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ABSTRACT

Integrating a notion of symmetry into point cloud neural networks is a provably
effective way to improve their generalization capability. Of particular interest are
E(3) equivariant point cloud networks where Euclidean transformations applied to
the inputs are preserved in the outputs. Recent efforts aim to extend networks that
are equivariant with respect to a single global F/(3) transformation, to accommo-
date inputs made of multiple parts, each of which exhibits local F'(3) symmetry. In
practical settings, however, the partitioning into individually transforming regions
is unknown a priori. Errors in the partition prediction would unavoidably map to
errors in respecting the true input symmetry. Past works have proposed different
ways to predict the partition, which may exhibit uncontrolled errors in their ability
to maintain equivariance to the actual partition. To this end, we introduce APEN: a
general framework for constructing approximate piecewise-F(3) equivariant point
networks. Our framework offers an adaptable design to guaranteed bounds on the
resulting piecewise F/(3) equivariance approximation errors. Our primary insight
is that functions which are equivariant with respect to a finer partition (compared
to the unknown true partition) will also maintain equivariance in relation to the
true partition. Leveraging this observation, we propose a compositional design
for a partition prediction model. It initiates with a fine partition and incrementally
transitions towards a coarser subpartition of the true one, consistently maintain-
ing piecewise equivariance in relation to the current partition. As a result, the
equivariance approximation error can be bounded solely in terms of (i) uncertainty
quantification of the partition prediction, and (ii) bounds on the probability of
failing to suggest a proper subpartition of the ground truth one. We demonstrate
the practical effectiveness of APEN using two data types exemplifying part-based
symmetry: (i) real-world scans of room scenes containing multiple furniture-type
objects; and, (ii) human motions, characterized by articulated parts exhibiting
rigid movement. Our empirical results demonstrate the advantage of integrating
piecewise F(3) symmetry into network design, showing a distinct improvement
in generalization accuracy compared to prior works for both classification and
segmentation tasks.

1 INTRODUCTION

In recent years, there has been an ongoing research effort on the modeling of neural networks for
3D recognition tasks. Point clouds, as a simple and prevalent 3D input representation, have received
substantial focus, leading to point networks: specialized neural network architectures operating on
point clouds (Qi et al., 2017} Zaheer et al.| 2017). Since many point cloud recognition tasks can be
characterized as equivariant functions, modeling them with an equivariant point network has been
shown to be an effective approach. Indeed, equivariant modeling can simplify a learning problem:
knowledge learned from one input, automatically propagates to all input’s symmetries(Bietti et al.|
20215 Elesedy & Zaidi, |202 1} Tahmasebi & Jegelkal 2023)).

One important symmetry exhibited in point clouds is the Euclidean motions, E(3), consisting of
all the possible rigid motions in space. Building on the demonstrated success of E(3) equivari-
ant point networks in prior research (Thomas et al., [2018)), recent efforts have been dedicated to
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extending F(3) symmetry to model piecewise rigid motions symmetry as well (Yu et al., 2022;
Lei et al.| [2023; [Deng et al., |2023)). This extension is valuable since some recognition tasks can
be better characterized as piecewise F(3) equivariant functions. To support this claim, we turn to
the task of instance segmentation within a scene, illustrated by a 2D toy example in the rlght inset.
In the leftmost column, we visualize segmentation predictions by :

distinct colors. In the middle column, we observe the expected

invariant predictions under a global Euclidean motion of the

entire scene. Finally, in the right column, we showcase invariant

predictions under a piecewise deformation that allows individual

objects to move independently in a rigid manner, decoupled from the overall scene’s motion.

Incorporating piecewise F(3) symmetry to point networks presents several challenges. The primary
hurdle is the unknown partitioning of the input point cloud into its moving parts. While having
such a partition makes it possible to implement equivariant design using a £(3) equivariant siamese
network across parts (Atzmon et al.| 2022), this is often infeasible in real-world applications. For
instance, in the segmentation task shown in the inset, the partition is inherently tied to the model’s
segmentation predictions. Thus, in cases where the underlying partition is not predefined but rather
predicted by a (non-degenerated) model, any suggested piecewise equivariant model will introduce
an approximation error in satisfying the equivariance constraint. We will use the term equivariance
approximation error to refer to the error that arises when a function is unable to satisfy the piecewise
E(3) equivariance constraint (w.r.t. the true unknown partition); see Definition This equivariance
approximation error is inherent unless the partition prediction remains perfectly consistent under the
input symmetries. This implies it must be invariant to the very partition it seeks to identify. So far in
the literature, less attention has been given to piecewise equivariant network designs that offer means
to control the network’s equivariance approximation error. For example, |Liu et al.| (2023) suggests
an initial partition prediction model based on input points’ global E(3) invariant and equivariant
features. In|Yu et al.| (2022)), local-context invariant features are used for the partition prediction
model. In both cases, it is unclear how failures in the underlying partition prediction model will
affect the equivariance approximation error. Notably, the concurrent work of [Deng et al.[ (2023) also
observes the equivariance approximation error. Their work suggests an optimization-based partition
prediction model based on (approximately) contractive steps, striving to achieve exact piecewise
equivariance; errors in the partition prediction model arising from expanding steps and their impact
on the resulting equivariance approximation error are not discussed.

