
Published as a conference paper at ICLR 2023

APPENDIX OF “A HIGHER PRECISION ALGORITHM
FOR COMPUTING THE 1-WASSERSTEIN DISTANCE”

Pankaj K. Agarwal1*, Sharath Raghvendra2, Pouyan Shirzadian2, and Rachita Sowle2

1Duke University, 2Virginia Tech

A MISSING DETAILS OF SECTION 2.1

In this section, we analyze the additive error of the 1-Wasserstein distance computed in Section 2.1.

Recall that the algorithm of Section 2.1 computes a transport plan in two steps. In the first step, it
computes a transport plan σ1 by arbitrarily transporting supplies to demands within each non-empty
cell of the grid. Suppose U1 supplies are transported in this step. In the second step, for each surplus
(resp. deficit) cell □, the algorithm moves the excess supplies (resp. demands) of the points inside □
to the center point c□ and creates the input instanceA∪B. Then, it computes an ε/2-close transport
plan σ2 on A ∪ B, which transports U − U1 supplies. The algorithm reports w(σ1) + w(σ2) as an
approximate 1-Wasserstein distance.

We define some notations that are used in the analysis. For any point set A ∪ B and any transport
plan σ on A∪B, a demand point a ∈ A (resp. supply point b ∈ B) is called a free point with respect
to σ if the total supplies transported into a (resp. from b) by σ is less than −η(a) (resp. η(b)). The
transport plan σ is a partial transport plan if there exists free points in A ∪ B with respect to σ;
otherwise, σ is a complete transport plan. For any partial transport plan σ, let Aσ

F (resp. Bσ
F) denote

the set of free points of A (resp. B) with respect to σ. For any free demand point a ∈ Aσ
F (resp.

free supply point b ∈ Bσ
F), let ησ(a) (resp. ησ(b)) denote the excess weight of a (resp. b); i.e, the

amount of demands of a (resp. supplies of b) that is not transported by σ. More precisely, define
ησ(a) := −|η(a)|+

∑
b′∈B σ(a, b′) (resp. ησ(b) := η(b)−

∑
a′∈A σ(a′, b)).

Suppose σ∗ denote an optimal transport plan on A ∪ B. In this section, we show that the reported
cost is ε-close to the optimal transport cost; i.e, we show that w(σ1) + w(σ2) ≤ w(σ∗) + εU .

Bounding the reported cost: Since the diameter of each cell of the grid is ε/2, each edge carrying
a positive amount of supplies in σ1 has a length of at most ε/2; therefore, w(σ1) ≤ εU1/2. Thus, it
remains to bound the cost of σ2 by w(σ∗) + εU − εU1/2. We bound w(σ2) as follows.

• First, in Lemma A.1, we show that there exists a transport plan σF on the set of free points
Aσ1

F ∪B
σ1

F such that σF transports all the excess weights ησ1(·) on the points in Aσ1

F ∪B
σ1

F
and has a cost of at most w(σ∗) + w(σ1).

• Second, we transform σF into a transport plan σ∗
2 on the instance A ∪ B and show, in

Lemma A.2, that the cost of σ∗
2 is at most w(σF) +

ε
2 (U − U1).

• Finally, using the fact that σ2 is an ε
2 -close transport plan on A ∪ B, we bound the cost of

σ2 by w(σ∗
2) +

ε
2 (U − U1).

Combining all the above mentioned bounds, we get

w(σ2) ≤ w(σ∗
2) +

ε

2
(U − U1) ≤ w(σF) + ε(U − U1) ≤ w(σ∗) + w(σ1) + ε(U − U1). (1)

As mentioned earlier, w(σ1) ≤ ε
2U1. Therefore,

w(σ1) + w(σ2) ≤ w(σ∗) + 2w(σ1) + ε(U − U1) ≤ w(σ∗) + εU,

as desired. It remains to show the details of the steps of our analysis. In the following, first, we
define some notations that are used in describing the steps of bounding w(σ2). Then, we describe
the details of each step of our analysis.

