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1 IMPLEMENTATION DETAILS

1.1 Loss Function in Section 4.2

Contrastive Losses. We adopted the foundational set of losses
basing on [5], which are expressed as the weighted sum of 4 losses
Leon = Lr + Mk Lrr + Ap Li + ANceLNCE-

More specifically,

Lr = L(Hip, HY) + £ (Hyp, HL ) (1)

Lx =KL(¢T, M) + KL(pM, ¢T)

2
+KL(¢T,y) + KL(M, y). @
Lp = 2 (27, M. 3)
__ 1 exp Sii/T exp Sii/T
Lnce = - IN Zl: (log S, exp S/ 3, expSyilt) (4)

Reconstruction loss L quantifies the accuracy of motion recon-
struction from text or motion inputs using a smooth L1 loss. The
Kullback-Leibler (KL) divergence loss Lxi, includes four compo-
nents: two to regularize each encoded distribution—N| M, =M for
motion and N uT, 3T for text—to align with a standard normal dis-
tribution N( 0,I). The other two components enforce distributional
similarity across the two modalities. A cross-modal embedding
similarity loss £ mandates that the latent codes for text z/ and
motion z™ exhibit similarity (utilizing a smooth L1 loss). Addi-
tionally, a contrastive loss £Ncg leverages negative motion-text
pairs to enhance the structuring of the latent space, where 7 is the
temperature hyperparameter and S denotes for similarity.

The coefficients Ay, and Ag were set to 10™°, and Ancg to 107!
in our experiments, consistent with the settings in [5].

1.2 Model Training Details in Section 4.3

During this training stage, the pre-trained model components are
frozen. To ensure feature consistency, we consistently use implicit
labeling, regardless of whether the current ground-truth motion
has a corresponding text label. Audio signals are set to zero in
the absence of input, and are randomly masked during training to
implement classifier-free guidance.

1.3 Model Inference

In the actual inference process, users may enter text prompts that
specify control over multiple body parts, such as "a person is sit-
ting and raising their left hand." It is challenging for the model to
automatically determine which body parts need to be controlled
while avoiding unnecessary manipulation of other parts, often re-
sulting in awkward generative outcomes [2]. To address this, in
our separate-then-combine strategy, we use an effective method

for part-wise control. We preprocess the prompt using a language
model (T5X-Large), which deconstructs the prompt into multiple
sub-prompts targeting individual body parts. Part-wise blending
is then applied based on the presence of a sub-prompt for each
body part; in the absence of a sub-prompt, the part-wise blend-
ing mechanism effectively zeroes out the text feature for that part.
This approach also allows users to manually assign text prompts
to specific body parts, enabling more precise and granular control.
In addition, during the blending process of inference signals, simi-
lar to many works using classifier-free guidance [6, 7], our model
supports a finer-grained control by manually manipulating the
part-wise blending weights to control the intensity of the signal.

In evaluating single-modality signal metrics, we apply a single-
source condition for fairness, omitting our proposed separate-then-
combine strategy. For the quantitative assessment of speech-to-
motion generation, we use the test set division from EMAGE [4],
the speech-to-motion dataset employed. During this evaluation,
part-wise blending is solely conditioned on the audio signal. For
the quantitative assessment of text-to-motion results, we follow
the test set division of HumanML3D [3]. Here, part-wise blending
is solely conditioned on the text signal.

1.4 Implementation of Baselines in Section 6.3

Baselines in Table 1. For MDM [6] and T2M-GPT [9] due to the
inherent seeding in our method, for a fair comparison during testing,
with the MDM method, we infer 128 frames at once, incorporating
the first 16 frames into the inference process via inpainting. For the
T2M-GPT method, we treat the first four tokens as known and allow
the model to autoregressively generate the subsequent tokens.

Baselines in Table 2. We directly report their results shown
in their original papers. Since the original results are without vari-
ances, we keep this tradition in the table.

2 ADDITIONAL EXPERIMENTAL RESULTS
2.1 More Results for Main Paper Figure 4 and 5

To compensate main paper Figure 4, we provide more results of
full-body synergistic generation in Figure 1, which illustrates the
idealized generation quality of our methods under various of audio
and prompt conditions. Furthermore, to compensate main paper
Figure 5, we provide more results of ablation study in Figure 2,
showing that the ablation results are solid so that our training and
inference components are solid.

2.2 Comparison with FreeTalker and
GestureDiffuCLIP
FreeTalker

FreeTalker [8] is a neural model designed to perform audio-to-
motion and text-to-motion tasks simultaneously within the same
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network. We experimented with feeding both speech and text in-
puts to the model simultaneously during inference. As shown in
Figure 4, the model fails to generate synergistic co-speech motion
when receiving both conditions simultaneously. This highlights
that training the model directly for audio-to-motion and text-to-
motion tasks does not automatically enable it to produce synergistic
results under dual conditions.
GestureDiffuCLIP

GestureDiffuCLIP [1] enables users to control the style of gen-
erated co-speech motion using text prompts. To illustrate the fun-
damental difference between our synergistic co-speech motion
generation and text-based style control, we conducted a simple
comparison shown in Figures 3. As the authors did not release the
source code, we re-implemented the model for this comparison.
As depicted in the figures, under the textual prompts "A person is
sitting while talking" and "A person kneels down while talking,'
our results (left) accurately follow the prompts, while GestureD-
iffuCLIP’s (right) only shows a tendency to squat, underscoring
the fundamental difference between text-based style control and
text-based motion control.
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Figure 1: More results for main paper Figure 4 (full-body synergistic generation).
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Figure 2: More results for main paper Figure 5 (ablation study)
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Figure 3: Qualitative comparison with GestureDiffuCLIP conditioned on audio and text features simultaneously.
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Figure 4: Qualitative results of FreeTalker conditioned on audio and text features simultaneously
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