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SUPPLEMENTARY MATERIAL

In this supplementary document, we provide further experimental results, including a qualitative
comparison with GARField (Kim et al., 2024), more results on scene manipulation and sparse view
setting in Sec. B. We then delve into more experimental details of the datasets, metrics and imple-
mentation in Sec. C. More ablation studies are shown in Sec. D and limitations are discussed in
Sec. E.

A SUPPLEMENTARY VIDEO

Please watch the supplementary demo video for a comprehensive introduction and visual compar-
ison between our method Gaga and the current state-of-the-art methods. The video features addi-
tional qualitative comparisons and an animation illustration of Gaga.

B SUPPLEMENTARY EXPERIMENTAL RESULTS

B.1 ADDITIONAL RESULTS COMPARED WITH GARFIELD

We provide comparison results with GARField in Fig. 1. GARField follows a hierarchical grouping
pipeline. It extracts densely sampled segmentation masks from SAM (Kirillov et al., 2023) and
trains a feature field using contrastive loss for grouping. If two rays fall into the same SAM mask,
their features will be pulled together. Otherwise, features are pushed apart.

We use the default setting to train GARField. For a fair comparison, Gaga also uses the 2D segmen-
tation masks provided by SAM. Visualization results show that Gaga provides segmentation masks

RGB

Segmentation

GARField Gaga

Figure 1: Qualitative comparison with GARField on Replica dataset. Gaga renders higher-
quality RGB and segmentation masks in significantly less time. It’s worth noting that in the seg-
mentation masks generated by GARField, the same colors are used multiple times for different
masks, meaning one mask label may contain multiple groups representing different 3D instances.
This is because, essentially, GARField performs a clustering task rather than a segmentation task.
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Before Editing Gaussian Grouping Gaga Before Editing Gaussian Grouping Gaga

Task: Change the color of flowerpot to cyan, duplicate the glass jar Task: Change the color duck to blue, remove the red toy chair

Figure 2: Scene manipulation results on MipNeRF 360 and LERF-Mask dataset. Gaga accu-
rately identifies the flowerpot without affecting the color of the plant. Notice that Gaussian Group-
ing (Ye et al., 2024) creates a cyan region on the wooden door behind. For the object removal and
duplication tasks, Gaga can also provide more accurate results with fewer artifacts.

with better quality and multi-view consistency. Whereas GARField does not provide multi-view
consistent segmentation, and they also have inferior RGB rendering results.

After training, GARField employs a hierarchical grouping pipeline to cluster each pixel into groups
and generate segmentation masks. This hierarchical structure comprises 41 levels, and it takes ap-
proximately 20 minutes to output a segmentation mask for a single image. In contrast, Gaga renders
a segmentation mask in under 0.5 seconds.

B.2 ADDITIONAL RESULTS ON SCENE MANIPULATION

Gaga can accurately segment the Gaussians of a 3D object and edit their properties. Using a pre-
trained 3D Gaussian model with identity encoding, we employ the classifier trained with identity
encoding to predict mask labels for each 3D Gaussian. Subsequently, we select 3D Gaussians shar-
ing the same mask label as the target object and edit their properties for tasks like object coloring,
removal, and position translation.

We provide additional results for the downstream scene manipulation task to further demonstrate
the prospect of applying Gaga to real-world scenarios. On the ”counter” scene of the MipNeRF 360
dataset (Barron et al., 2021), we change the color of the flowerpot to cyan and duplicate the glass
jar. Gaussian Grouping (Ye et al., 2024) can not differentiate the plant and flowerpot, whereas Gaga
generates a more accurate segmentation mask. Additionally, Gaga produces a clearer boundary and
avoids artifacts on the iron tray when duplicating the glass jar.

In the ”figurines” scene of the LERF-Mask dataset (Ye et al., 2024), we transform the yellow duck
to blue and remove the red toy chair. Gaga precisely changes only the duck’s color without affecting
other objects, and achieves a more thorough removal of the red toy chair.

