37.56%±1.284% 38.30%±1.152%
4 37.89%±0.880% 39.15%±1.056% 38.23%±0.878% 36.73%±1.011% 39.10%±1.336% 37.20%±1.381% 38.49%±1.238% 39.37%±0.708%
5 38.59%±0.861% 39.98%±1.562% 39.01%±1.278% 37.33%±1.373% 39.81%±1.402% 37.80%±1.560% 39.61%±1.219% 40.09%±0.940%
6 39.15%±1.108% 40.70%±1.391% 39.68%±1.315% 37.97%±1.393% 40.47%±1.126% 38.47%±1.270% 40.55%±1.066% 40.75%±1.671%
7 39.51%±1.219% 40.99%±1.217% 40.09%±1.408% 38.53%±1.600% 41.05%±1.448% 39.11%±1.385% 40.97%±0.814% 41.21%±1.433%
8 39.90%±0.807% 41.39%±1.614% 40.39%±1.357% 39.06%±1.156% 41.30%±1.865% 39.55%±1.595% 41.27%±1.409% 41.59%±1.013%
9 40.17%±1.170% 41.64%±1.287% 40.71%±0.739% 39.43%±0.892% 41.55%±1.341% 39.95%±1.299% 41.41%±0.949% 41.78%±0.645%

Table 4: CIFAR10, ResNet, Query Batch Size:500, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 28.75%±1.780% 28.75%±0.369% 28.63%±1.394% 28.63%±1.120% 28.31%±1.011% 28.75%±0.957% 28.95%±1.040% 28.52%±0.686%
1 34.11%±3.088% 34.62%±2.022% 34.42%±0.849% 34.57%±0.992% 33.49%±1.269% 34.42%±2.077% 34.26%±1.740% 35.58%±2.858%
2 39.63%±2.157% 39.63%±0.313% 40.08%±1.022% 38.94%±1.408% 38.23%±1.454% 40.16%±2.574% 39.78%±1.384% 40.46%±0.959%
3 41.38%±2.357% 42.15%±0.810% 42.18%±1.271% 40.96%±0.961% 40.87%±0.860% 42.26%±2.347% 41.74%±1.230% 42.51%±0.799%
4 43.18%±1.809% 44.09%±1.165% 44.09%±1.150% 42.60%±1.094% 43.10%±1.325% 43.52%±3.064% 43.76%±1.364% 44.36%±0.980%
5 44.73%±2.253% 45.57%±1.115% 45.00%±0.731% 43.86%±1.369% 44.83%±1.388% 44.64%±3.097% 44.73%±1.675% 46.02%±0.754%
6 46.00%±2.193% 47.17%±0.929% 46.74%±1.118% 45.08%±1.549% 45.83%±1.426% 46.22%±2.601% 46.38%±1.607% 47.34%±1.027%
7 46.80%±2.134% 48.18%±1.230% 47.69%±1.253% 46.02%±1.589% 47.47%±1.424% 47.18%±2.384% 47.17%±1.404% 48.48%±1.452%
8 47.91%±1.722% 49.26%±0.652% 49.05%±1.113% 47.14%±1.880% 48.40%±1.178% 48.18%±2.503% 48.11%±1.049% 49.58%±1.673%
9 48.84%±1.584% 49.75%±1.341% 49.46%±1.282% 48.07%±1.480% 49.35%±1.269% 49.45%±2.529% 49.06%±0.850% 50.50%±1.301%