In this paper, we propose a novel framework for the design of approximately piecewise equivariant
networks, called APEN. Our goal is to suggest a practical design that can serve as a backbone for
piecewise E(3) equivariant tasks, while identifying how elements in the design control the piecewise
equivariance approximation error. Our framework is built on the following simple fact. Let G and G’
be two symmetry groups for which each symmetry in G’ is also in G, i.e., G’ < G. Then, any G equiv-
ariant function is also a G’ equivariant function. Thus, we can have an exact piecewise equivariant
model, as long as the model partition is a proper subpartition of the (unknown) ground truth one.
The right inset illustrates this fact: the piecewise equivariant predictions

of vote targets, marked as black dots, are accurate for a subpartition of the i
ground-truth partition (left column), whereas an equivariant approximation R
error arises for a partition that includes a bad part consisting of points M
mixed from two different parts in the ground truth partition (i.e., the red { {
dots in the right column). This observation may lead to the followmg simple model for partltlon
prediction — drawing a random partition from the distribution of non-degenerated partitions of size
k (i.e., all k parts get at least one point). For such a model, the probability of drawing a bad part
reaches 0 as k increases. In turn, the probability of drawing a bad partition can be used to bound the
equivariance approximation error of a piecewise equivariant function, as good sub-partitions induce
no equivariance approximation error. Importantly, this approach alleviates the need for additional
constraints on the underlying model function to control the equivariance approximation error.
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However, this approach needs to be pursued with caution, as increasing the complexity of the
possible partitions reduces the expressivity of the resulting piecewise equivariant point network
model class. This caveat is especially relevant to the common design using a shared (among parts)
E(3) equivariant backbone. Indeed, at the limit where each point belongs to a distinct part, the only
shared backbone E(3) equivariant functions are constant. To mitigate potential expressivity issues,
our APEN framework employs a compositional network architecture. This architecture comprises a
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sequence of piecewise equivariant layers, with the complexity of their underlying partition decreasing
gradually. Each layer is defined as a piecewise F(3) equivariant function, which not only predicts
layer-specific features but also parametrizes a prediction of a coarser partition. This coarser partition
serves as the basis for the subsequent layer’s piecewise £(3) symmetry group. The goal of this
“bottom-up” approach is to allow the network to overcome the issue of ambiguous predictions in
earlier layers by learning to merge parts that are likely to transform together, resulting in a simpler
partition in the subsequent equivariant layer. Importantly, this design also provides bounds for the
piecewise equivariant approximation error of each layer, resulting solely from two sources in the
design: (i) uncertainty in the partition prediction model, and (ii) the probability of drawing a bad
partition.

We instantiated our APEN framework for two different recognition tasks: classification and part seg-
mentation. We conducted experiments using datasets comprising of (i) articulated objects consisting
of human subjects performing various sequence movements (Bogo et al.,|2017), and (ii) real-world
room scans of furniture-type objects (Huang et al.,|2021a). The results validate the efficacy of our
framework and support the notion of potential benefits in incorporating piecewise E'(3) deformations
to point networks.

2 METHOD

2.1 BACKGROUND: EQUIVARIANT POINT NETWORKS

We will consider point networks as functions i : U — W, where U and W denote the vector
spaces for the input and output domains, respectively. The input vector space U takes the form
U = R™(*9) with n denoting the number of points in the input point cloud, d is the point embedding
space dimension (usually d = 3), and 2 per-point features: spatial location and an oriented normal
vector. Depending on the task at hand, classification, or segmentation, the output vector space W
can be W = R° or W = R™*“. To incorporate symmetries into a point network, we consider a group
G, along with its action g on the vector spaces U and W. Of particular interest in our work is the
Euclidean motions group G = F/(d) defined by rotations, reflections and translations in d-dimensional
space. The group action on X € U is defined by g- X = X R + 1, with g = (R, t) being an
element in (d)[ﬂ, while the action on the output Y € W varies depending on the task (e.g., g-Y =Y
for classification). An important property for our networks h to satisfy is equivariance with respect
to G:

h(g-X)=g-h(X) VgeG, X eU. 1)

We consider the typical case of networks & which follow an encoder-decoder structure, i.e., h =doe.
The encoder e : U — V transforms an input into a learnable latent representation V. In our case,
V is an E(3) equivariant latent space, up to order type 1, of the form V = R****3_ with a, b being
positive integers. The decoder d : V' — W decodes the latent representation to produce the expected
output response which can be invariant or equivariant to the input. Both e and d are modeled as a
composition of multiple invariant or equivariant layers. Having covered the basics of equivariant point
networks, we will now proceed to describe our proposed framework, starting with the formulation of
a piecewise F(d) equivariant layer.

2.2 PIECEWISE E(d) EQUIVARIANCE LAYER

We start this section by describing the settings for which we model a piecewise FE(d) equivariant
layer. Let X € U be the input to the layer. Our assumption is that the partition prediction is modeled
as a (conditional) probability distribution, @ zx € (¥1)" over the k parts partitions X can exhibit.

Here ¥, denotes the £ probability simplex. Let Z = [le, ey zﬂT e {0, 1}"Xk with Z1 =1, denote
a realization of a partition from Q zx,i.e., Z ~ Qz|x.

