
Iterative Teacher-Aware Learning Supplementary
Material

Luyao Yuan1

yuanluyao@ucla.edu
Dongruo Zhou1

drzhou@cs.ucla.edu
Juhong Shen2

jhshen@ucla.edu
Jingdong Gao1

mxuan@ucla.edu

Jeffrey L. Chen1

jlchen0@ucla.edu
Quanquan Gu1

qgu@cs.ucla.edu
Ying Nian Wu3

ywu@stat.ucla.edu

Song-Chun Zhu1,3

sczhu@stat.ucla.edu

1Department of Computer Science, 2Department of Mathematics, 3Department of Statistics
University of California, Los Angeles

4Beijing Institute for General Artificial Intelligence (BIGAI)

Contents

A Proofs and Derivations 1

A.1 Gradient Derivation . 1

A.2 Proof of Theorem 1 . 2

A.3 Proof of Corollary 2 . 4

B Detailed Experiment Settings 4

B.1 Linear Models on Synthesized Data . 5

B.2 Linear Classifiers on MNIST Dataset . 6

B.3 Linear Classifiers on CIFAR-10 . 6

B.4 Linear Classifiers on Tiny ImageNet . 7

B.5 Linear Regression for Equation Simplification . 7

B.6 Online Inverse Reinforcement Learning . 10

B.7 Adversarial Teacher . 12

B.8 Human Teacher . 15

A Proofs and Derivations

A.1 Gradient Derivation

T̂ V ν(x̃, y|νt−1) = −η2t
∥∥∥∥∂l(〈x̃, νt−1〉, y)

∂νt−1

∥∥∥∥2
2

+ 2ηt

(
l
(
〈x̃, νt−1〉, y

)
− l
(
〈x̃, ν〉, y

))

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Denote gx(ν) =
∂l(〈x̃, ν〉, y)

∂ν
∂ log qν(x̃t, yt|νt−1, D)

∂ν
=

∂

∂ν

(
βtT̂ V ν(xt, yt|νt−1)− log

∫
(x,y)∈D

exp
(
βtT̂ V ν(x, y|νt−1)

))
= −2βtηtgxt(ν) +

2βtηt
∫
(x,y)∼D gx(ν) exp(−βtT̂ V ν(x, y|νt−1))∫
(x,y)∈D exp

(
− βtT̂ V ν(x, y|νt−1)

)
= −2βtηt(gxt(ν)− Ex∼qν [gx(ν)])

A.2 Proof of Theorem 1

For simplicity, let gx denote gx(ν̃t) in this proof. First we provide an intuition for the assumption.
Suppose we have ν̂t = ν̃t− ηtgx̂t , then moving from ν̂t to νt follows ηt(gx̂t − gxt). The assumption
〈ν̃t − ν∗, gxt − gx̂t〉 = 〈ν∗ − ν̃t, gx̂t − gxt〉 > 0 simply suggests that updating with xt gives the
learner an advantage over updating with x̂t. The advantage points to ν∗ (the two vectors ν∗ − ν̃t and
gx̂t − gxt form an acute angle).

Next, we start the proof. We need the following lemma:

Lemma 1. Denote x̂t as the x which achieves the second largest T̂ V ν∗(x̃, y|νt−1). Suppose that
〈ν̃t − ν∗, gxt − gx̂t〉 > 0, then there exists α > 0 such that with large enough βt, we have∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2
≤ α‖ν̃t − ν∗‖2 (S-1)

and

〈ν̃t − ν∗, gxt − Ex ∼qν̃t [gx]〉 ≥ α‖ν̃t − ν∗‖2
∥∥gxt − Ex ∼qν̃t [gx]

∥∥
2
. (S-2)

Proof of Lemma 1. We set α = 〈ν̃t − ν∗, gxt − gx̂t〉/(2‖ν̃t − ν∗‖2‖gxt − gx̂t‖2) > 0.

First we show that
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2
≤ α‖ν̃t − ν∗‖2. For simplicity we denote s(x) =

T̂ V ν̃t(x̃, y|νt−1). Then by assumption on the selection of xt we have xt = arg maxx∈Dt s(x) and

(gxt − Ex ∼qν̃t [gx])

∫
x′∈D

exp(βts(x
′))

=

(
gxt −

∫
x′∈D exp(βts(x

′))gx′∫
x′∈D exp(βts(x′))

)∫
x′∈D

exp(βts(x
′))

= exp(βts(x
t))[gxt − gxt] + exp(βts(x̂

t))[gxt − gx̂t] +
∑

x 6=xt,x̂t
exp(βts(x))[gxt − gx]

= exp(βts(x̂
t))[gxt − gx̂t] +

∑
x 6=xt,x̂t

exp(βts(x))[gxt − gx]. (S-3)

Therefore, denote ξt−1 = s(x̂t)− s(xt) < 0, we have that when βt →∞,

βt
∥∥gxt − Ex ∼qν̃t [gx]

∥∥
2

≤ βt
∥∥gxt − Ex ∼qν̃t [gx]

∥∥
2

∫
x′∈D

exp(βt[s(x
′)− s(xt)])

= βt exp(−βts(xt))
∥∥∥∥(gxt − Ex ∼qν̃t [gx])

∫
x′∈D

exp(βts(x
′))

∥∥∥∥
2

= βt

∥∥∥∥ exp(βt[s(x̂
t)− s(xt)])[gxt − gx̂t] +

∑
x 6=xt,x̂t

exp(βt[s(x)− s(xt)])[gxt − gx]

∥∥∥∥
2

≤ βt
∑
x6=xt

∥∥∥∥ exp(βt[s(x)− s(xt)])[gxt − gx]

