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A Proof of Proposition 1

Proposition 1. We can use a recurrent relation to compute δj [t] given by

δj [t] =

{
αnδj [t+ n], if dSj [k]

dVj [k]
=0, for t+1≤k≤ t+n

∇Sj [t+1]
dSj [t+1]
dVj [t+1]+αnδj [t+n], if dSj [k]

dVj [k]
=0, for t+1<k≤ t+n,

dSj [t+1]
dVj [t+1] ̸=0

(15)

Proof. The proof follows directly from the definition of δj [t].

For the first case we have

δj [t] =
∑
k>t

∇Sj [k]
dSj [k]

dVj [k]
αk−t−1

= ∇Sj [t+ 1]
dSj [t+ 1]

dVj [t+ 1]
α0 + Sj [t+ 2]

dSj [t+ 2]

dVj [t+ 2]
α1 + . . .+∇Sj [t+ n]

dSj [t+ n]

dVj [t+ n]
αn−1

+∇Sj [t+ n+ 1]
dSj [t+ n+ 1]

dVj [t+ n+ 1]
αn + . . .

= ∇Sj [t+ 1]
dSj [t+ 1]

dVj [t+ 1]
α0 + Sj [t+ 2]

dSj [t+ 2]

dVj [t+ 2]
α1 + . . .+∇Sj [t+ n]

dSj [t+ n]

dVj [t+ n]
αn−1

+
∑

k>t+n

∇Sj [k]
dSj [k]

dVj [k]
αk−t−1

= αn
∑

k>t+n

∇Sj [k]
dSj [k]

dVj [k]
αk−(t+n)−1

= αnδj [t+ n]

where the penultimate equality holds from the condition dSj [k]
dVj [k]

=0, for t+1≤k≤ t+n

The proof of the second case is identical except that now the term ∇Sj [t+1]
dSj [t+1]
dVj [t+1] will be non-zero.

B Complexity analysis

For clarity, we consider that all layers have the same number N of neurons. The weight gradient is
given by

∇W
(l)
ij =

∑
t

∇S
(l+1)
j [t]

dS
(l+1)
j [t]

dV
(l+1)
j [t]

(∑
k<t

αt−k−1S
(l)
i [t]

)

Since the trace
(∑

k<t α
t−k−1S

(l)
i [t]

)
has been compated in the forward pass, then computing

∇W
(l)
ij requires doing a total of T products and T −1 sums per element in W per batch. Thus

resulting in O(BTN2) products and O(BTN2) sums. In the sparse case instead of T we have on
average ρl+1T products and ρl+1(T−1) sums resulting in a total of O(ρl+1BTN2) products and
O(ρl+1BTN2) sums.
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The spikes gradient is given by

∇S
(l)
i [t] =

∑
j

Wij

∑
k>t

∇S
(l+1)
j [t]

dS
(l+1)
j [t]

dV
(l+1)
j [t]

αk−t−1


=
∑
j

Wijδ
(l+1)
j [t]

This gradient is obtained by doing the matrix product between W ∈ RN×N and δ(l+1) ∈ RN×T

per batch. This gives a total of O(BN2T ) products and sums. In the sparse case we only need to
compute a fraction ρl of the entries in ∇S(l) thus a total of O(ρlBN2T ) products and sums.

There are two main ways of computing δ(l+1). The naive way requires doing O(NT 2) products and
O(NT 2) sums by computing all values with k > t for a given t every time. Alternatively, we can
use memoisation to store all values already computed resulting in just O(NT ) products and O(NT )
sums per batch. Thus resulting in O(BNT ) products and sums. In the sparse case, the worst case
scenario is when the active times of layers l and l+1 are completely disjoint as we show in Appendix
C. Meaning we have to compute O((ρl+ρl+1)BNT 2) products and sums without memoisation or
O((ρl+ρl+1)BNT ) with memoisation.

Overall we get that if we do not use memoisation for computing ∇S(l) then we do O(B(NT 2 +
N2T )) sums and products and O(B((ρl+1+ρl)NT 2 + ρl+1N

2T ) in the sparse case. With memoi-
sation we do O(BN2T ) and O(ρl+1BN2T ) in the sparse case.

C Visualisation of δj[t] computation

Given a presynaptic neuron i and postsynaptic neuron j we need to compute the gradient

∇Si[t] =
∑
j

Wij

∑
k>t

∇Sj [t]
dSj [t]

dVj [t]
αk−t−1


=
∑
j

Wijδj [t]

We first note that ∇Si[t] is always multiplied by dSi[t]
dVi[t]

either in the weight gradient equation (5) or in

the spike gradient equation (6). Thus, we only need ∇Si[t] at those times at which dSi[t]
dVj [t]

̸=0.

Secondly, according to Proposition 1 δj [t] is only modified beyond an attenuation factor of αn at
those times when dSj [t]

dVj [t]
̸=0.