Let Z be the unknown ground truth partition of X . An important quantity of interest is

AQ) = Pz-qzx (3 1<, j<nst (ZZT)ij > (ZZT)”)’ @

'Note that in fact g = (R, 0) on the input normals features.
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measuring the probability of drawing a “bad” partition from (), i.e., a non-proper subpartition of Z.
In that context, a reference partition prediction model is (Q)simple Which is defined by a uniform draw of
a partition satisfying 17 Z e; > 0 for each j € [k]. An important property of Qsimple i3 A(Qsimpte) = 0
as k — n. To better understand this claim about /\(Qsimple), one can consider the sequential process
generating a random k parts partition. Clearly, larger values of k result in each part containing fewer
points. Since the probability of drawing the next point from mixed ground-truth parts is independent
of k, determined solely by the number of input points and the ground-truth partition, the probability
that the next drawn point generated a bad part lowers as k increases. In turn, /\(Qsimple) can serve
as a useful bound for the resulting equivariance approximation error. Consequently, we opt for a
model @ that satisfies limsup A(Q) = A(Qsimple ), Where the last limit is taken with respect to a
hyper-parameter in the design of Q.

More precisely, we suggest the following characterization for Q. Let § : (X)™ — R, satisfying

5(Q) — 0, whenever Q — Q, 3)

with @, € {0, 1}"Xk N (Xg)™. That is, 6 measures the uncertainty in the model’s prediction. Our
design requirement is that

lim sup )\(Q) = )‘(Qsimple)v as 6(@) - 0. 4

In other words, we suggest constraining a () model to behave in a way A

such that, as it becomes more certain in how it draws its predictions, the

probability of drawing a “bad” partition converges to be no worse than the

one of the simple model. The functional § measures the uncertainty of @,

and is considered as one of the design choices in the modeling of Q). In

turn, it will be used to bound the equivariance approximation error. Fig. [T]

illustrates the qualitative behavior of ¢. y N
Figure 1: The func-
tional bound 4. Green
colors indicate values
close to 0.

We defer the discussion on how we provide a model for () supporting these
ideas for later. Instead, we start by describing how () z|x is incorporated to
model a piecewise equivariant layer.

Fixed partition. To facilitate discussion, we first assume that Z is fixed, and we will start by
describing a piecewise E(d) equivariant layer with respect to Z partition. Let G = E(d) x - x E(d)
be the product consisting of k copies of the Euclidean motions group. For g = (g1, gx) € G, we
define

k
9 (X,2)=>(9;-X) 0 (Ze;1}), )
j=1

where g; - X = XRJT + 1nt]T, {e; }?21 is the standard basis in R*, 1, is the vector of all ones in R?,
and © denotes the Hadamard product between two matrices.

One appealing way to model a piecewise F(d) equivariant function, ¢ : U x {0, 1}"Xk — U’, which
also respects the inherited order symmetry of the part’s assignments, is by employing an FE(d)-
equivariant backbone v, : U — U’ shared among the parts (Atzmon et al., 2022; |Deng et al., [2023)),
taking the form:

k
V(X,Z)=) (X ©Ze;1}) 0 Ze;1". (6)
j=1

The following lemma, whose proof can be found in the Appendix, verifies these properties for 1.

Lemma 1. Let ) : U x {0, 1}n)(k — U’ be a function as in Eq. (@ Let g € G and oy, (+) a permutation
on [k]. Then,

'(/)(g(X7Z)aZ) :g(w(XaZ)aZ)a
'l/)(szl) =1/J(X>Z)
forany X €U, Z € {0, 1}”Xk, and Z' = Z. ;).

Note that one can consider augmenting the design of Eq. (6) with a function over orderless repre-
sentation of parts E'(d) invariant features (Maron et al., 2020). Equipped with the construction in
Eq. (6), we will now move on to the case where Z is uncertain.
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Uncertain partition. Incorporating ()z|x into a layer can be done by marginalizing over the
possible Z. Some simple options for marginalization are i) ¢;1(X ) = ¢(X,EgZ) as implemented
in|Atzmon et al.| (2022); ii) ¢u(X) = Equ(X, Z); and iii) ¢m(X) =9 (X, Z,.), where (Z.);, =
€arg max,; Q(Z|X);- Unfortunately, however, all of these options are merely an approximation of a
piecewise F(d) equivariant function. The scheme ¢y relies on scaling, which can be an arbitrarily
bad approximation to the input’s geometry. The scheme ¢y relies on the averaging of equivariant
point features, which is not stable under a realization of a particular partition Z ~ (). Similarly, ¢y
is also not equivariant under all possible realizations of Z. However, the equivariance approximation
error ¢pr induces can be controlled, as we discuss next.

Bounding the equivariant approximation error. In this work, we advocate for layers of the
form ¢y;. The motivation for doing so is that it enables a uniform control over the equivariant
approximation error as a function of @), crucially, without relying on bounding the variation of ¢.
This advantage is especially prominent for neural networks, as existing techniques for bounding
network’s bounded variation, e.g., by controlling the network’s Lipshitz constant, impose additional
complexity to the network architecture and may hinder the training process (Anil et al.|[2019). On the
other hand, as we will see in the next section, the approximation error () induces can be controlled
explicitly by a choice of hyper-parameters in the parametrization of Q.