∥∥∥∥
2

≤ βt|D| exp
(
βtξt−1

)
max
x′∈D

‖gxt − gx′‖2

2

≤ βt|D| exp
(
βtξt−1

)
max
x′∈D

(
‖gxt‖2 + ‖gx′‖2

)
= 2βt|D| exp

(
βtξt−1

)
G

→ 0,

where the first inequality holds due to the fact s(x′) < s(xt) for any x′ ∈ D, the second inequality
holds due to triangle inequality, the third inequality holds due to the facts

(
s(x)− s(xt)

)
< ξt−1 for

any x 6= xt, the fourth inequality holds due to the assumption that ‖gx‖2 ≤ G, the last line holds due
to the fact that x exp(ax)→ 0 for a < 0 and x→∞. Therefore, taking large enough βt, we have∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2
≤ α‖ν̃t − ν∗‖2.

Next we show that 〈ν̃t − ν∗, gxt − Ex ∼qν̃t [gx]〉 ≥ α‖ν̃t − ν∗‖2
∥∥gxt − Ex ∼qν̃t [gx]

∥∥
2
. From (S-3)

we have

(gxt − Ex ∼qν̃t [gx]) exp(−βts(x̂t))
∫
x′∈D

exp(βts(x
′))

= gxt − gx̂t +
∑

x6=xt,x̂t
exp(βt[s(x)− s(x̂t)])[gxt − gx]

︸ ︷︷ ︸
g(βt)

,

For g(βt), denote ξ̂t−1 = minx 6=xt,x̂t [s(x)− s(x̂t)] < 0. Then when βt →∞, we have

‖g(βt)‖2 ≤
∑

x 6=xt,x̂t

∥∥∥∥ exp(βt[s(x)− s(x̂t)])[gxt − gx]

∥∥∥∥
2

≤ |D| exp(βtξ̂t−1) max
x∈D
‖gxt − gx‖2

≤ 2G|D| exp(βtξ̂t−1)

→ 0, (S-4)

where the first inequality holds due to triangle inequality, the second inequality holds due to the fact
s(x)− s(x̂t) < ξ̂t−1, the third inequality holds due to the assumption that ‖gx‖2 ≤ G, the last line
holds because exp(−x)→ 0 when x→∞. Thus when βt →∞, we have

gxt − Ex ∼qν̃t [gx]

‖gxt − Ex ∼qν̃t [gx]‖2
=

(gxt − Ex ∼qν̃t [gx]) exp(−βts(x̂t))
∫
x′∈D exp(βts(x

′))∥∥(gxt − Ex ∼qν̃t [gx]) exp(−βts(x̂t))
∫
x′∈D exp(βts(x′))

∥∥
2

=
gxt − gx̂t + g(βt)

‖gxt − gx̂t + g(βt)‖2

→ gxt − gx̂t
‖gxt − gx̂t‖2

,

where the last line holds due to g(βt)→ 0 from (S-4). Therefore, we know that for large enough βt,
we have ∣∣∣∣〈 ν̃t − ν∗

‖ν̃t − ν∗‖2
,
gxt − Ex ∼qν̃t [gx]

‖gxt − Ex ∼qν̃t [gx]‖2

〉
−
〈

ν̃t − ν∗

‖ν̃t − ν∗‖2
,
gxt − gx̂t
‖gxt − gx̂t‖2

〉∣∣∣∣ ≤ α,
Finally, due to the fact 〈ν̃t − ν∗, gxt − gx̂t〉 = 2α‖ν̃t − ν∗‖2‖gxt − gx̂t‖2 from (S-2), we have〈

ν̃t − ν∗

‖ν̃t − ν∗‖2
,
gxt − Ex ∼qν̃t [gx]

‖gxt − Ex ∼qν̃t [gx]‖2

〉
≥
〈

ν̃t − ν∗

‖ν̃t − ν∗‖2
,
gxt − gx̂t
‖gxt − gx̂t‖2

〉
− α = α.

Now we prove the main theorem.

Proof of Theorem 1. The naive learner and the teacher-aware learner, after receiving (xt, yt), will
update their model to ν̃t = (νt−1 − ηtgxt) and νt =

(
νt−1 − ηtgxt − 2βtη

2
t (gxt − Ex∼qν̃t [gx])

)
respectively. Then with large enough βt, we have

‖νt − ν∗‖22

3

=
∥∥ν̃t − ν∗ − 2βtη

2
t (gxt − Ex ∼qν̃t [gx])

∥∥2
2

= ‖ν̃t − ν∗‖22 − 4〈ν̃t − ν∗, βtη2t (gxt − Ex ∼qν̃t [gx])〉+ 4
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥2
2

≤ ‖ν̃t − ν∗‖22 − 4α‖ν̃t − ν∗‖2
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2

+ 4
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥2
2

≤ ‖ν̃t − ν∗‖22 − 4α‖ν̃t − ν∗‖2
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2

+ 4α‖ν̃t − ν∗‖2
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2

= ‖ν̃t − ν∗‖22,

where the first inequality holds due to (S-2) in Lemma 1, the second inequality holds due to (S-1) in
Lemma 1.

A.3 Proof of Corollary 2

Proof. Let νa and νb be the model parameter of the naive learner and the teacher-aware learner.