Table 5: CIFAR10, ResNet, Query Batch Size:1000, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 28.34%±1.465% 28.07%±2.604% 28.24%±1.756% 28.41%±0.722% 29.05%±1.137% 29.06%±0.847% 28.43%±1.176% 28.48%±2.062%
1 40.08%±0.329% 39.57%±1.551% 39.09%±2.180% 38.95%±1.047% 39.50%±2.340% 39.67%±1.489% 39.46%±3.020% 40.09%±1.795%
2 45.63%±1.253% 45.43%±0.444% 44.48%±1.823% 43.78%±0.986% 45.62%±1.882% 43.58%±1.329% 44.55%±3.654% 45.77%±2.290%
3 47.90%±1.257% 47.96%±0.735% 48.15%±2.509% 45.93%±0.682% 48.82%±1.797% 47.24%±1.926% 47.39%±4.189% 49.22%±1.704%
4 50.13%±1.207% 50.49%±0.807% 49.97%±2.819% 48.14%±0.566% 50.79%±1.870% 49.05%±1.831% 49.13%±4.053% 51.50%±1.925%
5 52.14%±1.517% 52.24%±0.781% 52.00%±2.762% 49.85%±1.075% 52.59%±2.202% 50.59%±1.636% 50.94%±3.628% 53.24%±1.927%
6 53.33%±1.300% 53.87%±0.635% 53.57%±3.123% 52.01%±0.772% 53.99%±2.390% 52.69%±1.599% 52.36%±3.924% 55.06%±1.697%
7 54.84%±1.238% 55.19%±1.136% 54.79%±3.144% 52.99%±1.147% 55.60%±2.002% 54.20%±1.685% 53.77%±3.985% 56.33%±1.613%
8 55.86%±1.161% 56.90%±0.732% 56.23%±3.182% 54.45%±0.821% 56.79%±2.033% 55.20%±1.868% 54.91%±4.104% 57.76%±1.796%
9 56.84%±0.979% 57.73%±0.500% 57.29%±3.225% 55.42%±0.954% 57.70%±2.042% 56.67%±1.783% 56.02%±3.935% 58.56%±1.574%

Table 6: SVHN, VGG, Query Batch Size:500, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 25.94%±7.158% 26.15%±6.290% 26.41%±8.994% 25.83%±5.845% 26.52%±7.489% 25.31%±5.030% 26.38%±9.100% 26.30%±5.505%
1 61.23%±4.812% 63.93%±3.127% 59.02%±4.724% 57.02%±3.672% 61.99%±2.613% 62.14%±5.531% 58.70%±5.615% 63.01%±12.293%
2 71.35%±2.364% 74.08%±0.933% 71.25%±1.459% 67.95%±2.870% 73.31%±2.828% 71.75%±2.555% 74.74%±2.978% 74.10%±4.557%
3 76.34%±1.626% 79.17%±1.064% 76.74%±1.521% 73.76%±2.844% 78.02%±1.939% 77.65%±1.518% 77.75%±2.100% 79.20%±2.651%
4 78.86%±1.378% 82.18%±0.504% 79.67%±0.809% 78.14%±2.486% 81.32%±1.901% 81.09%±1.005% 80.16%±1.353% 82.33%±2.134%
5 80.56%±1.149% 83.85%±0.750% 81.87%±0.638% 80.34%±2.339% 83.31%±1.529% 83.37%±1.225% 82.94%±0.830% 84.19%±1.940%
6 81.98%±1.334% 85.61%±0.624% 83.56%±0.541% 82.32%±1.592% 84.94%±0.858% 85.19%±0.993% 83.69%±0.975% 85.80%±1.498%
7 83.00%±1.048% 86.62%±0.607% 84.94%±0.079% 83.98%±1.394% 85.97%±1.179% 86.31%±0.977% 85.15%±0.760% 86.75%±1.426%
8 83.59%±0.945% 87.57%±0.625% 85.78%±0.068% 85.26%±1.431% 87.13%±0.679% 87.55%±0.831% 86.61%±0.478% 87.91%±1.264%
9 84.42%±0.744% 88.23%±0.600% 87.11%±0.437% 86.18%±0.886% 87.87%±0.598% 87.89%±0.780% 87.29%±0.441% 88.52%±1.240%

Table 7: SVHN, VGG, Query Batch Size:1000, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL BADGE dynamicAL