B.3 ADDITIONAL RESULTS ON SPARSELY SAMPLED REPLICA DATASET

We provide additional qualitative results for the experiment on the sparsely sampled replica dataset
in Fig. 3. As the number of training images decreases, Gaussian Grouping produces more empty
regions, e.g. the sofa, due to difficulties in accurate tracking under sparse views. Whereas Gaga
exhibits a more robust performance against reductions in the number of images.

C EXPERIMENTAL DETAILS

C.1 DETAILS ON DATASETS

We employ the official script from Gaussian Splatting (Kerbl et al., 2023) for colmap to acquire
camera poses and the initial point cloud. Consequently, the actual number of images utilized in the
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Gaga + SAMGaga + EntitySegGG + SAMGG + EntitySeg

RGB

100 %

30 %

20 %

10 %

5 %

Ground Truth

Figure 3: Qualitative results on the sparsely sampled replica dataset. We showcase the novel
view synthesis segmentation rendering results provided by Gaussian Grouping and Gaga as the
percentage of training images employed decreases from 100% to 5%. Gaussian Grouping cannot
correctly track the sofa under sparse views and fails to differentiate ceiling and wall, whereas Gaga
consistently provides high-quality segmentation results.

experiment might be lower than expected due to colmap process failures. Please refer to Tab. 1 for
the scene names used in the Replica and ScanNet datasets.

LERF-Mask Dataset (Ye et al., 2024). LERF-Mask is based on the LERF dataset (Kerr et al.,
2023) and annotated with tasks and ground truth by the author of (Ye et al., 2024). It contains 3
scenes: figurines, ramen, and teatime. For each scene, 6-10 objects are selected as text queries, and
Grounding DINO (Liu et al., 2023) is utilized to select the mask ID from the rendered segmentation.

Replica Dataset (Straub et al., 2019). We select 8 scenes from the entire Replica Dataset the same
as (Zhi et al., 2021). We use the rendered results provided by authors of (Zhi et al., 2021) and follow
their data processing process: for each scene, we uniformly select 20% images as training data and
20% images as test data from all rendered RGB images. This results in 180 training images and 180
test images for each scene.

Sparsely Sampled Replica Dataset. For the same 8 scenes as the previous experiment, we ran-
domly sample 30%, 20%, 10%, and 5% of the total 180 training images, resulting in 54, 36, 18, and
9 training images for each task, respectively. The number of test images remains at 180.

ScanNet Dataset (Dai et al., 2017). DM-NeRF (Wang et al., 2023) selects 8 scenes from the entire
ScanNet dataset. Each scene has approximately 300 images for training and about 100 images
for testing. We utilize 7 out of the 8 scenes, excluding ”scene 0024 00” due to the subpar 3D
reconstruction results in both Gaussian Splatting (Kerbl et al., 2023) and Gaussian Grouping (Ye
et al., 2024).

MipNeRF 360 Dataset (Barron et al., 2021). We downsample the images by a factor of 4, consis-
tent with the setting in (Ye et al., 2024), to accommodate the large size of the original images. For
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Table 1: Selected scenes in Replica and ScanNet datasets. We select 8 scenes from the Replica
dataset following (Zhi et al., 2021), and 7 scenes from the ScanNet dataset following (Wang et al.,
2023).

Dataset Scene Name

Replica office 0 office 1 office 2 office 3
office 4 room 0 room 1 room 2

ScanNet scene 0010 00 scene 0012 00 scene 0033 00 scene 0038 00
scene 0088 00 scene 0113 00 scene 0192 00

novel view synthesis evaluation, we set the sample step at 8, the same as the setting in (Kerbl et al.,
2023).