Denote T̂ V
E

ν∗(ν) = maxx∈E T̂ V ν∗(x, y|ν), E is some dataset. Let x∗ denote the argmax of
maxx∈D T̂ V ν∗(x, y|ν), then by the assumption on Dt, we know that there exists x′ such that
‖x′ − x∗‖2 ≤ ε/(TL(η2t + 4ηt)). Then we have

T̂ V
D

ν∗(ν)− T̂ V
Dt

ν∗ (ν)

= max
x∈D

(−η2t gx(ν) + 2ηt(l(ν, x)− l(ν∗, x))− max
x∈Dt

(−η2t gx(ν) + 2ηt(l(ν, x)− l(ν∗, x))

≤ (−η2t gx∗(ν) + 2ηt(l(ν, x
∗)− l(ν∗, x∗))− (−η2t gx′(ν) + 2ηt(l(ν, x

′)− l(ν∗, x′))
≤ L(η2t ‖x∗ − x′‖2 + 4ηt‖x∗ − x′‖2) (L-Lipschitz)
≤ ε/T. (S-5)

Now we prove that ‖νtb − ν∗‖22 ≤ ‖νta − ν∗‖22 + t/T ε for all 1 ≤ t ≤ T . As ν0 is the same
for both learners, knowing theorem 1, we have ‖ν1b − ν∗‖22 ≤ ‖ν1a − ν∗‖22 + 1/Tε. Suppose
‖νtb − ν∗‖22 ≤ ‖νta − ν∗‖22 + t/T ε, then we have

‖νt+1
b − ν∗‖

≤ ‖νtb − ν∗‖22 − TV D
t

ν∗ (νtb) (Theorem 1)

≤ ‖νtb − ν∗‖22 − T̂ V
Dt

ν∗ (νtb) (convexity of l)

≤ ‖νtb − ν∗‖22 − T̂ V
D

ν∗(ν
t
b) + ε/T T̂V

D

ν∗(ν)− T̂ V
Dt

ν∗ (ν) ≤ ε

≤ ‖νta − ν∗‖22 − T̂ V
D

ν∗(ν
t
a) + (t+ 1)/Tε (condition)

≤ ‖νta − ν∗‖22 − T̂ V
Dt

ν∗ (νta) + (t+ 1)/Tε T̂V
D

ν∗(ν)− T̂ V
Dt

ν∗ (ν) ≥ 0

= ‖νt+1
a − ν∗‖22 + (t+ 1)/Tε

Therefore, we have ‖νtb − ν∗‖22 ≤ ‖νta − ν∗‖22 + t/T ε, which suggests that the teacher-aware learner
can always converge no slower than the naive learner up to an ε factor.

B Detailed Experiment Settings

We used two types of loss functions in all the experiment. For regression tasks, our loss function is

min
ω∈Rd,b∈R

1

n

n∑
i=1

1

2

(
ωTxi + b− yi

)2
+
λ

2
‖ω‖22

For classification tasks, our loss function is

min
ω∈Rd,b∈R

1

n

n∑
i=1

K∑
k=1

−1(yi = k) log pik +
λ

2
‖ω‖22

4

0 250 500 750 1000 1250 1500 1750 2000
0

2

4

6

8

10

12
Square Loss

Figure 1: Square loss of the linear regression.

pik =
exp(ωTk xi + bk)∑K
k′=1 exp(ωTk′xi + b′k)

where ω ∈ RK×d and ωk is the k-th row of ω, b ∈ RK and bk is the k-th element of b. The norm
is Frobenius norm. In both regression and classification tasks, we refer to [ω, b] as ω∗. In all the
following experiments, we used a constant learning rate 10−3 for all the algorithms. The size of the
minibatch was set to 20. As the gradient scale is different in different experiments, we used different
βs. We chose the hyperparameter β so that at the beginning of the learning, the data in the mini-batch
with the smallest teaching volume has above 80% probability of being selected. In the supplementary
material, we show additional results of our experiments. All plots are consistent with the results in
the main text. All of our experiments were run on machines with 16 I9-9900K cores and 64GiB
RAM. The longest setting is the Tiny ImageNet classification, takes about 12 hours to finish (2000
iterations for 8 methods and 20 random seeds).

B.1 Linear Models on Synthesized Data

0 250 500 750 1000 1250 1500 1750 2000
4

6

8

10

12

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000

0.2

0.4

0.6

0.8

1.0
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0

1

2

3

4

Cross Entropy Loss

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 2: Classification accuracy and Cross Entropy loss of the 10-class Gaussian data classification.

For the regression task, both ω∗ and X are randomly generated from a uniform distribution, namely
ωi, b,Xij ∼ U [−1, 1]. Y = Xω∗. The data points have dimension 100, and β is chosen to be
2000. For the classification task, we first randomly generate K points as the center of each class
from U [−1, 1]. Then, we use these points as the centers of Normal distributions with Σ = 0.5I(d+1).
N/K points are sampled from each distribution as the data. We get ω∗ using the logistic regression
model in Scikit-learn [4]. For classification task with 30D data, we use β = 60000. We used λ = 0
for both tasks. For the scenario of different feature spaces, we use a random orthogonal projection
matrix to generate the teacher’s feature space from the student’s. ω∗ and ν∗ are multiplied with the
inverse of the projection matrix to preserve the inner product. Figure 1 shows the square loss of
the linear regression task. Figure 2 shows the classification accuracy and the Cross Entropy loss of
10-class classification tasks.

5

0 250 500 750 1000 1250 1500 1750 2000

5

6

7

8

9

10

11

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
0.0

0.2

0.4

0.6

0.8

1.0
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
0

1

2

3

4

Cross Entropy Loss

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 3: L2 distance, accuracy and Cross Entropy loss of the 10-class MNIST classification, in
which the teacher uses 20D features.