The next definition captures our suggested characterization for an approximation error of a desired
piecewise E(d) equivariant layer:

Definition 1. Let ¢ : U — U’ be a bounded function with |¢| < M. Let § : (3x)" — Ry, satisfying
Egq. and Egq. (E]) w.rt. Q. Then, ¢ is a (G, Q) equivariant function if and only if for any given
X e U, the following is satisfied

Eqzx 9 (9-(X,2)) - g (¢(X), Z)| < (M Qsimpre) +6(Q)) M )
for all g € G. We denote the set of (G, Q) equivariant functions by F.

The above characterization for the equivariance approximation error can be seen as resulting from two
different sources of properties in the partition prediction model: (i) an intrinsic source, as captured
by 6, which measures the uncertainty of the model @), and (ii) an extrinsic source, determined by
a measure independent from () as captured by A. In addition, the above definition generalizes the
notion of exact equivariant function classes. For instance, consider Z satisfying zZ e; = 1 for some
fixed j; setting ¢ = 0 yields that F¢ coincides with the class of global E(d) equivariant functions.

To conclude this section, we verify in the following theorem that our construction of ¢ indeed falls
under the suggested characterization of approximate piecewise E(d) equivariant functions. Proof
details are in the Appendix.

Theorem 1. Ler ¢ : U — U’ be of the form

k
o(X) = Z%(X@Z*ejlg)@Z*ele, )

J=1

where (Z,);: = €g max; Q(Z|X),;» and ¥y : U — U’ is an E(d) equivariant backbone. Then,

¢ € .7:Q.
2.3 Q PREDICTION

So far, we have treated () as a given input to the layer. In fact, we suggest that () results from a
piecewise equivariant prediction of a prior layer. Exceptional is the first layer, for which @ = Qgimple-
Given a layer output of the form in Eq. , we will next describe how QP! is inferred. Note that Q
still denotes the given input partition prediction model.

Modeling considerations. As a first attempt, one might consider parametrizing Q"¢ as the
softmax of a per-point ) piecewise invariant layer prediction. However, this approach introduces
several difficulties, causing it to be unfeasible. Firstly, it is unclear how to supervise () during training
to predict good sub-partitions of the ground-truth partition. Secondly, network optimization could be
tricky, since the domain of possible partition solutions has a high dimensional combinatorial structure,
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especially due to our design bias for a large number of parts in early network layers. Lastly, there is a
need to model the merging of parts in the input partition to generate a coarser one.

To address these challenges, we propose a geometric approach to model QP™¢. Our suggestion is
to set QP as the assignment scores resulting from the partitioning (i.e., clustering) in R? of Q
piecewise equivariant per-point predictions. Notably, this suggestion falls under the well-known
attention layer (Vaswani et al.| 2017} [Locatello et al.|[2020; [Liu et al.,[2023) following a query, key,
and value structure with ¢(X ) being the values and queries, part centers being the keys, and the
prediction QP is proportional to the matching score of a query to a key. One of the advantages of this
approach is that QP! emerges as an orderless prediction with respect to possible parts assignments,
thus simplifying the optimization domain. However, it is not clear how this model can (i) control
the resulting 6(QP?) by means of its design; and (ii) support the merging of parts to constitute a
prediction of a coarser partition. To this end, we suggest that the part center (keys) predictions are set
as the minimizers of an energy that is invariant to ) piecewise F(d) deformations of ¢(X) (values).
We formalize this idea in the next paragraph.

Q Prediction. LetY = [y1,-,¥,]7 € R™ denote the first equivariant per-point prediction in
k
(X)) eU'. Let [u;]jz L€ R%* denote the underlying predicted part centers with which the score

of QP! is defined. We define [u;]fz , as the minimizers of an energy consisting of the negative
log-likelihood of a Gaussian Mixture Model and a regularization term that constraints the KL distance
between all pairs of Gaussians to be greater than some threshold. Let P(Y;a = (pj, 75 0);?:1)
denote the mixture distribution, parametrized by «. Then, the log-likelihood is log P(Y; ) =
Y log(2§=1 ;N (yi; mj,0)) where N'(+; p;,0) denotes the density of an isotropic Gaussian
random variable, centered at p; with variance o21. Note that o is fixed and is considered as a

hyper-parameter. Then, [u;]j: , are defined as
(uj, 7)) =argmin-log P(Y;a) =7 3 m;m; log Dr, (N () W (5 7)) ©

J#j’
In turn, the prediction Qf;.ed is defined as
N(yi; p5,0)7;
S N (yis pl o)

Importantly, the above construction yields that as & — 0: i) A(Q™™®) = A(Qsimple) since each random

partition is a minimizer of the likelihood functional, and ii) § (Qp”d) — 0. In addition, o also controls
the sensitivity of Gaussians to merge (under a fixed coefficient 7), where larger values encourage
Gaussians to explain wider distribution of values y;. Thus, setting an increasing sequence of o values
across layers supports the gradual coarsening of partitions design. Lastly, note that differentiating the
prediction of QP w.r.t. its inputs is not trivial; these details are covered in the next section.

