
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 CODE

Our code is available for review at: https://anonymous.4open.science/r/
nasgraph-61D7.

A.2 PROOF OF THEOREM 1

Theorem 1. Let x be the input to F . F is converted to a graph G(V,E) using NASGraph framework:
the input to F has 1 ∈ RH(0)×W (0)

for the channel i and O ∈ RH(0)×W (0)

for rest of channels.
There is no edge between node i and node j if and only if the output for the channel j is all-zeros
matrix O ∈ RH(1)×W (1)

.

Proof: y(1)i = F(x), and (y
(1)
i)d1d2d3 ∈ R is computed by:

(y
(1)
i)d1d2d3

= ReLU(

f
(0)
k1∑
a=0

f
(0)
k2∑

b=0

C(0)∑
c=0

w
(0),d3

a,b,c x
(0)
a+(d1−1)sl,b+(d2−1)sl,c

+ b(0),d3) (3)

where f
(0)
k1

is the kernel height, f (0)
k2

is the kernel width, and sl is the convolution stride. Since

(y
(1)
i)d1d2d3

≥ 0, according to Equation 2, ωi(l−1)j(l) = 0 implies (y
(1)
i)d1d2d3

= 0. The reverse

implication is obvious: when (y
(1)
i)d1d2d3

= 0, ∀d1, d2 s.t. 0 ≤ d1 ≤ H(1), 0 ≤ d2 ≤ W (1), then
the summation ωi(l−1)j(l) = 0. This completes our proof.

A.3 BIAS IN NAS METHODS

We rank architectures in NAS-Bench-201 using different metrics and compute the ρ of architecture
ranks for each pair of metrics. Figure 3 (a)-(c) show the pairwise ranking correlation between metrics.
Both avg_deg and synflow are data-agnostic approach and the correlation between these two
metrics is high. Besides, the correlations between these two metrics do no change across datasets. The
correlation between avg_deg and jacob_cov is comparably small, but a combination of these
two metrics can have the best ranking correlation between the metrics and the performance of neural
architectures. Because of rounding number, grad_norm and snip have the ρ of 1. But they do
not give the exactly same rankings of neural architectures. When we check the architecture rankings
precisely using these two metrics, we find ρ = 0.9982 on CIFAR-10, ρ = 0.9984 on CIFAR-100 and
ρ = 0.9988 on ImageNet-16-120.

We extract top 10% neural architectures on NAS-Bench-201 and count the frequency of each
operation (avg_pool, none, nor_conv_1×1, nor_conv_3×3, skip_connect) appearing
in the selected subset. Figure 3 (e)-(f) show the frequency of different operations on different
datasets. There is no pronounced difference in the distribution across different datasets for GT. This
is reasonable when we examine the distribution of test accuracy in CIFAR-10, CIFAR-100 and
ImageNet-16-120 datasets (Figure 2 (f)) where test accuracy is positively correlated among datasets.
These facts indicate the same architecture generally have a similar performance on different datasets.
Therefore, the data-agnostic NAS methods (avg_deg and synflow) can be effective to search
neural architectures across different datasets.

Based on the distribution of operation preference, we find our metric avg_deg has a distribution sim-
ilar to the GT. Similar to synflow, our metric has a relatively low preference for skip_connect
while jacob_cov has a high preference for skip_connect. That might explain the reason why
a combination of avg_deg and jacob_cov gives the highest correlation between test accuracy
and combined metrics. Another reasoning is related to the definition of jacob_cov. The Jacobian
for the i-th neuron in the output of the layer L with parameter θα valuated at a point x is defined as
Mellor et al. (2021):

Jiα(x) = ∂θαz
(L)
i (x) (4)

13

https://anonymous.4open.science/r/nasgraph-61D7
https://anonymous.4open.science/r/nasgraph-61D7

Under review as a conference paper at ICLR 2024

a b c

e

f

g

NAS-Bench-201 CIFAR-10 NAS-Bench-201 CIFAR-100 NAS-Bench-201 ImageNet-16-120

NAS-Bench-201 CIFAR-10

NAS-Bench-201 CIFAR-100

NAS-Bench-201 ImageNet-16-120

Figure 3: (a)-(c) Spearman’s ranking correlation ρ between pair of metrics and (e)-(f) the preference
for different operations on NAS-Bench-201. GT is the operation distribution of top architectures
ranked by test accuracy.