B.2 Linear Classifiers on MNIST Dataset

Table 1: MNIST CNN structure
20-Dim CNN 24-Dim CNN 30-Dim CNN

Conv 1 1 layer, 64 [3×3] filters, leaky ReLU
Pool 2×2 Max with Stride 2

Conv 2 1 layers, 32 [3×3] filters, leaky ReLU
Pool 2×2 Max with Stride 2

Conv 3 1 layer, 32 [3×3] filters, leaky ReLU
FC 20, tanh 24, tanh 30, tanh

0 250 500 750 1000 1250 1500 1750 2000

5

6

7

8

9

10

11

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
0.0

0.2

0.4

0.6

0.8

1.0
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
0

1

2

3

4

Cross Entropy Loss

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 4: L2 distance, classification accuracy and Cross Entropy loss of the 10-class MNIST
classification, in which the teacher uses 30D features.

We also did experiment with the MNIST dataset, which didn’t mentioned in the main text for
space sake. For our 10-class MNIST experiment, we trained 3 different CNNs with the similar
architecture, only differing in the number of units in the last fully connected (FC) layer. The structure
is summarized in table 1. All three CNNs were able to achieve above 97% test accuracy. To test
our ITAL method, we had the teacher teach the parameters of the FC layer to the student. The input
of this layer is used as feature vectors of the images. The learner always used features with 24D,
but the teacher varied with 20D and 30D, results presented in figure. In both settings, β is set to
30000. The FC layer weights trained with supervise learning were used as ν∗. Figure 3 and 4 show
the classification accuracy and Cross Entropy loss of the training.

B.3 Linear Classifiers on CIFAR-10

The overall design of this experiment resembles the MNIST classification. We used CIFAR-10, a
dataset with more enriched and complicated natural images. We trained three different CNNs with
6, 9, and 12 convoluted layers on an augmented CIFAR dataset. With 40 epochs and an adaptive
learning rate, we were able to achieve about 82 percent test accuracy for all three architectures. Table 2
summarizes the CNN structure we used. To stabilize training, we used an exponential decaying β,
βt = 50000(1− 5e−6)t. We think that because the feature representation is quite different between
the teacher and the student, as the iterative learning goes, the approximation error might accumulate.
Thus, the learner’s estimation of the teacher’s data selection will be less accurate towards the end of
the learning, especially for the most ambiguous examples (images prone to mistakes). At this time,
using a large β can be unstable. In other words, it is hard for the learner to reason about the teacher at

6

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.2

0.4

0.6

0.8
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

1

2

3

4

5

Cross Entropy Loss

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 5: Accuracy and Cross Entropy loss of the 10-class CIFAR-10 classification, in which the
teacher uses features extracted from CNN-6 detailed in table 2. The L2 loss curves we included in
the main text section 5 figure 1c was from this setting.

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

6

7

8

9

10

11

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.2

0.4

0.6

0.8
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

1

2

3

4

5

Cross Entropy Loss

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 6: L2 distance, classification accuracy and Cross Entropy loss of the 10-class CIFAR-10
classification, in which the teacher uses features extracted from the CNN-12 detailed in table 2.

the end of the learning, so he should be less confident using the pragmatic information suggested by
the teacher’s intention. Figure 5 and 6 show the accuracy and Cross Entropy loss of this task.

B.4 Linear Classifiers on Tiny ImageNet

The overall design of this experiment resembles the MNIST and CIFAR-10 classification. We used
Tiny ImageNet, a large scale dataset with natural images. We first extracted 2048D features from
VGG-13/16/19 without finetuning and then downsampled the features to 10D with a multilayer
perceptron with three FC-ReLU-layers (500, 250, 10) trained with Cross Entropy loss. Figure 7 and 8
show the accuracy and Cross Entropy loss of this task.

B.5 Linear Regression for Equation Simplification

In this experiment, we let the teacher teach a value function to the student so that he can use this
value function to simplify polynomials given predefined operations. We first created an Equation
Simplification dataset. we randomly generate two fourth-degree polynomials with three variables
x, y, z as the left- and right-hand sides of the equations. The coefficients of the polynomials are

Table 2: CIFAR-10 CNN structures.
CNN-6 CNN-9 CNN-12

Conv 1 2 layers of 16 [3×3] filters 3 layers of 16 [3×3] filters 4 layers of 16 [3×3] filters
Pool 2×2 Max with Stride 2

Conv 2 2 layers of 32 [3×3] filters 3 layers of 32 [3×3] filters 4 layers of 32 [3×3] filters
Pool 2×2 Max with Stride 2

Conv 3 2 layers of 64 [3×3] filters 3 layers of 64 [3×3] filters 4 layers of 64 [3×3] filters
Pool 2×2 Max with Stride 2
FC 32 32 32

7

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

4

6

8

10
Cross Entropy Loss

0 250 500 750 1000 1250 1500 1750 2000
0.0

0.1

0.2

0.3

0.4

0.5
200-Class Classification Accuracy

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 7: Top-5 accuracy and Cross Entropy loss of the 200-class Tiny ImageNet classification, in
which the teacher uses features extracted from VGG-13. The L2 loss curves we included in the main
text section 5 fig. 1d was from this setting.

0 250 500 750 1000 1250 1500 1750 2000

10

11

12

13

14

15

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

4

6

8

10

12
Cross Entropy Loss

0 250 500 750 1000 1250 1500 1750 2000
0.00

0.05

0.10

0.15

0.20
200-Class Classification Accuracy

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 8: L2 distance, top-5 accuracy and Cross Entropy loss of the 200-class Tiny ImageNet
classification, in which the teacher uses features extracted from the VGG-19.

either fractions or integers. The range of magnitude is 20 and 5 for the nominator and denominator,
respectively. We define a set of operations that can be performed on an equation.