(10)

pred _
Qij =

2.4 IMPLEMENTATION DETAILS

Network architecture. We start by sharing the details about the construction of the layer ¢ in
Eq. (6) given a known partition Z. For that end, we used Frame Averaging (FA) (Puny et al| 2022)
with a shared pointnet (Qi et al.,[2017)) network, ). We define our shared equivariant backbone by

U (X © Zej1]) = (P(X © Zejlg)>F(X®Zej1§
where F(X © Ze;1%) is the same PCA based construction for an E(d) frame suggested in Puny,
et al|(2022), and (-) is the FA symmetrization operator. Then, (X, Z) is defined exactly as
in Eq. (6). Since this construction needs to support layers with a relatively large number of
parts k, we implement the network 1, using the sparse linear layers from |Choy et al.| (2019).
In all our experiments, we implemented the encoder as a compo-
sition of L layers, e = ¢, o--- 0 ¢, with L = 4; see Fig.[2] Qsimpie
is set as the input to ¢;. In fact, Qsimple can be further regulated
than the naive suggestion. In practice, we set Qimple by a Voronoi
partition resulting from k& furthest point samples from the input
X. The exact analysis of A(Qsimple) as a function of n and % is
out of the scope of this work — we only rely on Eq. ().

Qrred ¢ro---ogp

=

Figure 2: APEN netwofk design.

6i(X) € Fo. s
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Q prediction. For finding a minimizer of Eq. (9), we used a slight modification of the well-known
EM algorithm (Dempster et al.|[1977) that supports the merging of centers closer than the threshold
7. Note that during training, the backward calculation requires the derivative of . Since the EM is

in an iterative algorithm, this might unnecessarily increase the computational graph of the backward
computation. To mitigate this, we use the following construction, based on implicit differentiation

(Atzmon et al.| 2019} Bai et al 2019). Let & be a minimizer Eq. (9) that is detached from the
computational graph and Y. Then, s(Y; &) = 0 where s(Y; &) = Vo log P(Y; ), known in the
literature as the score function (Bishop & Nasrabadi, [2006)). We define

a=a+I""(a)s(Y:a), (11)

where I7} (&) = Var (s(Y';&)) is the fisher information matrix (Bishop & Nasrabadil, 2006) calcu-
lated at a. Importantly, I only depends on s and does not involve second derivative calculations.
It can be easily verified that « is a minimizer of Eq. @) and that 22 = 2(ars mm"(E(a Y) where
E(-) denotes the energy defined in Eq. (E[) This is summarized in Alg l found i 1n the Appendlx

Training details. Our framework requires supervision in order to train QP to approximate the
ground-truth partition. To that end, we compute the ground-truth Ygr € R™*? to supervise the parts
center vote predictions Y; € R™*¢ of the I layer. We utilize the given segmentation information, to
calculate Ygr = ZCT - X, where Z € {0, 1}"”c are the ground-truth assignments of X € R™*¢ and
C e R%* is calculated as the center of the minimal bounding box encompassing each of the input
parts. Then, a standard L loss is added to optimization,

L
IOSSA = Z ”le - YGT” .
=1

3 EXPERIMENTS

We evaluate our method on two types of datasets that fit piecewise F(3) symmetry: (i) scans of
human subjects performing various sequences of movements (Loper et al.l 2015 [Bogo et al.}
Mahmood et al} 2019), and (ii) real-world rooms scans of furniture-type objects (Huang et al.,[2021a).
In all of our experiments, we used the ground-truth segmentation maps to extract Ygr supervision as
described in Sec.24

I B
1z
|
S
A
i
|
I
-
One-shot Example | 5
O
¢
N Y Z g
- o I =
<Y loE
Large Training Set ! [e
:
" i
- | 73
e | =
TN C

One-shot Example

Unseen Samples

Figure 3: Qualitative results for one-shot generalization on DynLab dataset (Huang et al., 202T4d).
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3.1 HUMAN SCANS

We start by evaluating our framework for the task of point part segmentation, a basic
computer-vision task with many downstream applications. Specifically, we consider hu-
man body parts segmentation, where the goal is to assign each of the input scan points
to a part chosen from a predefined list. In our case, the list consists of 24 body parts.
To evaluate different aspects of our framework, - ; ;
we use three different train/test splits. The
first consists of a random (90%/10%) train/test
split of 41,461 human models from the SMPL
dataset (Loper et al} 2015) consisting of 10
different human subjects as in (Huang et al.|
[2021b). This experiment acts as a sanity test
and ensure our method does not underperform
compared to baselines. The second and third
splits use the scans from the Dynamic FAUST
(DFAUST) dataset 2017), consist-
ing of 10 to 12 different sequences of motions
(e.g., jumping jacks, punching, etc.) for each of
the 10 human subjects. In the second split, we GT Baseline  Ours GT  Baseline  Ours
divide the data by a random choice of a different Figure 4: Human body part segmentation.
action sequences for each human. This experiment ensures our method can generalize knowledge of
action sequences seen in training from one human subject to other human subjects at test time. Finally,
in the third split we choose the same sequence of movements (e.g., the one-leg jump sequence) to be
removed from the training set and be placed as the test set. The last test evaluates the effect of the
piecewise F(3) prior, as implemented in our method, to generalize to unseen movement.