0 25.90%±3.479% 26.20%±5.409% 26.85%±4.403% 26.18%±6.853% 27.21%±8.721% 26.60%±4.688% 26.88%±6.248% 26.43%±8.047%
1 70.26%±3.154% 69.06%±3.646% 68.72%±2.156% 68.46%±1.111% 69.85%±3.485% 70.51%±3.487% 70.09%±2.690% 70.04%±1.650%
2 77.91%±1.061% 78.24%±2.237% 78.56%±0.492% 77.66%±1.784% 78.89%±2.809% 78.14%±1.494% 78.67%±1.799% 78.86%±1.710%
3 81.25%±0.812% 83.68%±1.657% 82.83%±0.527% 82.34%±1.461% 83.75%±2.165% 83.50%±1.669% 83.07%±1.334% 83.11%±1.269%
4 83.63%±0.746% 86.12%±1.251% 85.80%±0.744% 85.34%±1.126% 85.91%±1.128% 86.18%±0.979% 86.50%±1.087% 85.70%±1.179%
5 85.17%±0.870% 88.04%±1.022% 87.66%±0.683% 87.19%±0.928% 87.61%±1.044% 87.65%±1.031% 88.03%±0.742% 87.46%±1.054%
6 86.06%±0.822% 89.13%±0.712% 88.96%±0.395% 88.65%±0.505% 88.90%±0.845% 88.93%±0.809% 88.41%±0.783% 88.89%±1.274%
7 87.30%±0.948% 90.36%±0.532% 90.00%±0.257% 89.65%±0.486% 90.18%±0.706% 89.83%±0.747% 90.53%±0.495% 90.09%±1.149%
8 87.69%±0.890% 90.95%±0.375% 90.67%±0.385% 90.15%±0.410% 90.96%±0.677% 90.75%±0.567% 91.25%±0.432% 90.95%±0.782%
9 88.28%±0.723% 91.59%±0.417% 91.25%±0.353% 90.64%±0.311% 91.66%±0.755% 91.41%±0.665% 91.76%±0.367% 91.67%±0.840%

24

Table 8: Caltech101, ResNet, Query Batch Size:500, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL dynamicAL

0 21.59%±1.431% 21.98%±1.688% 21.49%±1.681% 21.39%±1.738% 21.98%±1.459% 21.48%±1.828% 21.38%±1.323%
1 25.84%±1.112% 28.42%±1.677% 27.43%±0.760% 28.61%±1.224% 27.25%±1.155% 28.02%±1.515% 29.34%±2.111%
2 34.94%±0.635% 34.76%±1.745% 32.94%±1.224% 35.37%±1.561% 32.85%±0.849% 35.86%±1.012% 36.14%±1.234%
3 37.34%±1.088% 39.70%±1.328% 36.36%±0.636% 40.81%±1.005% 37.52%±1.250% 40.20%±1.091% 41.19%±0.789%
4 43.87%±0.867% 43.26%±0.612% 40.12%±0.805% 45.38%±0.508% 41.82%±1.104% 45.27%±0.725% 46.11%±1.138%
5 45.45%±1.672% 46.25%±1.562% 43.24%±1.617% 47.81%±1.683% 44.60%±1.295% 48.35%±1.729% 49.42%±1.298%
6 47.60%±1.383% 49.20%±1.310% 45.71%±1.047% 50.60%±1.596% 46.74%±0.760% 51.20%±1.466% 52.31%±1.739%
7 49.97%±0.530% 51.40%±1.571% 48.19%±0.928% 52.80%±1.887% 49.19%±0.885% 53.90%±1.166% 55.03%±1.098%
8 52.06%±1.476% 53.56%±1.044% 50.81%±0.943% 55.31%±1.105% 51.99%±1.383% 56.22%±0.838% 56.92%±1.153%
9 54.04%±0.898% 55.92%±0.496% 53.05%±0.554% 56.93%±0.691% 54.96%±0.981% 57.99%±0.805% 58.81%±1.040%

Table 9: Caltech101, ResNet, Query Batch Size:1000, Initial Set Size:500
RANDOM MARG ENTROPY CORESET CONF ALBL dynamicAL