• Scale: scale a term by an integer factor.

• Reduction: reduce the fraction coefficient of a term to the simplest form.

• Cancel common factors: divide coefficients of all terms by the greatest common factor of
integer coefficients and the nominators of fractional coefficients.

• Move: move a term to a specified position in the equation.

• Merge: merge two terms that contain the same denominators and variables with the same
degrees.

• Cancel denominators: multiply all terms by the least common multiple of the denominators
of all coefficients.

To simplify an equation, we apply operations in the following way:

1. Canceling common factors

2. Merging terms with the same denominators

3. Merging terms with different denominators by scaling the terms with the least common
multiple and then applying the merge operation

4. Removing fractions in the coefficients

5. Rearranging the terms by descending degrees of x, y, z with the move operation

At each step, only one operation is performed on a single term (two terms for merging), and we do
not move on to the next operation until the present one is no longer applicable to the current equation.
After the simplification process, all the remaining terms are on the left-hand side, while the right-hand
side is simply 0. We record the series of equations generated as a simplification trajectory. Some
example simplification trajectories would be:

8

0 25 50 75 100 125 150 175 200
Training Iteration

0

5

10

15

20

25 Square Loss

0 200 400 600 800 1000
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0
Simplification Accuracy

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 9: Square loss and simplification accuracy using the learned value function. We compared the
last equation in the trajectories generated by the predefined rules and the greedy search results guided
by the learned value function. Given the same teacher, teacher-aware learning algorithm outperforms
naive learners in terms of accuracy and convergence rate. The gray horizontal dash line represents test
accuracy using the ground truth parameter of 45D. For these results, the teacher uses 40D features,
same as the L2-loss in section 5 figure 1e.

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

1

2

3

4

L2 Distance

0 25 50 75 100 125 150 175 200
Training Iteration

0

5

10

15

20

25
Square Loss

0 200 400 600 800 1000
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0
Simplification Accuracy

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 10: L2 distance, square loss and simplification accuracy using the learned value function. The
teacher uses 50D features for these results.

Example equation 1 :
1

4
xyz − 3

2
xyz = −14y3 +

1

5

−5

4
xyz = −14y3 +

1

5
(merge)

−25xyz = −280y3 + 4 (cancel denominators)

−25xyz + 280y3 = 4 (move)

−25xyz + 280y3 − 4 = 0 (move)

Example equation 2 : 5x3y +
8

3
z = −14

3
z + 6xy2z +

11

3
xz2 + 6yz2

5x3y +
22

3
z = 6xy2z +

11

3
xz2 + 6yz2 (merge)

15x3y + 22z = 18xy2z + 11xz2 + 18yz2 (cancel denominators)

15x3y − 18xy2z + 22z = 11xz2 + 18yz2 (move)

15x3y − 18xy2z − 11xz2 + 22z = 18yz2 (move)

15x3y − 18xy2z − 11xz2 − 18yz2 + 22z = 0 (move)

We applied CNN φθ to learn the features of the generated equations and a linear value function wrt.
these features. We first encode equations using a codebook which maps each character to a trainable
vector embedding. Thus, each equation can be encoded as a matrix. Then, we treat each equation as
a 3D tensor with size 1×W × C, where W is the number of characters in the equation and C is the
length of embedding. We set C = 30, and W ranges from 6 to 173. During training, we padded 0

9

Table 3: Equation CNN structure
40-Dim CNN 45-Dim CNN 50-Dim CNN

Conv 1 1 layer, 64 [5×5] filters, leaky ReLU
Conv 2 1 layers, 64 [5×5] filters, leaky ReLU

Pool 2×2 Max with Stride 2
Conv 3 1 layer, 32 [3×3] filters, leaky ReLU
Conv 4 1 layer, 32 [3×3] filters, leaky ReLU

Pool 2×2 Max with Stride 2
Conv 5 1 layer, 32 [3×3] filters, leaky ReLU
Conv 6 1 layer, 32 [3×3] filters, leaky ReLU

Pool 2×2 Max with Stride 2
FC 40, tanh 45, tanh 50, tanh

to make sure all equations in one batch form a regular tensor. We fed the encoded equations to the
CNN and used the output as their feature vectors. The structure of the CNN is summarized in table 3.
The value of a given equation is the inner product of its feature vector and the parameter ω. The loss
function is based on contrastive loss and seeks to maximize the difference between the values of the
simpler equations and the complicated equations. During training, we learn the network parameters
and the weight vector simultaneously with:

L(ω, θ) =
1

|S+|
∑

(Ei,Ej)∈S+

max
(

1−
(
φθ(Ei)− φθ(Ej)

)T
ω, 0

)
+

1

|S−|
∑

(Ei,Ej)∈S−

max
(

1−
(
φθ(Ej)− φθ(Ei)

)T
ω, 0

)
+
λ

2
‖ω‖22

where S+ and S− hold positive and negative pairs respectively. The positive data are pairs of
equations from the same simplification trajectory, where the first equation in the pair is generated
after the second one. That is, the first equation is simplified from the second equation, hence having a
higher value. For the negative data, we randomly select an equation from a simplification trajectory
excluding the simplification result and randomly apply an operation to that equation. If the result
of the operation is different from the next equation in the trajectory, we add the result-equation pair
to S−. Otherwise, we randomly choose a different operation until the result of the operation is not
the next equation in the trajectory, and then add the pair to S−. This way, we acquire pairs whose
first equations have lower values than the second ones’. We train 3 sets of value functions, with the
different feature dimensions, 40D, 45D, and 50D.