In Tab. III’ we report the mean IoU(%) score for all Method | random | unseen random seq. | unseen seq.
3 tests. As baseline models, we opt for PointNet PointNet | 84.4 78.5 80.1

and DGCNN (Wang ef al] 2019) ~ PGCNN | 822 70.3 79.5

as order invariant point networks. For E'(3) invari- VN 42.4 24.8 33.3

. S VN-T 63.5 50.9 50.0
ant networks, our baselines selection includes Vector A %35 781 6.7
Neurons (VN) (Deng et al}[2021)), VN-Transformer EPN 89.6 7.8 841
(VN-T) (Assaad et al., |2023)), FrameAveraging (FA) Ours 942 922 93.5

(Puny et al., [2022), and Equivariant Point Network

(EPN) (Chen et al., 2021)) backbone as implemented
in the human body part segmentation network de-

scribed in (2023). Fig. [ shows qualitative test results of an unseen random seq. pose
(first row) and an unseen random pose (second row). We conclude from the results that (i) our
framework is a valid backbone with similar expressive power as common point network baselines,
(ii) our framework utilizes piecewise F(3) equivariance to gain better generalization across human
subjects than baseline approaches and, (iii) piecewise E(3) equivariant prior can help to generalize
to unseen movements.

Table 1: Mean IoU(%) test set score for
human body parts segmentation.

Lastly, to test the versatility of our framework, we evaluate it on a point cloud classification task.
On that hand, we consider the DFaust subset of AMASS (Mahmood et all, 2019)), consisting of 9
human subjects. We define the task of classifying a model to a subject. For testing, we use an "out
of distribution" test set from PosePrior (Akhter & Blackl, [2015)). The results from this experiment
support the usability of our framework for classification tasks as well. The detailed report can be
found in the Appendix, including all the hyper-parameters used for the experiments in this section.

3.2 ROOM SCANS

In this section, we test the potential of our framework for one-shot generalization. To that end, we
employ a dataset of 8 scenes capturing a real-world room where the furniture in the room has been
positioned differently in each of the 8 scans for each scene. Within each scan, there are 3 to 4 labeled
furniture-type objects, including the floor. The task objective is to assign each input point to one of
the object instances composing the scene. In addition to the difficulty of segmenting moving objects
in the scene, solutions to this task must handle noise and sampling artifacts arising from the scanning
procedure. For instance, scans of objects occasionally contain holes or exhibit ghost geometry. Here
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we compare two alternative solutions this this task: (1) we only train our method using a single scan,
and test its generalization to the other seven scans of the same scene. (2) We train baseline networks
on the large-scale synthetic shape segmentation dataset from [Huang et al.[|(2021a), which randomly
samples independent motions for multiple objects taken from ShapeNet (Chang et al., 2015).

In Tab. 2| we report the mean loU(%) test score for each of the scenes. Fig. [3|shows qualitative results
for 2 rooms. Despite only training on a single scan, our model outperforms baselines trained on a
large synthetic dataset in 7 out of the 8 test scenes. These results suggest potential advantages of
using piecewise E(3) equivariant architectures in a single shot setting over the use of large-scale
synthetic data. Furthermore, to make baseline approaches work, we employed a RANSAC algorithm
to identify the ground plane, with an inlier distance threshold of 0.02 and 1000 RANSAC iterations.
In contrast, our method requires no preprocessing since the network can treat the floor as it would for
any other part of the input data.

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8

PointNet 33.0+£85 50.2+43 31.1+34 383+43 36.7+£6.1 452+220 574+15 36.6+4.6
DGCNN 36.7+3.6 388+10.8 41.8+4.9 31.0+2.7 489+43 351+84 59.5+73 354+6.3
VN 13.0+2.8 18615 24.7+0.8 152x1.1 244=x1.1 176+1.7 256+1.0 23.0x1.2
Ours 88.0+13.0 982+0.7 974+15 963+20 932:39 934+28 833+133 922:1.8

PointNet (Synthteic) | 76.6 +22.4 97.3+2.1 91.2+4.8 89.7+40 91.9+5.1 95.1£1.0 66.6x9.7 83.2+4.0
DGCNN (Synthetic) | 77.5+£22.3 93.7+109 97.1+0.7 844+13.0 89.1+166 956+1.1 76.2+10.6 90.6+6.2
VN (Synthteic) 65.5+18.7 93.7+49 80.7+17.6 593+11.0 925+49 825+15.0 77.4+6.1 62.0 +12.9

Table 2: One-shot generalization on real-world scans from the Dynlab dataset (Huang et al.,|2021a).

4 RELATED WORK

Global Equivariance. We introduce a novel method for piecewise F(3) equivariance in point
networks. Euclidean group symmetry has been studied in point networks mainly in describing
architectures that accommodate global transformations (Chen et al., 2019; [Thomas et al., 2018}
Fuchs et al.| 2020; |Chen et al.| 2021; Deng et al., 2021} |Assaad et al., 2023} Zisling & Sharf} [2022;
Katzir et al., [2022} Poulenard & Guibas| [2021; |Puny et al.l [2022). These was shown to perform
well in various applications including reconstruction (Deng et al.l [2021; |Chatzipantazis et al., 2022
Chen et al., 2022)), pose estimation (Li et al., 2021; Lin et al.| 2023} |Pan et al., 2022} [Sajnani et al.,
2022} Zhu et al.| 2022), and robot manipulation (Simeonov et al.,2022; Higuera et al., [2023} | Xue
et al.,2023) tasks. Some works have dealt with respecting the symmetry by manipulating their input
representation (Deng et al., [2018}; |[Zhang et al.| 2019; |Gojcic et al.,2019). A popular line of work
utilizes the theory of spherical harmonics to achieve equivariance (Worrall et al., 2017 |[Esteves et al.|
2018 [Liu et al., 2018 Weiler et al., 2018;|/Cohen et al.,[2018).