∗Following convention from Theoretical Computer Science, all authors are ordered alphabetically.

1

Published as a conference paper at ICLR 2023

Notations and definitions: Define σ′ := σ∗−σ1 to be a function that assigns σ′(a, b) = σ∗(a, b)−
σ1(a, b) to any pair of points (a, b) ∈ A×B. The function σ′ has the following properties:

(1)
∑

b′∈B σ′(a, b′) = |ησ1(a)| for any a ∈ Aσ1

F and
∑

b′∈B σ′(a, b′) = 0 for any a ∈ A\Aσ1

F ,

(2)
∑

a′∈A σ′(a′, b) = ησ1(b) for any b ∈ Bσ1

F and
∑

a′∈A σ′(a′, b) = 0 for any b ∈ B \Bσ1

F .

Consider a directed graph G on the point set A ∪ B formed as follows. For any pair of points
(a, b) ∈ A×B, if σ′(a, b) > 0, then G contains an edge from b to a with a capacity σ′(a, b), which
we refer to by a forward edge. On the other hand, if σ′(a, b) < 0, then G contains an edge from a to
b with a capacity |σ′(a, b)|, which we refer to by a backward edge. For any demand point a ∈ A, we
define the capacity of a, denoted by c(a), to be c(a) =

∑
b′∈B σ′(a, b′). Similarly, for any supply

point b ∈ B, we define the capacity c(b) of b to be c(b) =
∑

a′∈A σ′(a′, b).

An augmenting path P with respect to σ1 is any simple directed path in G from a free supply point
bP ∈ Bσ1

F to a free demand point aP ∈ Aσ1

F . Note that the edges of any augmenting path alternates
between forward edges and backward edges. We define the capacity of P , denoted by β(P), as

β(P) = min

{
c(aP), c(bP), min

(u,v)∈P
{|σ′(u, v)|}

}
. (2)

One can augment the transport plan σ1 along the augmenting path P by setting σ1(a, b) ←
σ1(a, b) + β(P) for any forward edge (b, a) ∈ P and σ1(a, b) ← σ1(a, b) − β(P) for any
backward edge (a, b) ∈ P . As a result of the augmentation, the excess weights of the endpoints
aP and bP reduce by β(P). Equivalently, one can update the function σ′ using P by setting
σ′(a, b) ← σ′(a, b) − β(P) for any forward edge (b, a) ∈ P and σ′(a, b) ← σ′(a, b) + β(P)
for any backward edge (a, b) ∈ P .

Similar to augmenting paths, one can define an alternating cycle as a directed cycle C on the graph
G. For any cycle C, we define the capacity of the cycle as β(C) = min(a,b)∈C{|σ′(a, b)|}. One
can cancel by setting σ1(a, b)← σ1(a, b) + β(C) for any forward edge (b, a) ∈ C and σ1(a, b)←
σ1(a, b) − β(C) for any backward edge (a, b) ∈ C. Equivalently, one can update σ′ by setting
σ′(a, b)← σ′(a, b)−β(C) for any forward edge (b, a) ∈ C and σ′(a, b)← σ′(a, b)+β(C) for any
backward edge (a, b) ∈ C. Cancelling a cycle does not affect the capacity of the points; however, it
reduces the capacity on the edges of the cycle.

Computing the transport plan σF : Recall that σ1 is a partial transport plan and σ∗ is an optimal
transport plan on A ∪ B. In this part, we show that one can obtain a transport plan σF on the point
sets Aσ1

F ∪Bσ1

F such that

(i) σF transports all excess weights ησ1(·) on the points in Aσ1

F ∪Bσ1

F , and

(ii) w(σF) ≤ w(σ∗) + w(σ1).

Consider the transport σF on Aσ1

F ∪ Bσ1

F constructed iteratively as follows. In each iteration, we
find an augmenting path P from a free supply point b ∈ Bσ1

F to a free demand point a ∈ Aσ1

F in
G. We update the function σ′ using P and assign a transportation of β(P) supplies from b to a to
the transport plan σF . After enough iterations, there will be no remaining free points (the capacity
of all points in A ∪ B will be 0) and the transport plan σF would be a complete transport plan on
Aσ1

F ∪Bσ1

F with the weight function ησ1
(·). Figure 1(a) shows an example of σF .