We define

ti = {t : dSi[t]

dVi[t]
̸= 0} The times we need to compute the gradient of the presynaptic neuron i

tj = {t : dSj [t]

dVj [t]
̸= 0} The times that affect δj beyond αn attenuation

Both sets of times are known by the time we compute the gradients since they are simply the times at
which neurons i and j were active.

The following example shows how the computation of δj [t] would take place using Proposition 1.
We note that we only need to write the result in global memory at times ti. Consequently, once we
have all ti we can simply stop the computation
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𝑡𝑗

𝑡𝑖

𝑡

δj [7] =
dSj [8]

dVj [8]
Compute

δj [6] = αδj [7] Compute and write

δj [5] =
dSj [6]

dVj [6]
+ αδj [6] Compute and write

δj [3] = α2δj [5] Compute and write

δj [2] =
dSj [3]

dVj [3]
+ αδj [3] Not required

δj [0] =
dSj [1]

dVj [1]
+ α2δj [2] Not required

Thus, in the worse case scenario where sets ti and tj are disjoint instead of doing T updates we only
do |ti|+ |tj | updates.

D Visualisation of input data

Visualisation of several of one sample per dataset to provide and intuitive idea of the level of sparsity
of the data.
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Figure 6: Visulization of a sample of the Fashion-MNIST dataset converted into spike times. Left:
Front view. Right: Side view
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Figure 7: Visulization of a sample of the Neuromorphic-MNIST dataset. Top: Front view. Bottom:
Side view

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

0

200

400

600

Ne
ur

on
 in

de
x

SHD: seven

Figure 8: Visulization of a sample of the Spiking Heidelberg Digits dataset.
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E Training details

E.1 Conversion of Fashion-MNIST to spike latencies

We convert the normalised analog grayscale pixel values xi of the Fashion-MNIST samples [44] to
spike times in a similar way to that used in [38]. Specifically, we convert the normalised intensities
into spike times following

T (x) =

{
τeff log

(
x

x−θ

)
, x > θ

∞, otherwise

E.2 Spiking neuron model

We use the simplified Leaky Integrate and Fire model which is a variation on the standard Leaky
Integrate and Fire model in which spikes are directly integrated in the membrane without being
filtered by beforehand. The membrane potential evolves according to

τ
dV

(l+1)
j (t)

dt
= −(V

(l+1)
j (t)− Vrest) + τ

∑
i

S
(l)
i [t]W

(l)
ij (16)

The membrane potential resets to Vr as soon as it reaches a threshold Vth. The model keeps the main
features of a spiking model, namely, a membrane potential that varies according to the incoming
input spikes and synaptic weights, a leaky component that draws the potential towards Vrest and
spiking and resetting mechanisms.

We use a discretised version of the model as in Equation (2) that we repeat here

V
(l+1)
j [t+1] = −α(V

(l+1)
j [t]− Vrest) +

∑
i

S
(l)
i [t]W

(l)
ij − (Vth − Vr)S

(l+1)
j [t] (17)

where we define α = exp(−∆t/τ). Spiking then takes place by applying f(·) on the membrane
potential

S
(l+1)
j [t+1] = f(V

(l+1)
j [t+1]) (18)

which is defined as a unit step function centered at the threshold Vth

f(v) =

{
1, v > Vth

0, otherwise
(19)

Thus, given an input spikes tensor S(l)∈{0, 1}B×T×N(l)

(B being the batch size T number of time
steps and N (l) number of neurons in layer l) and weights W (l)∈RN(l)×N(l+1)

we obtain the output
spikes S(l+1)∈{0, 1}B×T×N(l+1)

by applying (17), (18), (19).

E.3 Network and weight initialisation

All layers are feed-forward fully connected in all experiments unless otherwise specified. The
weights were sampled from a uniform distribution U(−

√
N,

√
N) where N is the number of input

connections to the layer. In all experiments we have an input layer, two hidden layers with the same
number of neurons and a readout layer with as many neurons as output classes for the given dataset.
The readout layer neurons are identical to the hidden layers except in the firing threshold which we
set to infinity.

In the convolutional layer experiment, the first layer was a convolutional spiking layer with 64 filters,
kernel size of 3 and stride of 1, followed by a max pool layer with kernel size of 2 and then flattened
into a linear layer of 12544 inputs and 10 outputs.
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E.4 Supervised and regularisation losses

We have a loss composed of three terms: cross entropy loss, higher activity regularisation and lower
activity regularisation. The cross entropy loss is defined as

Lcross =
1

B

B∑
b=1

C∑
c=1

yb,c log(pb,c)

With yb,c∈{0, 1}C being a one hot target vector for batch sample b given a total batch size B and a
total number of classes C. The probabilities pb,c are obtained using the Softmax function

pb,c =
eab,c∑C
c=1 e

ab,c

Here, the logits ab,c∈RB×C are obtained by taking the max over the time dimension on the readout
layer membrane potential ab,c = maxt V

(L−1)
b,c [t]. For the SHD dataset we used ab,c =

∑
t V

(L−1)
b,c [t]

We also use two regularisation terms to constrain the spiking activity. These terms have been shown to
not degrade the network performance [38]. First, we use a lower activity penalty to promote activity
in the hidden layers.