Object-Level and Part-Based Equivariance Several works have studied the equivariance of parts.
EON (Yu et al.} |2022) and EFEM (Lei et al.} 2023) both studied object-level equivariance in scenes.
EON used a manually tuned ‘suspension’ to compute an equivariant object frame in which the context
is aggregated. In EFEM, instance segmentation is achieved by training a shape prior using a shape
collection, and employing it to refine scene regions. Instead, we do not assume prior knowledge of
the underlying partition. Equivariance for per-part pose estimation in articulated shape was devised in
Liu et al.[(2023). Yet their self-supervised approach relies on part grouping according to features that
are invariant to global rotations which may result in unknown errors when local transformations are
introduced. Part-based equivariance was also studied for segmentation in|Deng et al.[(2023), relying
on an intriguing fixed-point convergence procedure.

5 CONCLUSION

We presented APEN, a point network design for approximately piecewise F(3) equivariant models.
We implemented APEN networks to tackle recognition tasks such as point cloud segmentation, and
classification, demonstrating superior generalization over common baselines. On the theoretical
side, our work lays the ground for an analysis of piecewise equivariant networks in terms of their
equivariance approximation error. The bounds we present in this study serve as merely initial insights
on the possibility of controlling the equivariance approximation error, and further analysis of our
suggested bounds is marked as an interesting future work. Further extending this framework for other
3D tasks, e.g., generative modeling and reconstruction is another interesting research venue.
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A APPENDIX

A.1 PROOFS

A.1.1 PROOF oF LEMMAI[I]

Proof. (Lemmall) Let X € U, Z € {0,1}"**, and g € G. Then,

k
w(g'(X’Z)vZ): Z¢b(g~(X,Z)@Z€j15)®Z6j1T:

j=1
i i T T u T T
Z wb(z (g_7 . X) © (Zej]'d )) © Zejl = Z gj ¢b(X O] Zej]'d ) © Zejl
j=1 j=1 j=1

where the last equality follows from the fact the 1, is F(d) equivariant and the second equality from
the fact that Ze; ® Ze; = 0 for j # j'. Lastly, for any permutation oy (-), we have,

V(X © Zejy1y) © Ze;1"

k k
wb(X ®© Zegk(j)lg) ® Zegk(j)lT =
=1 =1

J J
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A.1.2 PROOF OF THEOREM([I]

Proof. (Theorem([T)) Let ¢ : U — U’ be of the form

k
H(X)=> (X0 Z.e1))0 Z.e;17, (12)
j=1

where (Z. )i, = €arg max, Q(Z|X);;» and ¢y : U - U’ is an E(d) equivariant backbone.

Let A={Z + Z,}. Then,
Q(A) < ;(1 -Q(eiZ=eZ.))= ;(1 - Qijeiy.)

where j(i). = argmax; ;;. Then, we set

5(Q) = i(l CQuo).

Clearly ¢ satisfies conditon Now, Let @ satisfying condition 4] w.r.t. A Let B =
{zI31<i,j<nse (227),>(Z27),} Then,

ij ij
{Z}=(BnA)u(BnA®)u(B®nA)u(BnA%).
Note that for BY n A® there is no equivariance approximation error. For (Bn A), and (B¢ n A) we

can bound using §(Q). Lastly, Z € (Bn A“) means Z, is a "bad" partition, thus A\(Q) < A(Qsimple)-
To conclude, we use a union bound composed of the decomposition above to get that,

EQZ\X H¢(g : (X7 Z)) -9 (¢(X)7 Z)” < (/\(Qsimple) + 5(@))]\/[

A.2 Q PREDICTION

In this section we provide an empirical validation to the expected o0
behavior of A(Qsimpie) as k& - n. To that end, we examine a L

2D toy example, featuring n = 14 points partitioned to 3 groups. 0
Figure [5] shows this toy example, with distinct colors denoting Py

the ground truth partition. Figure E] shows a plot of A\(Q) values
for k € [1,14]. The green line shows A\(Q) for the simple Q
model, defined by a uniform draw of & parts partition, where each ® ®
part includes at least one point. The red line shows A\(Q) for
a () model, defined by a Voronoi partition with centers drawn LA
randomly proportionally to & furthest point sampling. Note that
as expected, A(Q) > 0 as k — n. e o o

Next, we provide in Alg.[T]a detailed description of our () predic- .
tion algorithm. Figure 5: 2D toy example consist-

ing of n = 14 points, partitioned

into 3 parts.
A.3 ADDITIONAL IMPLEMENTATION DETAILS p

A.3.1 ARCHITECTURE

We start by describing our concrete construction for the encoder, e and d used in our experiments.
The network consists of APEN layers of the form,

APEN(“» Qin, bim Gout, boul) : RnX(aiﬁSXbm) - RnX(aom+SXbOM)

Then, the encoder consists of the following blocks:
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Figure 6: The probability of drawing a bad partition, ’;\(Qsimple), as k — n, for a 2D toy example with
n = 14 points.

APEN(n,0,2,17,5) —
APEN(n,17,5,17,5) >
APEN(n,0,2,17,5) - APEN(n,0,2,65,21).
The decoder consists of the following block for the segmentation task:
APEN(n, 65,21,24,0),

and for the classification task:
APEN(1,65,21,9,0).