To find an augmenting path, one can execute a DFS procedure from a free supply point b ∈ Bσ1

F on
the graph G to find any free demand point a ∈ Aσ1

F . During the execution of the DFS procedure,
if we find an alternating cycle (which happens when the DFS finds an edge to an already visited
point), we can update σ′ along the cycle right away, remove the points on the cycle from the search
tree, and continue our search. For any point u ∈ A ∪ B visited by the DFS procedure, if u is not a
free point (i.e, c(u) = 0), then the DFS has visited u using a directed edge to u. Since c(u) = 0,
there also exists an outgoing edge incident on u in G; thus, the search cannot stop at a point that is
not free. In other words, the DFS procedure, possibly after updating σ′ along a set of cycles, finds
an augmenting path.

2

Published as a conference paper at ICLR 2023

(a) (b)

Figure 1: (a) Augmenting paths (solid lines) and the obtain transport plan σF (dashed lines), and,
(b) Obtaining σ∗

2 (dashed lines) from σf (solid lines).

Analyzing the cost of σF : Next, we show that the cost of σF is bounded by w(σ∗) + w(σ1). For
any augmenting path P from bP ∈ Bσ1

F to aP ∈ Aσ1

F , by the triangle inequality, ∥bP − aP ∥ ≤∑
(u,v)∈P ∥u− v∥. For any pair of points (a, b) ∈ A× B, let Pab denote the set of all augmenting

paths containing the edge (a, b).

w(σF) =
∑
P∈P

β(P)∥aP − bP ∥

≤
∑
P∈P

β(P)
∑

(u,v)∈P

∥u− v∥

=
∑

(a,b)∈A×B

∑
P∈Pab

β(P)∥a− b∥.

For any forward edge (b, a) in G, during the process of finding augmenting paths and updating σ′, we
have iteratively decreased the value of σ′(b, a) while guaranteeing (by Equation 2) that σ′(b, a) ≥ 0.
Thus,

∑
P∈Pba

β(P) ≤ σ′(b, a) = σ∗(b, a) − σ1(b, a) ≤ σ∗(b, a). Similarly, for any backward
edge (a, b) in G, we iteratively increase the value of σ′(a, b) while guaranteeing that σ′(a, b) ≤ 0.
As a result,

∑
P∈Pab

β(P) ≤ −σ′(a, b) ≤ σ1(a, b). Therefore,

w(σF) ≤
∑

(a,b)∈A×B

∑
P∈Pab

β(P)∥a− b∥

=
∑

(a,b)∈A×B:σ′(a,b)>0

∥a− b∥
∑

P∈Pab

β(P) +
∑

(a,b)∈A×B:σ′(a,b)<0

∥a− b∥
∑

P∈Pab

β(P)

≤
∑

(a,b)∈A×B:σ′(a,b)>0

∥a− b∥σ∗(a, b) +
∑

(a,b)∈A×B:σ′(a,b)<0

∥a− b∥σ1(a, b)

≤ w(σ∗) + w(σ1).

Lemma A.1. There exists a complete transport plan σF on Aσ
F ∪Bσ

F with the weight function ησ(·)
such that w(σF) ≤ w(σ∗) + w(σ1).

Computing the transport plan σ∗
2: Using the transport plan σF obtained in the previous step,

in this step, we construct a transport plan σ∗
2 on A ∪ B as follows. For any pair of points (a, b) ∈

Aσ1

F × Bσ1

F with σF (a, b) > 0, let □a and □b denote the cells of the grid containing a and b,
respectively. Note that □a (resp. □b) is a deficit (resp. surplus) cell, since □a (resp. □b) contains
a free demand point (resp. supply point) with respect to σ1. We assign a transportation of σF (a, b)
from c□b

to c□a
to the transport plan σ∗

2 . Note that σ∗
2 is a complete transport plan for A ∪ B.