After we learned a value function, we utilized ω∗ as the ground truth parameter. The teacher and
the learner represent the equations with the learned features. The learner always used features with
45D, and the teacher used 40D or 50D, corresponding to figure 9 and 10. In all settings, β is set to
5000. We tested the learned parameters with equations not included in the training set. Specifically,
to simplify an equation, we applied all possible operations to it and obtained the outcome equation
values. Then we used the greedy search to select candidates according to their values. The search ends
when all the outcome equations have a lower value than the current equation. If the final equation
generated by the learned value function matches with the simplification generated by our rules, we
count this simplification as correct. In figure 9 and 10, we provide the square loss and the accuracy
for the simplification task.

B.6 Online Inverse Reinforcement Learning

In this experiment, we want to learn a reward function r(s, ω∗). We can define a Markov Decision
Process 〈S,A, r, P, γ〉, where S is the state space, A is the action space, r : S → R is a reward
function mapping from state to a real number as the reward. P ass′ is the transition model that state s
becomes s′ after the agent conducts action a. γ is a discount factor that ensures the convergence of
the MDP over an infinite horizon. Given a reward function, using Bellman equation we have

V ∗(s) = max
a∈A

∑
s′|s,a

P ass′
[
r(s′) + γV ∗(s′)

]
(S-6)

10

Figure 11: IRL map examples. Each map has 8× 8 grids. Every grid contains a reward. Maps in the
first row plots the ground truth rewards in each grid. Red bars represent positive rewards and blue
bars represent negative rewards. The learner tries to learn a policy to walk in the map and collect the
most accumulative rewards. The arrows below indicate the most probable action taken by the learner
after he learned the reward function. The red grids are targets of all their neighbors.

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

4

6

8

10

12

14
L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Total Policy Variance

0 20 40 60 80 100
Training Iteration

0

20

40

60

Actual Rewards

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 12: Total variance between the learner’s policy and the teacher’s policy and the actual gain of
the learner during the learning process. The gray horizontal dash line represents teacher’s expected
accumulative reward.

Q∗(s, a) = max
a∈A

∑
s′|s,a

P ass′
[
r(s′) + γmax

a′∈A
Q∗(s′, a′)

]
(S-7)

Suppose an agent behaves by following Boltzman rationality:

π(at|st;ω) =
exp (αQ∗(st, at;ω))∑
a′∈A exp (αQ∗(st, a′;ω))

(S-8)

Take log-likelihood of this function we can have an objective function that the learner can optimize to
learn ω∗.

l(st, at;ωt−1) = αQ∗(st, at;ωt−1)− log
∑
a′∈A

αQ∗(st, a′;ωt−1) (S-9)

ωt = ωt−1 + ηt
∂l(st, at;ωt−1)

∂ωt−1
(S-10)

Then, the online IRL process can be accomodated by our learning framework. One issue is that
the max operation in Q is not deferentiable. Thus, we approximated max with soft-max, namely:

11

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

2

4

6

8

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.00

0.05

0.10

0.15

0.20

0.25

Total Policy Variance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

2

4

6

8

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.00

0.05

0.10

0.15

0.20

0.25

Total Policy Variance

0 20 40 60 80 100
Training Iteration

0

5

10

15

20

25

30
Actual Rewards

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 13: Learning results of sparse reward maps. All grids in the 8×8 map have 0 reward but 3
grids with reward 1. In every experiment, we randomly selected the 3 grids. Curves drawn with
results using 20 different random seeds. The gray horizontal dash line represents teacher’s expected
accumulative reward.

max(a0, ..., an) ≈ log(
∑n
i=0 exp kai)

n , with k controlling the level of approximation and leveraged the
online Bellman gradient iteration [3] to calculate the gradient for each step.

∂Vg,k(s;ωt)

∂ωt
=
∑
a∈A

exp (kQg,k(s, a;ωt))∑
a′∈A exp (kQg,k(s, a′;ωt))

∂Qg,k(s, a;ωt)

∂ωt
(S-11)

∂Qg,k(s, a;ωt)

∂ωt
=
∑
s′|s,a

P ass′
(∂r(s′;ωt)

∂ωt
+ γ

∂Vg,k(s′;ωt)

∂ωt
)

(S-12)

In every round, we randomly sample 20 (s, a) pairs from |S|× |A| state-action pairs as our minibatch.
Then the teacher will conduct Bellman gradient iteration. The learner will return his reward estimation
for each grid to the teacher.

We used an 8× 8 grid map as the environment, and the action space A includes four actions up, down,
left, right. See figure 11 for map examples. 80% of the time, the agent goes to its target, 18% of the
time ends up in another random neighbor grid and 2% of the time dies abruptly (game ends). We
set γ = 0.5. The reward in each grid is randomly sampled from a uniform distribution, U [−2, 2]. If
we encode each grid with a one-hot vector, then the reward parameter is a 64D vector with the i-th
entry corresponding to the reward of the i-th grid. The teacher uses a shuffled map encoding as the
student’s. For instance, if the first grid is [1, 0, ..., 0] to the learner, then it becomes [0, ..., 0, 1, 0, ...]
to the teacher. See figure 12 for the actual accumulative reward acquired by the agent during learning.

In addition to the environment with random dense rewards, we tested the teacher-aware learner in a
sparse reward environment. Each time, we only pick 3 grids randomly to assign non-zero reward.
Our algorithm still shows robust performance. Results in figure 13.

B.7 Adversarial Teacher

Table 4: Selection of βs in the adversarial teacher experiments. For cooperative teachers, the absolute
values of the βs are the same, only the signs are flipped.