Each APEN block is built on equivariant backbone, implemented with Frame Averaging. In turn, the
backbone symmetrize a pointnet network ). We now describe its details.

The network consists of layers of the form

FC(n, din, dou) : X = v (XW +1b")
MaxPool(n, di) : X = 1[max Xe;]

where X € R™*% W ¢ R%n*dou b e R%u are the learnable parameters, 1 € R™ is the vector of all
ones, [-] is the concatenation operator, e; is the standard basis in R%  and v is the ReLU activation.
We used the following architecture for the first APEN layer:

FC(n,6,96) 2 FC(n,96,128) % FC(n, 128,160) X FC(n,160,192)
FC(n,192,224) % MaxPool(n, 224) % [L1, L, L3, La, Ls, L] =
FC(n,1024,256) % FC(n, 256,256) 2 FC(n,128,32).

15



Published as a conference paper at ICLR 2024

Algorithm 1 Q prediction

Input: Y'; 7 > 0 merge threshold and f merge frequency

i< 0

(p) < random furthest point sample of k points from'Y’
i < %

while i < max iter do

Yii < T, Wl/r\y[v(_yﬁll/l)
My Z'i’t';i'j
>iYij

Tj < =5
if i mod f == ( then
(4,7") « argmin DKL(N('?H]’)HN(';H;))
(5.3 Yelilm; >0}
d < D (N (5 ) IN (5 15))
while d < 7 do
Tj < T + 7T;-
7T;» «~0
(G.4') < argmin Dy (N (5 )V (5 25))
{4,3"}e{jlm;>0}
d < Dxcp, (N (5 17)IN (5 145))
end while
end if
1< 1+1
end while
(pj,m7) <—N(ﬂj,7~fj) + I (g, 75) (Y5 (f,75))
red (yisps,0)ms
Qi SNy
Output: QP™9, a (differential) minimizer of E(Y")

For the second and third,
FC(n,32,96) 2 FC(n,96,128) 2 FCO(n,128,160) % FC(n, 160,192) %
FC(n,192,224) % MaxPool(n,224) % [L1, Lo, Ly, La, Ly, L] %
FC(n,1024,256) 5 FC(n,256,256) 2 FC(n,128,32).

And lastly,
FC(n,32,96) 2 FC(n,96,128) 2 FCO(n,128,160) % FC(n, 160,192) %
FC(n,192,224) % MaxPool(n,224) 8 [L1, Lo, Ly, L, Ly, L] %
FC(n,1024,256) 5 FC(n,256,256) 2 FC(n,128,128).

A.3.2 HYPER PARAMETERS AND TRAINING DETAILS

We set o7 = (0.002,0.005,0.008,0.1). The number of iterations for the EM was 16. We trained our
networks using the ADAM (Kingma & Bal, [2014) optimizer, setting the batch size to 8. We set a
fixed learning rate of 0.001. All models were trained for 3000 epochs. Training was done on a single
Nvidia V-100 GPU, using PYTORCH deep learning framework (Paszke et al.,|2019).

A.4 ADDITIONAL RESULTS

In this section, we present visualizations of the learned partitions QP™? across layers in the APEN

encoder. Figure[/|shows the learned APEN encoder layers partitions from the experiment in section
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i ————

Figure 7: APEN encoder’s learned partitions, QP™Y, extracted from two test-set examples in the
human body segmentation experiment. In each group of 4 elements, the leftmost column shows
QP partitions, with subsequent layers’ partitions ordered left-to-right, culminating in the rightmost
column that shows the encoder’s last layer partition.

Figure 8: APEN encoder’s learned partitions, Qpred, extracted from the one shot segementation
experiment. In the top row, layer partitions of a single training example are shown, while the bottom
row shows layer partitions of an unseen test example. The leftmost column shows QP™? partitions,
with subsequent layers’ partitions ordered left-to-right, culminating in the rightmost column that
shows the encoder’s last layer partition.

[3-1] while Figure [8]shows partitions from the experiment in section[3.2] Each input point is assigned
distinctive colors according to arg max; Q‘i’;ed. It is worth noting that progressing from left to right,

the predicted partitions tend to become coarser, a behavior encouraged by setting the hyper-parameter
O1+1 > 0.

A.5 SUBIJECT CLASSIFICATION EXPERIMENT

Method ‘PointNet DGCNN VN  Ours
Accuracy (%) ‘ 18.5 32.1 282 714

Table 3: Subject classification accuracy comparison.

Here we provide the results of the point cloud classification experiment described in the main text.
Fig. 9shows several typical examples from the considered split. Note the relatively large difference
in the distribution of poses. Tab. 3] logs the quantitative evaluation, validating our framework’s
superiority in this case as well.
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Train Samples Test Samples

Figure 9: Training and test set visualization for the subject classification task.

18



	Introduction
	Method
	Background: Equivariant Point Networks
	Piecewise E(d) Equivariance Layer
	Q Prediction
	Implementation Details

	Experiments
	Human Scans
	Room Scans

	Related work
	Conclusion
	Appendix
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1

	Q Prediction
	Additional Implementation Details
	Architecture
	Hyper parameters and training details

	Additional Results
	Subject Classification Experiment