The jacob_cov metric takes gradient of model parameters into consideration, i.e., it focuses on
the backward propagation process. The NASGraph framework, on the other hand, considers the
forward propagation for each graph block. They are complementary to each other. Hence, Combining
avg_deg with jacob_cov leads to a higher ranking correlation. comb_rank is rank(avg_deg)
+ rank(jacob_cov). The frequency distribution of comb_rank is very close to GT as shown in
Figure 3 (e)-(g).

The relu_logdet metric exhibits the highest preference for convolution with small kernel
size while GT indicates the best neural architectures prefer convolution with large kernel size.
relu_logdet might have a problem when the search space A includes convolution with large

14

Under review as a conference paper at ICLR 2024

kernel size. ConvNeXt Liu et al. (2022) has shown the advantage of modern design using convolution
with large kernel size. fisher has the highest preference for none operation, and it has the lowest
correlation in the NAS-Bench-201.

A.4 OUTPUT COMBINATION FROM PRECEDING GRAPH BLOCKS

When there are multiple graph blocks connected to the same graph block, there are two ways to
combine the outputs from preceding graph blocks: summation and concatenation, as illustrated in the
middle of Figure 1. In the case of summation, we do the forward propagation for each channel of
all branches. In the case of concatenation, however, the outputs of the preceding graph blocks do
not match the input dimension of the current graph block. We add virtual channels to the outputs
of the preceding graph blocks such that the output dimension matches the input dimension, and
hence we can do the conversion in the block-wise fashion. We want to emphasize that the summation
or concatenation is determined by the original neural architecture. The graph block just combines
components in the neural architecture such as Conv and ReLU. w.l.o.g. we examine the case of
concatenation and the case of summation of two preceding graph blocks connecting to the l-th graph
block as shown in Figure 4. In the case of summation, two graph blocks connect to the l-th graph
block. The output of each graph block has 4 channels. The input of l-th graph block has 4 channels.
In the case of concatenation, two outputs from the preceding graph blocks have 2 channels while the
input of l-th graph block has 4 channels.

Summation The summation requires that outputs of the preceding graph blocks have the same
dimension as the input of the current graph block. We perform forward propagation for each channel
of the outputs of the preceding graph blocks. Hence, there are 8 forward propagations in the case
shown in Figure 4. Each forward propagation determines the scores between the “activated” channel
and all the output channels of l-th graph block.

Concatenation The concatenation requires that outputs of the preceding graph blocks have the
same dimension as the input of the current graph block except for the channel dimension, and the
summation of the channel size of the outputs of the preceding graph blocks equal to the channel size
of the input of the current graph block. Because we do the conversion in the block-wise fashion,
there will be dimension mismatch if we do forward propagation using the dimension of the preceding
outputs. So we add virtual channels to make sure two dimensions match. The number of added
channels is C(l) − C(l−1). In the case of Figure 4, two virtual channels are added for each input. We
do not activate “virtual channels” in any forward propagation, so there are 4 forward propagations in
total.

A.5 PARALLEL COMPUTING FOR GRAPH BLOCKS

The direct way to compute the weight of a graph edge is to do forward propagation as many times
as the number of input channels, and in this case, the batch size of the input is one. In other words,
to compute the score ωi(l−1)j(l) , the input M(l)

c ⊙ x(l) has the batch dimension of one. To enable
parallel computing of scores, we concatenate inputs for the same graph block on the batch dimension
[M(l)

1 ⊙ x(l), . . . ,M(l)
c ⊙ x(l)] so that scores can be computed independently and in parallel. The

batch size, under this condition, is equal to the input channel size. Using this approach, the batch
size dimension has a different meaning compared to the standard definition in batch normalization.
Moreover, the effective batch dimension is essentially one as we only use the same input x(l) to
determine scores. Therefore, during graph conversion, we remove batch normalization in the entire
neural architecture. For example, Conv-BN-ReLU becomes Conv-ReLU.