Experiment Value of β
Linear Classifiers on Synthesized Data -60000
Linear Regression on Synthesized Data -5000
Linear Classifiers on MNIST Dataset -30000
Linear Classifiers on CIFAR Dataset −50000(1− 5e−6)t

Linear Classifiers on Tiny ImageNet Dataset −1000
Linear Regression for Equation Simplification -5000

Online Inverse Reinforcement Learning (Random Rewards) -25000
Online Inverse Reinforcement Learning (Sparse Rewards) -30000

We further test the robustness of our algorithm with an adversarial teacher, who, instead of choosing
the most helpful data, chooses the least helpful one. She replace the arg max in equation (2) in the
main text with arg min. In this scenario, a naive learner can barely learn, but the teacher-aware
learner still shows steady improvement. See table 4 for the β used in these experiments.

12

0 250 500 750 1000 1250 1500 1750 2000
0

2

4

6

8
L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
0

2

4

6

8

10

12
Square Loss

(a) Linear Regression

0 250 500 750 1000 1250 1500 1750 2000

6

8

10

12

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000

0.2

0.4

0.6

0.8

1.0
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000

6

8

10

12

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000

0.2

0.4

0.6

0.8

1.0
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0

1

2

3

4

Cross Entropy Loss

(b) Gaussian data 10-class classification.

0 250 500 750 1000 1250 1500 1750 2000

8

9

10

11

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000

0.2

0.4

0.6

0.8

1.0
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
0

1

2

3

4

Cross Entropy Loss

(c) MNIST 10-class, 20D teacher features

0 250 500 750 1000 1250 1500 1750 20007

8

9

10

11

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000

0.2

0.4

0.6

0.8

1.0
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
0

1

2

3

4

Cross Entropy Loss

(d) MNIST 10-class, 30D teacher features

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.2

0.4

0.6

0.8
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.2

0.4

0.6

0.8
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

1

2

3

4

5

Cross Entropy Loss

(e) CIFAR-10, teacher feature from CNN-9.

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

7

8

9

10

11

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.2

0.4

0.6

0.8
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

1

2

3

4

5

Cross Entropy Loss

(f) CIFAR-10, teacher feature from CNN-12.

13

0 250 500 750 1000 1250 1500 1750 2000
11

12

13

14

15

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000

0.05

0.10

0.15

0.20

0.25

0.30

0.35
200-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

4

5

6

7

8

9

10
Cross Entropy Loss

(g) Tiny ImageNet, teacher feature from VGG-13, showing top-5 accuracy.

0 250 500 750 1000 1250 1500 1750 2000
11

12

13

14

15

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000

0.1

0.2

0.3

0.4

200-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

4

6

8

10

12
Cross Entropy Loss

(h) Tiny ImageNet, teacher feature from VGG-19, showing top-5 accuracy.

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

1.5

2.0

2.5

3.0

3.5

4.0

4.5
L2 Distance

0 25 50 75 100 125 150 175 200
Training Iteration

0

5

10

15

20

25 Square Loss

0 200 400 600 800 1000
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0
Simplification Accuracy

(i) Equation simplification, 40D teacher features

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

1.5

2.0

2.5

3.0

3.5

4.0

4.5
L2 Distance

0 25 50 75 100 125 150 175 200
Training Iteration

0

5

10

15

20

25 Square Loss

0 200 400 600 800 1000
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0
Simplification Accuracy

(j) Equation simplification, 50D teacher features

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

6

8

10

12

14 L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.15

0.20

0.25

0.30

0.35

Total Policy Variance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

6

8

10

12

14 L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.15

0.20

0.25

0.30

0.35

Total Policy Variance

0 20 40 60 80 100
Training Iteration

0

20

40

60

Actual Rewards

(k) Online inverse reinforcement learning

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

4

6

8

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.05

0.10

0.15

0.20

0.25

Total Policy Variance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

4

6

8

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.05

0.10

0.15

0.20

0.25

Total Policy Variance

0 20 40 60 80 100
Training Iteration

0

5

10

15

20

25

30
Actual Rewards

(l) Online inverse reinforcement learning Sparse
ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 14: Adversarial teacher results. With an adversarial teacher, a naive learner can no longer
learn effectively. ITAL still learns efficiently. SGD and batch learning are included for comparison.

14

A B C D E

1

2

3

4

5

Map A

A B C D E

1

2

3

4

5

Map B

A B C D E

1

2

3

4

5

Map C

A B C D E

1

2

3

4

5

Map D

A B C D E

1

2

3

4

5

Map E

Maps Used for Human Study

Figure 15: Map configurations

— +

— +

Figure 16: Actual interface used in the human study. The reward spectrum will be shown to the
subjects at the experiment introduction. In this example, the subject chose the green arrow as the
example at the 1-st iteration. Then, as we annotated with the orange T-shaped boxes, the estimated
reward of the target tile of the green arrow increased, while rewards of the arrow source and the
surrounding neighbors decreased. The orange boxes were not included in the human study.

B.8 Human Teacher

We conducted a proof-of-concept human study on 20 university students, 10 females and 10 males.
We want to validate that our teacher-aware learner can also outperform naive learners given a human
teacher. In other words, our teacher model can be applied to human teachers, despite of their
potentially different pedagogical patterns. The goal of the experiment is for the participant to teach
the reward of a ground-truth reward map to a learner. To reduce human subjects’ cognitive burden, we
use three types of tiles (red, blue and white) on the map to represent bad, good and neutral grids. We

15

Map A Map B Map C Map D Map E

0.00

0.01

0.02

0.03

0.04

8e-19
2e-18

5e-20
4e-23

3e-18

2e-10
4e-07

5e-06
1e-12

2e-12

Total Policy Variance
Machine ITAL
Human ITAL
Human IMT

Machine IMT
Random ITAL

Map A Map B Map C Map D Map E100

0

100

200

300

400
2e-15

8e-19 4e-16

2e-19

1e-17

2e-11

6e-09 9e-08

8e-11

1e-10

Actual Reward
Machine ITAL
Human ITAL
Human IMT
Machine IMT
Random ITAL

Figure 17: Human study results. All the p-values are calculated with paired t-test.