C.2 DETAILS ON EVALUATION METRICS

Given the disparate mask label assignments between the ground truth segmentation and the predicted
segmentation for 3D objects, we find the best linear assignment between the labels based on IoU for
quantitative evaluation. Subsequently, we employ IoU > 0.5 as the criterion for precision and recall
calculations. We outline the pseudocode for the evaluation procedure in Algorithm 1. Note that
all annotated segmentation masks are unavailable during training and are only accessible during
evaluation as ground truth.

Algorithm 1 Evaluation Metrics
Input pred masks and gt masks are represented in binary format with shape (nimage, nmask, h, w),
where nimage is the number of test images, nmask is the number of predicted or ground truth masks,
h, w are the height and width of test images.
We use scipy.optimize.linear sum assignment to solve the linear assignment problem.

Function evaluate(pred masks, gt masks)
Input: pred masks (torch.bool), gt masks (torch.bool)
Output: iou (torch.float), precision (torch.float), recall (torch.float)

assert len(gt masks) == len(pred masks)
nimage← len(gt masks)
npred← pred masks.shape[1]
ngt← gt masks.shape[1]
iou matrix← torch.zeros((ngt, max(ngt, npred)))
for i in ngt do

for j in npred do
iou list← []
for k in nimage do

iou list.append(IoU(gt masks[k][i], pred masks[k][j]))
end for
iou matrix[i][j]← iou list.mean()

end for
end for
gt indices, pred indices← linear assignment(iou matrix)
paired iou← iou matrix[gt indices][pred indices]
iou← paired iou.mean()
ncorrect← torch.sum(paired iou > 0.5)
precision← ncorrect

npred

recall← ncorrect

ngt

return iou, precision, recall
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Table 2: Ablation study on the percentage of front Gaussians. Results for selecting 10%, 20%,
30%, and 100% of front Gaussians as corresponding Gaussians of a mask are presented below. Gaga
demonstrates stable performance across varying parameters, showcasing its robustness.

Perc. Front Gaussians (%) IoU (%) Precision (%) Recall (%)

10 46.42 39.57 51.54
20 * 46.50 41.52 52.50
30 45.73 42.31 50.88
100 42.26 40.19 45.95

Table 3: Ablation study on image partition. We partition the entire image and its masks into
patches to prevent selected corresponding Gaussians from concentrating in a confined region of a
mask. Comparison results show that Gaga can perform well when the partition process is employed.

Num. Patches IoU (%) Precision (%) Recall (%)

1 × 1 46.08 27.88 50.67
16 × 16 46.11 38.22 51.62
32 × 32 * 46.50 41.52 52.50
64 × 64 44.72 40.65 49.14

C.3 FURTHER IMPLEMENTATION DETAILS

For training vanilla 3D Gaussians, we maintain the same parameter setting as (Kerbl et al., 2023).
To train the identity encoding, we freeze all the other attributes of Gaussians and use the same
parameter setting as (Ye et al., 2024). The identity encoding has 16 dimensions, and the rendered
2D identity encoding is in the shape of 16 × h × w, where h and w represent the height and width
of the image. The classifier for predicting mask ID given the 2D identity encoding and selecting
Gaussians for editing given the 3D identity encoding shares the same architecture, with 16 input
channels. The number of output channels equals the number of groups in the 3D-aware memory
bank after associating all images. All experiments are conducted on a single NVIDIA RTX 6000
Ada GPU.

D SUPPLEMENTARY ABLATION STUDIES

We conduct additional ablation studies on three parameters involved in the process of mask asso-
ciation and find corresponding Gaussians of a mask. These ablation studies are performed on the
Replica dataset (Straub et al., 2019), utilizing SAM (Kirillov et al., 2023) as the 2D segmentation
model. Parameters denoted with * are used as the default setting. We also provide additional visual
comparison results for the mask association methods utilized by Gaussian Grouping (Ye et al., 2024)
and Gaga in Sec. D.4.