A.6 ALBATION STUDY

We use ablation study to analyze the effect of using surrogate models. There are two reducing factors:
(1) number of channels, (2) number of search cells within one module. The random search result
on NAS-Bench-201 is listed in Table 8 for the case N = 100 and N = 200. GT reports the highest
test accuracy of neural architectures within the selected subset in the random search process. In both
N = 100 and N = 200 cases, we do not find a significant variation of the performance of surrogate
models except for the efficiency. As we decrease the number of cells or number of channels, there is
a significant improvement in the efficiency. We use a grid routine to systematically study the effect

15

Under review as a conference paper at ICLR 2024

Concatenation

Summation

Graph block Graph block Graph block

Graph block Graph block Graph block

...

...

Figure 4: An illustration of converting one graph block of the neural architecture to subgraph in the
case of summation and concatenation. Channels in dashed line mean virtually concatenated channels.
These channels become zero matrix after applying a mask. Connection is established if the score
between two graph nodes is non-zero.

of number of channels and number of cells on the performance of the surrogate model. Figure 5
shows the effect of varying number of channels and number of cells within the same module on
NAS-Bench-201 using random search algorithm. The number of sampled architectures is 100 and
each search process is repeated for 100 times.

Number of channels Along x axis in Figure 5 shows the effect of varying the number of channels.
We find as the number of channels increase, the performance of the surrogate models either does not
change or improves. This is expected because decreasing the number of channels make the equivalent
neural architecture has less model complexity (number of model parameters decrease) compared to
the original one.

Number of cells Along y axis in Figure 5 shows the effect of changing the number of cells within a
module. We find there is no monotonous increase nor decrease in the performance as the number of
cells varies. We believe it is related to the way we bridge neural architecture space and graph space.
Because we convert neural architectures in the block-wise fashion and input is independent of other
graph blocks, the conversion of one graph block is independent of other graph blocks. Besides, the
cell structure is the same within the same module. Considering the cell structure that corresponds to a

16

Under review as a conference paper at ICLR 2024

subgraph, the module consisting of a linear stack of cell structures corresponds to a stack of identical
subgraphs. Therefore, graph measures using surrogate models that decrease the number of cells is
expected to not impose a significant effect on the graph measures, and hence rankings of the original
neural network models.

Overall, we find that there is no remarkable difference in the accuracies using the random search
algorithm. However, we can vastly boost the efficiency by the means of surrogate models. We choose
the surrogate model NASGraph(16, 1, 3) to compute graph measures on different NAS benchamrks.

Table 8: Comparison of different surrogate models on NAS-Bench-201. avg_deg is used as the
metric to score architectures. Reported results are averaged over 100 runs, and both mean values
and standard deviations are recorded. GT records the highest accuracies of the randomly sampled
architectures.

Method Time CIFAR-10 CIFAR-100 ImageNet-16-120
validation test validation test validation test

N = 100
NASGraph(1, 1, 3) 7.78 sec. 89.74± 0.77 89.53± 0.75 69.90± 1.38 70.01± 1.43 42.00± 2.80 40.73± 4.14
NASGraph(4, 1, 3) 19.23 sec. 89.91± 0.49 89.70± 0.52 70.05± 1.16 70.22± 1.18 42.60± 2.43 43.00± 2.42
NASGraph(8, 1, 3) 62.61 sec. 89.96± 0.46 89.74± 0.49 70.15± 1.01 70.28± 1.05 42.72± 2.33 43.15± 2.30

NASGraph(16, 1, 3) 106.18 sec. 89.95± 0.49 89.73± 0.52 70.17± 1.06 70.29± 1.10 42.72± 2.33 43.15± 2.29
NASGraph(1, 5, 3) 25.63 sec. 89.78± 0.64 89.58± 0.65 69.93± 1.23 70.06± 1.30 41.80± 2.66 42.22± 2.63
NASGraph(4, 5, 3) 89.68 sec. 89.84± 0.53 89.62± 0.55 69.88± 1.07 70.04± 1.13 42.22± 2.56 42.66± 2.56
NASGraph(8, 5, 3) 258.03 sec. 89.84± 0.52 89.62± 0.55 69.90± 1.07 70.07± 1.14 42.18± 2.57 42.65± 2.57

