
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: Enabling Synergistic Full-Body Control
in Prompt-Based Co-Speech Motion Generation

Anonymous Authors

1 IMPLEMENTATION DETAILS
1.1 Loss Function in Section 4.2
Contrastive Losses. We adopted the foundational set of losses
basing on [5], which are expressed as the weighted sum of 4 losses
LCON = LR + 𝜆KLLKL + 𝜆ELE + 𝜆NCELNCE.

More specifically,

LR = ℒ1 (𝐻1:𝐹 , 𝐻
𝑀
1:𝐹 ) +ℒ1 (𝐻1:𝐹 , 𝐻

𝑇
1:𝐹 ) (1)

LKL = KL(𝜙𝑇 , 𝜙𝑀 ) + KL(𝜙𝑀 , 𝜙𝑇 )

+ KL(𝜙𝑇 ,𝜓 ) + KL(𝜙𝑀 ,𝜓 ) .
(2)

LE = ℒ1 (𝑧𝑇 , 𝑧𝑀 ) . (3)

LNCE = − 1
2𝑁

∑︁
𝑖

(
log

exp𝑆𝑖𝑖/𝜏∑
𝑗 exp𝑆𝑖 𝑗 /𝜏

+ log
exp𝑆𝑖𝑖/𝜏∑
𝑗 exp𝑆 𝑗𝑖/𝜏

)
, (4)

Reconstruction loss LR quantifies the accuracy of motion recon-
struction from text or motion inputs using a smooth L1 loss. The
Kullback-Leibler (KL) divergence loss LKL includes four compo-
nents: two to regularize each encoded distribution—N(𝜇

𝑀 , Σ𝑀 ) for
motion andN(𝜇

𝑇 , Σ𝑇 ) for text—to align with a standard normal dis-
tribution N(0, 𝐼 ). The other two components enforce distributional
similarity across the two modalities. A cross-modal embedding
similarity loss LE mandates that the latent codes for text 𝑧𝑇 and
motion 𝑧𝑀 exhibit similarity (utilizing a smooth L1 loss). Addi-
tionally, a contrastive loss LNCE leverages negative motion-text
pairs to enhance the structuring of the latent space, where 𝜏 is the
temperature hyperparameter and 𝑆 denotes for similarity.

The coefficients 𝜆KL and 𝜆E were set to 10−5, and 𝜆NCE to 10−1
in our experiments, consistent with the settings in [5].

1.2 Model Training Details in Section 4.3
During this training stage, the pre-trained model components are
frozen. To ensure feature consistency, we consistently use implicit
labeling, regardless of whether the current ground-truth motion
has a corresponding text label. Audio signals are set to zero in
the absence of input, and are randomly masked during training to
implement classifier-free guidance.

1.3 Model Inference
In the actual inference process, users may enter text prompts that
specify control over multiple body parts, such as "a person is sit-
ting and raising their left hand." It is challenging for the model to
automatically determine which body parts need to be controlled
while avoiding unnecessary manipulation of other parts, often re-
sulting in awkward generative outcomes [2]. To address this, in
our separate-then-combine strategy, we use an effective method

for part-wise control. We preprocess the prompt using a language
model (T5X-Large), which deconstructs the prompt into multiple
sub-prompts targeting individual body parts. Part-wise blending
is then applied based on the presence of a sub-prompt for each
body part; in the absence of a sub-prompt, the part-wise blend-
ing mechanism effectively zeroes out the text feature for that part.
This approach also allows users to manually assign text prompts
to specific body parts, enabling more precise and granular control.
In addition, during the blending process of inference signals, simi-
lar to many works using classifier-free guidance [6, 7], our model
supports a finer-grained control by manually manipulating the
part-wise blending weights to control the intensity of the signal.

In evaluating single-modality signal metrics, we apply a single-
source condition for fairness, omitting our proposed separate-then-
combine strategy. For the quantitative assessment of speech-to-
motion generation, we use the test set division from EMAGE [4],
the speech-to-motion dataset employed. During this evaluation,
part-wise blending is solely conditioned on the audio signal. For
the quantitative assessment of text-to-motion results, we follow
the test set division of HumanML3D [3]. Here, part-wise blending
is solely conditioned on the text signal.

1.4 Implementation of Baselines in Section 6.3
Baselines in Table 1. For MDM [6] and T2M-GPT [9] due to the
inherent seeding in ourmethod, for a fair comparison during testing,
with the MDM method, we infer 128 frames at once, incorporating
the first 16 frames into the inference process via inpainting. For the
T2M-GPTmethod, we treat the first four tokens as known and allow
the model to autoregressively generate the subsequent tokens.