Llow
b = −λlow

N (l)

N(l)∑
i

(
max(0, νlow − ζ

(l)
b,i )
)2

Here ζ
(l)
b,i =

∑
t S

l
b,i[t] is the spike count of neuron i in layer l and batch sample b.

Secondly, the upper activity loss is added to prevent neurons to spike too often.

Lup
b = −λup max

0,
1

N (l)

N(l)∑
i

ζ
(l)
b,i − νup


Finally the overall loss is obtained

L = Lcross +
1

B

B∑
b=1

(
Llow
b + Lup

b

)
E.5 Surrogate gradient

We use the following function as the surrogate derivate of the firing function defined in (19).

df(x)

dx
= g(x) =

1

(β|x− Vth|+ 1)2

In the sparse case we use

df(x)

dx
=

{
g(x), if |x− Vth| < Bth

0, otherwise
(20)
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E.6 Parameters

Here we summarise all parameters used in each dataset.

F-MNIST N-MNIST SHD

Number of Input Neurons 784 1156 700
Number of Hidden 200 200 200
Number of classes 10 10 20
Number epochs 100 100 200
B 256 256 256
T 100 300 500
∆t 1ms 1ms 2ms
τ hidden 10ms 10ms 10ms
τ readout 10ms 10ms 20ms
τeff 20ms N/A N/A
θ 0.2 N/A N/A
Vr 0 0 0
Vrest 0 0 0
Vth 1 1 1
Bth 0.2 0.2 0.2
β 100 100 100
Optimiser Adam Adam Adam
Learning Rate 0.0002 0.0002 0.001
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
λ(low) 100 100 100
ν(low) 0.001 0.001 0.001
λ(up) 0.06 0.06 0.06
ν(up) 1 1 10

Table 3: Network and training parameters
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F Other results

F.1 Average activity for varying number of hidden neurons
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Figure 9: Average percentage of active neurons during training for each dataset and varying number
of neurons (5 samples)

F.2 Loss evolution for all datasets
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Figure 10: Loss for each dataset when using 200 hidden neurons (5 samples)
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F.3 Forward times
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Figure 11: Forward time for each dataset when using 200 hidden neurons (5 samples)
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Figure 12: Average forward time for each dataset and varying number of neurons (5 samples)

F.4 Backward times
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Figure 13: Backward time for each dataset when using 200 hidden neurons (5 samples)
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Figure 14: Average backward time for each dataset and varying number of neurons (5 samples)
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F.5 Forward memory
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Figure 15: Forward memory for each dataset when using 200 hidden neurons (5 samples)
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Figure 16: Average forward memory time for each dataset and varying number of neurons (5 samples)

F.6 Backward memory
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Figure 17: Backward memory for each dataset when using 200 hidden neurons (5 samples)
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Figure 18: Average backward memory for each dataset and varying number of neurons (5 samples)
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F.7 Memory saved
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Figure 19: Average memory saved according to (14) for each dataset and varying number of neurons
(5 samples)

F.8 Results on different GPUs

Note that some entries are missing due to the GPU running out of memory.
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Figure 20: Backward speedup, overall layer speedup and backward memory memory saved on an
NVIDIA GeForce GTX 1060

200 400 600 800 1000
Number neurons in hidden layers

1x

10x

100x

Sp
ee

du
p

Backward Speedup (GPU: 1080ti)
F-MNIST
N-MNIST
SHD

200 400 600 800 1000
Number neurons in hidden layers

1x

10x
Overall Speedup (GPU: 1080ti)

F-MNIST
N-MNIST
SHD

200 400 600 800 1000
Number neurons in hidden layers

0

10

20

30

M
em

or
y 

sa
ve

 (%
)

Backward memory saved (GPU: 1080ti)

Figure 21: Backward speedup, overall layer speedup and backward memory memory saved on an
NVIDIA GeForce GTX 1080 Ti
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G Results on 5 hidden layers network
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Figure 22: Loss history and layer activities when training on Fashion-MNIST with 5 hidden layers
with 300 neurons each

H Weight gradient difference and relative error

We show here the difference between the original weight gradient and that obtained from our method
as well as its relative error. We like to note that the original gradient is not necessarily more accurate
than the sparse one as surrogate gradient training results in approximated gradients. Thus, it is not a
ground truth gradient and the real test is done by showing that our method achieves the same or better
loss and testing accuracy.
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Figure 23: Difference between the weight gradients displayed in 3. The maximum relative error
between two individual weights is 10.6%
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