D.1 PERCENTAGE OF FRONT GAUSSIANS

We present the ablation study on the percentage of front Guassians selected as corresponding Gaus-
sians in Tab. 2. We choose 10%, 20%, 30%, and 100% (i.e. selecting all Gaussians splatted to the
mask as its corresponding Gaussians) as candidate parameters. The default setting (20%) has a bet-
ter performance in general. Gaga shows stable performance for all candidate parameters, indicating
its robustness and it does not rely on cautious parameter selection.

D.2 NUMBER OF IMAGE PATCHES DURING PARTITION

We provide the ablation study on the number of image patches used during the image partition
process in Tab. 3. Candidate parameters include 1 × 1 (without mask partition process), 16 × 16,
32 × 32, 64 × 64. Similar to the results in Tab. 2, Gaga remains insensitive to the choice of this
parameter as long as the image partition process is in place. Without the mask partition process,
there is a significant drop in precision.
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Table 4: Ablation study on the overlap threshold. If the overlap between the current mask and all
groups in the memory bank falls below this threshold, we add this mask to the memory bank as a
new group. Results indicate that the default setting of 0.1 generally yields better outcomes.

Overlap Threshold IoU (%) Precision (%) Recall (%)

0.01 43.86 44.99 48.98
0.1 * 46.50 41.52 52.50
0.2 47.57 34.77 52.40

RGB

Gaussian 
Grouping

Gaga

RGB

Gaussian 
Grouping

Gaga

Figure 4: Visual comparison between different mask association methods. Gaga offers more
detailed associated masks, accurately tracks identical objects in the scene and assigns them different
mask IDs. Conversely, Gaussian Grouping leaves empty regions in positions where it cannot track
masks, and it struggles to provide consistent masks for the same object across views.

D.3 OVERLAP THRESHOLD

During the group ID assigning process, if none of the existing groups in the memory bank has a
larger overlap with the current mask than the threshold, we incorporate this mask into the memory
bank as a new group, signifying the discovery of a new 3D object. We present the ablation study on
overlap threshold in Tab. 4. When the threshold is set to 0.01, we rarely establish a new group and
prefer to associate the mask with an existing group. It provides the best precision but at the expense
of inferior IoU performance. Conversely, setting the threshold to 0.2 results in a frequent declaration
of new group IDs, yielding the best IoU but a significant decrease in precision. Therefore, we set
the threshold to 0.1 to strike a balance in performance across all three metrics.

D.4 ADDITIONAL COMPARISON ON MASK ASSOCIATION METHODS

We present visual comparison results for two mask association methods, video tracker (Cheng et al.,
2023) utilized by (Ye et al., 2024) and Gaga’s 3D-aware memory bank, in Fig. 4. In the ”garden”
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scene of the MipNeRF 360 dataset, the video tracker struggles to track objects in the background,
whereas Gaga provides associated results for each mask. For the scene in the ScanNet dataset, the
video tracker fails to distinguish between four identical sofas, resulting in multiple masks for the
same object. Additionally, it assigns different mask IDs to the table in two views. In contrast, Gaga
precisely locates each object, leading to improved mask association results and better pseudo labels
for training segmentation features.

E LIMITATIONS

Though Gaga achieves SOTA performance compared to existing works, there are a few limitations
and future works. First, the optimization process of identity encoding and the rest of the Gaussian
parameters are independent, this is because we need to first train 3D Gaussians to acquire their spatial
location for mask association. While this pipeline allows for the utilization of any pre-trained 3D
Gaussians as input without the need to re-train the entire scene, it does require additional training
steps. We aim to enable the joint processing of mask association and identity encoding training in
future works.

Secondly, artifacts may occur in the segmentation rendered by Gaga due to inherent inconsistency
in the 2D segmentation. For example, an object might be depicted as one mask in the initial view but
as two separate masks in subsequent views. This ambiguity introduces challenges to our mask as-
sociation process. Preprocessing steps such as dividing, merging, or reshaping the 2D segmentation
masks could potentially resolve this issue and improve grouping results.
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