Baselines in Table 2. We directly report their results shown
in their original papers. Since the original results are without vari-
ances, we keep this tradition in the table.

2 ADDITIONAL EXPERIMENTAL RESULTS
2.1 More Results for Main Paper Figure 4 and 5
To compensate main paper Figure 4, we provide more results of
full-body synergistic generation in Figure 1, which illustrates the
idealized generation quality of our methods under various of audio
and prompt conditions. Furthermore, to compensate main paper
Figure 5, we provide more results of ablation study in Figure 2,
showing that the ablation results are solid so that our training and
inference components are solid.

2.2 Comparison with FreeTalker and
GestureDiffuCLIP

FreeTalker
FreeTalker [8] is a neural model designed to perform audio-to-

motion and text-to-motion tasks simultaneously within the same
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network. We experimented with feeding both speech and text in-
puts to the model simultaneously during inference. As shown in
Figure 4, the model fails to generate synergistic co-speech motion
when receiving both conditions simultaneously. This highlights
that training the model directly for audio-to-motion and text-to-
motion tasks does not automatically enable it to produce synergistic
results under dual conditions.
GestureDiffuCLIP

GestureDiffuCLIP [1] enables users to control the style of gen-
erated co-speech motion using text prompts. To illustrate the fun-
damental difference between our synergistic co-speech motion
generation and text-based style control, we conducted a simple
comparison shown in Figures 3. As the authors did not release the
source code, we re-implemented the model for this comparison.
As depicted in the figures, under the textual prompts "A person is
sitting while talking" and "A person kneels down while talking,"
our results (left) accurately follow the prompts, while GestureD-
iffuCLIP’s (right) only shows a tendency to squat, underscoring
the fundamental difference between text-based style control and
text-based motion control.
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... try my best to find them...

... I imagine this place in my...

Prompt: A person sits and raises up right hands while talking 

Prompt: A person sits and raises up left hands while talking 

... here at a bus station...

... there was another time...

Prompt: A person holds a cup of tea in left hand while talking 

Prompt: A person sides lunge forward while talking 

Prompt: A man kneels down while talking 

Prompt: A man mimics like zombie while talking 

... in dangerous situations ...

... this horrible because a ...

... we can use different angle ...

... want to become journalist ...

Prompt: A person raises up left hand down while talking 

Prompt: A person raises up right hand down while talking 

... as a result of my success...

... the main reason was you...

Prompt: A person stands on left foot while talking 

Prompt: A person stands on right foot while talking 

... we went to the main park...

...all hope for a bright future...

Prompt: A person sits and holds a cup of tea in the left hand while talking 

Prompt: A person sits and holds a cup of tea in the right hand while talking 

Figure 1: More results for main paper Figure 4 (full-body synergistic generation).
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Prompt: A man kneels down while talking 

Prompt: A man mimics like zombie while talking 

w/o align w/o separate-then-combine w/o mo.rep.SynTalker

SynTalker w/o align w/o separate-then-combine w/o mo.rep.

Prompt: A person raises up left hand down while talking 

Prompt: A person raises up right hand while talking 

w/o align w/o separate-then-combine w/o mo.rep.SynTalker

SynTalker w/o align w/o separate-then-combine w/o mo.rep.

Prompt: A person stands on left foot while talking 

Prompt: A person stands on right foot while talking 

w/o align w/o separate-then-combine w/o mo.rep.SynTalker

SynTalker w/o align w/o separate-then-combine w/o mo.rep.

Prompt: A person sits and holds a cup of tea in the left hand while talking 

Prompt: A person sits and holds a cup of tea in the right hand  while talking 

w/o align w/o separate-then-combine w/o mo.rep.SynTalker

SynTalker w/o align w/o separate-then-combine w/o mo.rep.

Prompt: A person holds a cup of tea in left hand while talking 

Prompt: A person sides lunge forward while talking 

w/o align w/o separate-then-combine w/o mo.rep.SynTalker

SynTalker w/o align w/o separate-then-combine w/o mo.rep.

Prompt: A person sits and raises up right hands while talking 

Prompt: A person sits and raises up left hands while talking 

w/o align w/o separate-then-combine w/o mo.rep.SynTalker

SynTalker w/o align w/o separate-then-combine w/o mo.rep.

Figure 2: More results for main paper Figure 5 (ablation study)
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Figure 3: Qualitative comparison with GestureDiffuCLIP conditioned on audio and text features simultaneously.

Figure 4: Qualitative results of FreeTalker conditioned on audio and text features simultaneously
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