GT - 90.98± 0.36 90.77± 0.31 71.48± 0.86 71.69± 0.81 45.45± 0.67 45.74± 0.65
N = 200

NASGraph(1, 1, 3) 15.98 sec. 89.92± 0.61 89.69± 0.62 70.25± 1.20 70.42± 1.21 41.96± 2.44 42.48± 2.39
NASGraph(4, 1, 3) 61.60 sec. 89.95± 0.38 89.73± 0.42 70.17± 1.01 70.42± 0.99 42.25± 2.33 42.73± 2.32
NASGraph(8, 1, 3) 186.21 sec. 89.97± 0.37 89.74± 0.42 70.25± 0.89 70.47± 0.87 42.40± 2.11 42.87± 2.13

NASGraph(16, 1, 3) 217.21 sec. 89.96± 0.38 89.73± 0.43 70.22± 0.99 70.45± 0.98 42.27± 2.36 42.76± 2.36
NASGraph(1, 5, 3) 50.33 sec. 89.80± 0.59 89.61± 0.59 70.05± 1.15 70.18± 1.23 41.47± 2.50 41.97± 2.51
NASGraph(4, 5, 3) 196.08 sec. 89.89± 0.45 89.68± 0.49 70.05± 0.93 70.21± 1.05 41.91± 2.04 42.45± 2.05
NASGraph(8, 5, 3) 413.47 sec. 89.88± 0.45 89.66± 0.49 70.05± 0.95 70.23± 1.07 42.01± 2.07 42.53± 2.09

GT - 91.14± 0.25 90.91± 0.24 71.84± 0.76 72.04± 0.72 45.72± 0.54 46.01± 0.50

a b c

- c1- c2- c3- c4- c5
h1

 -h4
 -h8

 -h1
6 -

- c1- c2- c3- c4- c5

- c1- c2- c3- c4- c5

NAS-Bench-201 CIFAR-10 NAS-Bench-201 CIFAR-100 NAS-Bench-201 ImageNet-16-120

h1
 -h4

 -h8
 -h1

6 -

h1
 -h4

 -h8
 -h1

6 -

x
y

x
y

x
y

z z z

Figure 5: 3D-Bar chart for the reducing factors. The number of channels h and number of cells c
within a module change in the ablation study. We examine 4 different number of channels along the
x axis: h ∈ {1, 4, 8, 10} and 5 different number of cells along the y axis: c ∈ {1, 2, 3, 4, 5}. The z
axis is the test accuracies of neural architectures.

A.7 VARIATION IN RANKINGS USING DIFFERENT PARAMETER INITIALIZATION

Because the training-free NAS methods do a single forward/backward propagation on models with
randomly initialized parameters, it is potentially subjected to different random initialization. To
examine the variation in rankings due to different initialization of model parameters, we repeat the
computation of metrics for 8 times. Each time, a different initialization is used, and the initialization
follows normal distribution. We use the pair rank difference to indicate the variation in the rankings
for a pair of two random processes. The pair rank difference is defined by:

17

Under review as a conference paper at ICLR 2024

pair rank difference =

n∑
k=0

|ranki(ak)− rankj(ak)| (5)

where n is the total number of neural architectures, on NAS-Bench-201 benchmark, n = 15, 625.
ranki(ak) and rankj(ak) are the ranking of k-th architecture in the i-th and j-th random initialization
processes, respectively. Considering the computational overheads, we choose NASWOT, a NAS
method requires training dataset, to compute the variation in rankings in comparison with our method.
We use 8 random seeds and compute the pair rank difference. Figure 6 shows the pair rank difference
on NAS-Bench-201 and different datasets. Because our method is data-agnostic, it has the same mean
and standard deviation across different datasets. Our metric has a contiguously smaller variation in the
rankings of neural architectures. We believe one of the reasons is that the NASWOT method, or other
data-dependent NAS methods, has a random selection of minibatches and the random initialization
of model parameters. Our method, on the other hand, is not subjected to the random selection of
minibatches by using fixed inputs. When we compute ranking correlations between the performance
of neural architectures and graph measures, we find there is negligible difference among 8 random
initialization. So we believe that our method is not significantly subjected to the different random
initialization.

CIFAR-10
CIFAR-100

ImageNet-16-120

Data-Agnostic

Figure 6: The variation of the architecture rankings using relu_logdet and avg_deg as the
ranking metric. The mean value and standard deviation is calculated over 8 random seeds.

A.8 EVALUATION OF DIFFERENT GRAPH MEASURES ON NAS BENCHMARKS

In addition to average degree, we also examine other graph measures in the training-free NAS. Those
graph measures even exhibit a better performance than the average degree on some benchmarks.