0 22.13%±1.050% 22.05%±1.011% 21.83%±0.725% 20.98%±0.631% 22.03%±1.364% 22.05%±0.633% 21.42%±1.735%
1 33.91%±1.330% 33.80%±1.002% 31.98%±1.000% 33.40%±0.962% 32.43%±0.895% 33.66%±2.174% 33.83%±1.438%
2 42.08%±0.560% 41.22%±0.730% 39.23%±0.981% 43.24%±0.960% 40.05%±0.988% 43.28%±2.360% 43.27%±2.280%
3 47.43%±0.700% 47.16%±0.659% 46.26%±0.968% 50.51%±0.706% 47.87%±0.698% 50.10%±2.082% 50.43%±1.634%
4 52.77%±0.980% 54.52%±1.288% 54.11%±1.347% 56.15%±1.284% 53.76%±1.196% 56.96%±1.733% 57.52%±1.189%

E.4 Maximum Mean Discrepancy for Multiple Rounds

As shown in Figure 1, the MMD term is much smaller than the B at the first query round. To better
understand the relation between MMD and B for multiple query setting, we measure the MMD/B
for R ≥ 2. As shown in Figure 9, B is much larger than MMD even multiple query rounds. Besides,
we notice that, for the first round, the larger query batch always leads to larger MMD/B, because the
sampling bias introduced by the query policy will be amplified by using large batch size.

1 2 3 4 5 6 7 8 9
Query Round

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

M
M
D/
B

100
250

500
1000

Figure 9: MMD/B for larger query round.

Furthermore, we measure the MMD/B with a constant total budget size but different query rounds.
The result is shown in Table 10. As our expectation, spending the total query budget in one query
round will induce the largest MMD/B. And, with more query rounds, the MMD/B will be lower.

Table 10: MMD/B under constant budget size.
SETTING R = 10, b = 100 R = 4, b = 250 R = 2, b = 500 R = 1, b = 1000

MMD/B 0.004999 0.005253 0.005367 0.005455

E.5 Performance under the Re-initialization Setting

To study the effectiveness of dynamicALunder the re-initialization setting, we compare dynamicAL
with the strong baseline involving the re-initialization trick in its algorithm design, e.g., Coreset [60].

25

Following [11], we query samples when training accuracy is greater than 99% and the results
are summarized in Table 11 and 12. The results show that dynamicAL can still be better than or
competitive with the commonly used active learning methods. We notice that the improvement in
the non-retraining setting is more significant. This is as our expectation. The dynamic analysis
(Equation (8)), that dynamicAL is based on, considers the change of dynamics according to the model’s
current parameters. The re-initialization trick will not only causes the computational overhead of
retraining, but also makes dynamicAL deviate from the analysis (Section 4).

E.6 Performance with large query rounds

We provide the experiments with b = 500, r = 15 on Caltech101 data set with ResNet18 as the
backbone. We ignore the BACKGROUND Google label and then we have 8677 images in total.
At the last round, we run out of all images in the pool. As shown in the Figure 10, our method
consistently outperforms those baselines. Note, due to the non-retraining setting, the model will have
different performance even if all the samples are used for the training.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Query Round

20

30

40

50

60

Te
st
 A
cc
ur
ac
y
(%

)

 Caltech101, ResNet, Query Batch Size:500, Initial Set Size:500

Random
Marg
Entropy
Coreset

Conf
ALBL
dynamicAL

Figure 10: The evaluation result with larger query round on Caltech101.

Table 11: CIFAR10, ResNet, Query Batch Size 500, Initial Set Size 500.
#ROUND RANDOM CORESET dynamicAL

0 30.80±1.81 30.77±0.92 30.94±2.17
1 35.80±1.52 36.62±2.10 36.47±0.13
2 42.91±1.75 43.16±1.79 42.74±2.44
3 43.76±0.65 44.35±2.25 46.43±1.07
4 47.03±1.19 48.74±1.94 49.38±1.80
5 49.16±1.77 50.20±1.25 51.61±1.09
6 52.43±1.33 53.44±1.37 54.33±1.76
7 52.81±1.55 53.89±0.78 54.59±1.04
8 54.56±0.23 57.12±1.11 57.50±1.28
9 58.08±1.48 59.62±1.50 60.35±1.80

26

Table 12: SVHN, VGG, Query Batch Size 500, Initial Set Size 500.
#ROUND RANDOM CORESET dynamicAL