0 5 10 15 20 25 30
Training Iteration

6

8

10

12

14
L2 Distance

0 5 10 15 20 25 30
Training Iteration

0.1

0.2

0.3

0.4

0.5

Total Policy Variance

0 2 4 6 8 10 12 14
Training Iteration

0

100

200

300

Actual Reward

(a) Map A

0 5 10 15 20 25 30
Training Iteration

6

8

10

12

14

L2 Distance

0 5 10 15 20 25 30
Training Iteration

0.2

0.3

0.4

0.5

Total Policy Variance

0 2 4 6 8 10 12 14
Training Iteration

0

100

200

300

Actual Reward

(b) Map B

0 5 10 15 20 25 30
Training Iteration

8

10

12

14

L2 Distance

0 5 10 15 20 25 30
Training Iteration

0.2

0.3

0.4

0.5

Total Policy Variance

0 2 4 6 8 10 12 14
Training Iteration

0

100

200

300

Actual Reward

(c) Map C

0 5 10 15 20 25 30
Training Iteration

8

10

12

14

L2 Distance

0 5 10 15 20 25 30
Training Iteration

0.2

0.3

0.4

0.5

Total Policy Variance

0 2 4 6 8 10 12 14
Training Iteration

0

100

200

300

Actual Reward

(d) Map D

0 5 10 15 20 25 30
Training Iteration

8

9

10

11

12

13

14
L2 Distance

0 5 10 15 20 25 30
Training Iteration

0.1

0.2

0.3

0.4

0.5
Total Policy Variance

0 2 4 6 8 10 12 14
Training Iteration

0

50

100

150

Actual Reward

(e) Map E

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 18: Learning curves for each map.

16

used 5 different map configurations shown in figure 15. The learner’s current reward map is shown
to the human participants during the entire teaching session. As the reward values are continuous
at the learner’s side, we used the color pallet in figure 16 to render the grids in the learner’s map.
We also included a map indicating the most probable actions the learner will take given his current
reward map, so that the human teacher can tell which grid the learner attaches a higher reward if
some neighboring grids have similar colors. The directions of these arrows are calculated with value
iteration using the learner’s current reward parameters. An example human interface was shown in
figure 16. In each time step, ten arrows will be drawn on ten randomly sampled grids. Selecting one
of the arrows tells the learner that he should follow the arrow’s direction if he was at this grid. Then
the learner will update his reward parameters based on this instruction using the same equation (S-10)
as in section B.6.

We hold the experiment as a Jupyter Notebook [2] and launch it via Binder [1]. We first introduce the
experiment logic to the human subjects and include a short warm-up phase for the subjects to get
familiar with the learner’s update process. Then, we let the subjects to teach the maps, starting from
Map A to Map E. Every subject needs to teach both a teacher-aware learner and a naive learner, whose
order is randomly determined. For every map, the initialization of the two learners are the same for
the same human subject and different across subjects. Like the inverse RL experiment in section B.6,
we evaluate the learning results in terms of L2-distance between the learners’ reward parameters and
the ground-truth parameters, the total variance between the learners’ policy and the policy derived
with the ground-truth reward and the actual accumulated reward acquired by the learner after the
learning completes.

The results are presented in figure 17. The advantages of the teacher-aware learners are significant
(p-value < 0.01) on all measurements, computed with a paired t-test. We also did an ablative study,
in which the human teacher was replaced by a random teacher. As shown in the figure 17 and 18,
when paired with a random teacher, the teacher-aware learner doesn’t show any advantage and has
much larger variance. That is to say, the teacher model only benefits the learning when it matches
with the actual teacher data selection process. Otherwise, the teacher-aware learner will over-interpret
the data he receives. Figure 18 shows the learning curves of all the map configurations.

References
[1] P. Jupyter, M. Bussonnier, J. Forde, J. Freeman, B. Granger, T. Head, C. Holdgraf, K. Kelley,

G. Nalvarte, A. Osheroff et al., “Binder 2.0-reproducible, interactive, sharable environments for
science at scale,” in Proceedings of the 17th python in science conference, vol. 113, 2018, p. 120.

[2] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley,
J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and C. Willing, “Jupyter
notebooks – a publishing format for reproducible computational workflows,” in Positioning and
Power in Academic Publishing: Players, Agents and Agendas, F. Loizides and B. Schmidt, Eds.
IOS Press, 2016, pp. 87 – 90.

[3] K. Li and J. W. Burdick, “Online inverse reinforcement learning via bellman gradient iteration,”
arXiv preprint arXiv:1707.09393, 2017.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

17

	Proofs and Derivations
	Gradient Derivation
	Proof of Theorem 1
	Proof of Corollary 2

	Detailed Experiment Settings
	Linear Models on Synthesized Data
	Linear Classifiers on MNIST Dataset
	Linear Classifiers on CIFAR-10
	Linear Classifiers on Tiny ImageNet
	Linear Regression for Equation Simplification
	Online Inverse Reinforcement Learning
	Adversarial Teacher
	Human Teacher