Graph measures. After converting neural architectures to graphs G(V,E) (|V | = n and |E| = m)
using NASGraph, we compute four graph measures as new metrics to rank neural architectures in
NAS benchmarks, namely, average degree, density, resilience parameter, and wedge count. 1⃝ The
average degree k̄ calculates the average number of edges for one graph node. To compute the average
degree for a DAG, we ignore the direction of the graph edges. We have k̄ = 1

n

∑
i∈V ki, where ki

is the degree of node i. 2⃝ The density dG measures the ratio of the total number of edges to the
maximum number of possible edges, dG = m

n(n−1) . 3⃝ The resilience parameter βeff of a DAG Gao

et al. (2016) is defined by βeff = 1TAsin

1TA1
= ⟨soutsin⟩

⟨s⟩ , where 1 = (1, . . . , 1)T is the all-ones vector,
sin = (sin1 , . . . , sinn) is the vector of incoming degrees, and A is the adjacency matrix of the graph.
4⃝ The wedge count WG counts the number of wedges Gupta et al. (2014), and a wedge is defined as

a two-hop path in an undirected graph. It is related to the triangle density of an undirected graph. To
compute the wedge count of a DAG, we ignore the edge direction and use WG =

∑
i∈V

1
2ki(ki − 1).

Table 9 summarizes these graph measures and their computation complexity.

Figure 2 shows the evaluation on average degree and density. The ranking correlations for all 4 graph
measures (average degree k̄, density dG, resilience parameter βeff and wedge count WG) on NAS-
Bench-101 and NAS-Bench-201 are shown in Figure 7. The surrogate model we use is NASGraph(16,

18

Under review as a conference paper at ICLR 2024

Table 9: Definition and computation complexity of the four graph measures used in NASGraph.
Average degree Density Resilience parameter Gao et al. (2016) Wedge count Gupta et al. (2014)

Definition k̄ =
1

n

∑
i∈V

ki dG =
m

(n− 1)
βeff =

1TAsin

1TA1
WG =

∑
i∈V

(
ki
2

)
Time complexity O(m+ n) O(m+ n) O(n2 +m) O(m+ n)

1, 3). On NAS-Bench-101, density is the best graph measure. On NAS-Bench-201, average degree is
the best graph measure across different datasets. The ranking correlation for the same graph measure
does not change significantly across three datasets on NAS-Bench-201, indicating the good generality
of these graph measures. The average degree and density are correlated since they are all related
to the number of graph edges within a unit (total number of graph nodes or maximum number of
possible edges). On NAS-Bench-201, the difference in the ranking correlation between average
degree and density is marginal. However, the difference becomes larger on NAS-Bench-101. The
density essentially consider the graph G(V,E) as directed graph while the average degree take it as
undirected graph (since we remove directionality of the graph edge). As the NAS benchmark size
increases, considering G(V,E) as undirected graph might be inferior given the fact that information
flow in the neural architecture is directional and acyclic (Note: we are not discussing recurrent neural
networks in this paper).

Table 10: Comparison between the surrogate models NASGraph(16, 1, 3) and NASGraph(4, 5, 3)
across different benchmarks and datasets.

Methods Metric NAS-Bench-101 NAS-Bench-201
CIFAR-10 CIFAR-10 CIFAR-100 ImageNet-16-120

ρ τ ρ τ ρ τ ρ τ

NASGraph(4, 5, 3)†
density 0.50 0.35 0.75 0.56 0.77 0.57 0.75 0.55
avg_deg 0.38 0.27 0.76 0.57 0.78 0.58 0.76 0.56

resilience 0.34 0.23 0.74 0.54 0.75 0.55 0.73 0.53
wedge 0.34 0.24 0.76 0.57 0.78 0.58 0.76 0.56

NASGraph(16, 1, 3)

density 0.45 0.31 0.77 0.57 0.78 0.59 0.75 0.56
avg_deg 0.38 0.26 0.78 0.58 0.80 0.60 0.77 0.57

resilience 0.31 0.21 0.68 0.49 0.69 0.50 0.67 0.48
wedge 0.33 0.23 0.77 0.57 0.79 0.59 0.76 0.56

Optimal single metric 0.50 0.35 0.78 0.58 0.80 0.60 0.77 0.57

† Number of cells within one module is 3 on NAS-Bench-101 while 5 on NAS-Bench-201. Because we
only reduce the number channels, the surrogate model for NAS-Bench-101 is NASGraph(4, 3, 3) instead of
NASGraph(4, 5, 3) on NAS-Bench-201.