0 52.68±1.97 52.74±6.16 52.59±3.73
1 67.64±1.99 68.08±3.61 66.48±4.10
2 73.46±1.51 74.93±1.44 74.34±2.22
3 77.30±1.08 76.49±2.08 76.73±2.65
4 79.27±0.78 79.33±0.72 80.19±0.78
5 79.97±1.28 82.09±1.08 82.08±1.39
6 83.97±0.42 82.30±0.33 83.80±1.30
7 83.44±0.57 83.29±1.11 84.85±1.12
8 86.24±0.52 84.72±0.52 86.59±1.25
9 85.75±1.23 85.62±0.55 86.57±0.74

F Discussion

Limitation and Future Work. In the work, we study the connection between generalization
performance and the training dynamics under the NTK regime. Although the relation between training
dynamics and generalization performance has been verified by our experiments, the theoretical
analysis of the relation out of the NTK regime still needs study. Besides, in the experiments, we
mainly focus on the classification problem. Whether the proposed method is effective for the
regression problem is under-explored. We would like to leave the study of the previously mentioned
two problems in the future work.

NTK Analysis for the Design of Practical Method. Although some works [64, 65] discussed
that the NTK assumption is hard to be strictly satisfied in some real-world models, we notice that
some recent works have shown that the high-level conclusions derived based on NTK is insightful
and useful for the design of practical models. Some of their applications can achieve SOTA. For
example, Park et al. [66] used the NTK to predict the generalization performance of architectures in
the application of Neural Architecture Search (NAS). Chen et al. [67] used the condition number of
NTK to predict a model’s trainability. Chen et al. [68] also used the NTK to evaluate the trainability
of several ImageNet models, such as ResNet. Deshpande et al. [69] used the NTK for model selection
in the fine-tuning of pre-trained models on a target task. In our work, the empirical results in Figure 3
and Appendix.E also show the effectiveness of the high-level conclusions derived from the theory
still hold.

Social Impacts. In this work, we study the connection between the generalization performance
and the training dynamics and try to bridge the gap between the theoretic findings of deep neural
networks and deep active learning applications. We hope our work would inspire more attempts on
the design of deep active learning algorithms with theoretical justification, which might have positive
social impacts. We do not foresee any form of negative social impact induced by our work.

License Privacy Information. We use the commonly used datasets, CIFAR104, SVHN5, Cal-
tech1016 in the experiments. Those datasets follow the MIT, CC0 1.0, CC BY 4.0 License respectively
and are publicly accessible. No privacy information is included in those datasets.

4https://www.cs.toronto.edu/~kriz/cifar.html
5http://ufldl.stanford.edu/housenumbers/
6https://data.caltech.edu/records/20086

27

https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
https://data.caltech.edu/records/20086

	Introduction
	Background
	Method
	Training dynamics
	Active learning by activating training dynamics
	Relation to existing methods

	Theoretical analysis
	Train faster provably generalize better
	`` Train Faster, Generalize Better '' for active learning
	Alignment and training dynamics in active learning

	Experiments
	Experiment setup
	Results and analysis

	Related work
	Conclusion
	Acknowledgment
	APPENDIX: Derivation of Objectives
	Training Dynamics for Cross-Entropy Loss
	Derivation for Cross-Entropy Loss
	APPENDIX: Training Dynamics for Mean Squared Error
	APPENDIX: Decomposition of the Change of Training Dynamics
	APPENDIX: Simplification of the Change of Training Dynamics

	APPENDIX: Proofs for Theoretical Analysis
	Proofs for Theorem 1
	Proof for Theorem 2
	Derivation for Maximum Mean Discrepancy

	APPENDIX: More details of experimental settings
	Implementation Detail
	Computation of Acquisition Function

	APPENDIX: Verification Experiments under Ultra-wide Condition
	Experiment Setting and Computational Detail for the Empirical Comparison between NTK and MMD
	Experiment for the Correlation Study between Training Dynamics and Alignment
	Correlation Study between Training Dynamics and Generalization Bound

	APPENDIX: More details of experimental results
	Baselines
	Experiment Results
	Numerical Result of Main Experiments
	Maximum Mean Discrepancy for Multiple Rounds
	Performance under the Re-initialization Setting
	Performance with large query rounds

	Discussion