Table 11: Ranking correlations ρ between the validation accuracies and NASGraph metrics using
different surrogate models. Because the structure of modules and cells is encoded in the arch string
such as 64-41414-1_02_333 (we refer the reader to Duan et al. (2021) for details on the arch
string), we only change the number of channels.

Metric
Micro TransNAS-Bench-101

class_object class_scene room_layout segment_semantic
ρ τ ρ τ ρ τ ρ τ

4 Channels
avg_deg 0.56 0.39 0.71 0.51 0.38 0.25 0.67 0.48
density 0.54 0.37 0.68 0.49 0.37 0.24 0.60 0.43

resilience 0.62 0.44 0.75 0.55 0.47 0.31 0.33 0.23
wedge 0.60 0.42 0.74 0.54 0.43 0.28 0.68 0.49

16 Channels
avg_deg 0.55 0.38 0.70 0.50 0.37 0.24 0.66 0.47
density 0.53 0.36 0.68 0.48 0.35 0.22 0.55 0.39

resilience 0.62 0.43 0.74 0.54 0.47 0.31 0.34 0.24
wedge 0.59 0.41 0.74 0.54 0.42 0.27 0.68 0.49

As indicated in Figure 5, decreasing number of cells or number of channels does not cause a huge
effect on the rankings of graph measures. In addition to reduce the number of cells (the surrogate
model NASGraph(16, 1, 3)), we also examine the effect of reducing the number of channels (the
surrogate model NASGraph(4, 5, 3)). The comparison of the ranking correlation using different
surrogate models is shown in the Table 10. These two surrogate models, as expected, have a similar
ranking correlation across NAS-Bench-101 and NAS-Bench-201.

19

Under review as a conference paper at ICLR 2024

NAS-Bench-101 CIFAR-10

NAS-Bench-201 CIFAR-10

NAS-Bench-201 CIFAR-100

NAS-Bench-201 ImageNet-16-120

Figure 7: The ranking correlations between graph measures of the converted graphs and test ac-
curacy of the corresponding neural architectures on NAS-Bench-201. 3 graph measures (NAS-
Graph metrics) are examined: average degree (avg_deg), density (density), resilience parameter
(resilience) and wedge count (wedge).

In addition to these two benchmarks, we also examine the performance of different surrogate model
on TransNAS-Bench-101. Because the number of cells and modules are fixed in the arch string (the
way to represent neural architecture on the benchmark), we only change the number of channels.
Table 11 shows the evaluation of two surrogate models. There are only marginal difference between
two graph measures across three tasks.

Overall, as indicated in the ablation study, decreasing number of channels and decreasing number
of cells do not have a significant change in the rankings of graph measures. Based on graph theory,
decreasing number of cells is preferred.

20

Under review as a conference paper at ICLR 2024

A.9 COMBINATION OF TRAINING-FREE NAS METRICS

We combine graph measure with training-free NAS metrics (rank(avg_deg) + rank(jacob_cov))
to boost the ranking correlation between metrics and performance of neural architectures. Figure 8
shows the relationship between combined ranks and test accuracies across CIFAR-10, CIFAR-100
and ImageNet-16-120 datasets. We note that avg_deg is data-agnostic while jacob_cov is
data-dependent.

a b c

Figure 8: Combined rank (rank(avg_deg) + rank(jacob_cov)) of neural architectures of NAS-
Bench-201 vs test accuracy. (a) CIFAR-10. (b) CIFAR-100. (c) ImageNet-16-120.

A.10 RANDOM SEARCH IN NAS

Algorithm 1 shows the process of random search using a single metric. A total number of N neural
architectures are randomly sampled from the same NAS benchmark such as NAS-Bench-101. Metrics
are computed as the score by a single forward/backward propagation of neural architectures with
randomly initialized parameters. In the NASGraph framework, we convert neural architectures to
graphs and then compute graph measures such as average degree to rank neural architectures. The
performance, e.g. test accuracy, of the neural architecture with the highest graph measure is extracted
as the performance of the metric. The highest performance of the selected N architectures are used
as GT.

Algorithm 1 Random Search Algorithm Using Single Metric
1: net_generator = RandomGenerator()
2: score_highest, net_best = None, 0
3: for i = 1 : N do
4: net = net_generator.pick_net()
5: score = ComputeMetric(net)
6: if score > score_highest then
7: score_highest = score
8: net_best = net
9: end if

10: end for
11: acc_best = ExtractAccFromBenchmark(net_best)

A.11 CELL STRUCTURE

We visualize the best and the worst cell structures ranked by avg_deg on NAS-Bench-201 as shown
in Figure 9. Edge with none operation is not shown for better visualization. The best cell structure
found by our metric is same as synflow. The worst cell structures share a same feature: there is
an isolated node of cell structure. The isolated node in NAS-Bench-201 means extracted features
from preceding neural layers are disregarded, and the effective depth of neural architecture becomes
shallower. Therefore, it is expected those architectures have a poor performance.

21

Under review as a conference paper at ICLR 2024

1

2

nor_conv_1x1

3

nor_conv_1x1

nor_conv_3x3
0

nor_conv_3x3

nor_conv_3x3
nor_conv_3x3

1

2

nor_conv_3x3

3

nor_conv_3x3

nor_conv_3x3
0

nor_conv_3x3

nor_conv_3x3
nor_conv_3x3

1

2

nor_conv_3x3

3

nor_conv_1x1

nor_conv_3x3
0

nor_conv_3x3

nor_conv_3x3
nor_conv_3x3

1

2

nor_conv_1x1

3

nor_conv_3x3

nor_conv_3x3
0

nor_conv_3x3

nor_conv_3x3
nor_conv_3x3

1

2

nor_conv_3x3

3

nor_conv_3x3

nor_conv_1x1
0

nor_conv_3x3

nor_conv_3x3
nor_conv_3x3

1

2

nor_conv_3x3

3

skip_connect

nor_conv_3x3
0

nor_conv_3x3

nor_conv_3x3
nor_conv_3x3

1
2

avg_pool_3x3

0
avg_pool_3x3

3

1
2

avg_pool_3x3

0
skip_connect

3

Top architectures

Bottom architectures

1st Best 2nd Best

3rd Best 4th Best

1
2

skip_connect

0
skip_connect

3

1
3

avg_pool_3x3

2
avg_pool_3x3

0

1
2

skip_connect

0
avg_pool_3x3

3

1
3

skip_connect

2
avg_pool_3x3

0

5th Best 6th Best

1st Worst 2nd Worst 3rd Worst 4th Worst 5th Worst 6th Worst

Figure 9: The top 6 best and top 6 worst cell structures ranked by average degree of NASGraph on
NASBench-201. Architectures are ranked by the graph measure avg_deg.

A.12 SPECIAL NASGRAPHS

Figure 10 shows the visualization of the converted graphs using the surrogate model NASGraph(4, 3,
5) corresponding to the best architecture and the worst architecture (ranked by the test accuracy) in
NAS-Bench-101 and NAS-Bench-201. Instead of ranking architectures by the graph measures (as
the ranking metric in Figure 2), we rank architectures by the test accuracy. As indicated by graph
measures, the best graph is much denser compared to the worst graph.

Worst graph Best graph Worst graph Best graph

NAS-Bench-101 NAS-Bench-201
a b c d

Figure 10: The converted graphs corresponding to the best architecture and the worst architecture on
NAS-Bench-101 and NAS-Bench-201. Architectures are ranked by the test accuracy.

22

Under review as a conference paper at ICLR 2024

A.13 COMPARISON TO TRAINING-BASED METHOD

We compare the total time of obtaining the performance of the optimal architecture with BONAS Shi
et al. (2020), a training-based method. We use NAS-Bench-201 as our search space. The training time
is estimated by the total number of evaluated architectures times the training time for one architecture.
The accuracy is the highest test accuracy of the searched architectures. The result is shown in Figure
11. When the time limit for the searching and training is limited, our method (training-free) shows the
better performance. If there is no time limit, the training-based method shows superior performance.

0 10 20 30 40 50 60

90

90.5

91

91.5

Total time (GPU hours)

A
cc
u
ra
cy

BONAS Ours

Figure 11: The comparison of total time to BONAS Shi et al. (2020).

23