Figure 1(b) shows an example of σ∗
2 . This completes the construction of σ∗

2 .

3

Published as a conference paper at ICLR 2023

Figure 2: An example showing edges of first case (a1, b1), second case (a2, b2), and third case
(a3, b3). The budget assigned to them are shown as dashed lines.

Next, we bound the cost of σ∗
2 . Since the diameter of each cell is ε/2, by the triangle inequality,

w(σ∗
2) =

∑
(a,b)∈A

σ1
F ×B

σ1
F

σF (a, b)∥c□a
− c□b

∥

≤
∑

(a,b)∈A
σ1
F ×B

σ1
F

σF (a, b)(∥a− b∥+ ε

2
)

≤ w(σF) +
ε

2
(U − U1).

Lemma A.2. Given a complete transport plan σF on the set of free points Aσ1

F ∪B
σ1

F with the weight
function ηF (·), there exists a transport plan σ∗

2 on A ∪ B such that w(σ∗
2) ≤ w(σF) +

ε
2 (U − U1).

This completes the description of the steps of our analysis.

B MISSING DETAILS OF SECTION 3

In this section, we provide the details of the discussion on the quality of approximation in Sec-
tion 3 and show that the cost computed by our 1-Wasserstein algorithm is an O(d log√d/ε n)-
approximation of the optimal transport cost on the point set A ∪B.

For any level i of the tree T , recall that Ci denotes the set of all cells at level i, the grid Gi defines
level i of T , and ℓi is the cell-side-length of Gi. In the following, first, we describe the two steps of
our analysis to show that for each level i < h, the expected cost of the transport plans computed at
all cells of level i is O(d)w(σ∗).

Assigning Budgets: For a level i < h, consider the grids Gi and Gi+1 (this is defined since i < h).
For any edge (a, b) ∈ A×B with σ∗(a, b) > 0, we define its budget ϕi(a, b) as follows:

• Case 1: both a and b are inside the same cell of Gi+1: We set ϕi(a, b) = 0.
• Case 2: both a and b are inside the same cell of Gi but in different cells □a and □b of
Gi+1: We set ϕi(a, b) = (

√
dℓi+1 + ∥c□a

− c□b
∥)σ∗(a, b). Intuitively, this is the cost of

moving from b to a via c□b
and c□a

.
• Case 3: a and b lie inside different cells □a and □b of Gi: We set ϕi(a, b) =

(
√
dℓi)σ

∗(a, b). Intuitively, this is the cost of moving a to c□a
and b to c□b

.

Figure 2 shows an example of each of the above three cases. The following lemma relates the
expected budget on any edge to its Euclidean cost.
Lemma B.1. For any edge (a, b) ∈ A×B, E [ϕi(a, b)] = O(d)∥a− b∥σ∗(a, b).

4

Published as a conference paper at ICLR 2023

Proof. The probability of a and b lying inside the same cell of Gi but in different cells □a and □b of
Gi+1 is no more than the probability of (a, b) crossing Gi+1. Furthermore, the probability that a and
b lie inside different cells of Gi is equal to the probability of (a, b) crossing the grid Gi. Therefore,

E [ϕi(a, b)] ≤ Pr((a, b) crosses Gi+1)(
√
dℓi+1 + ∥c□a

− c□b
∥)σ∗(a, b)

+ Pr((a, b) crosses Gi)
√
dℓiσ

∗(a, b).

By the triangle inequality,

∥c□a
− c□b

∥ ≤ ∥ca − a∥+ ∥a− b∥+ ∥b− cb∥ ≤
√
dℓi+1 + ∥a− b∥.

In addition, for any j ≤ h, the probability that the edge (a, b) crosses the grid Gj is

Pr((a, b) crosses Gj) ≤ min{1,
√
d∥a−b∥
ℓj

}. Thus,

E [ϕi(a, b)] ≤ Pr((a, b) crosses Gi+1)(2
√
dℓi+1 + ∥a− b∥)σ∗(a, b)

+ Pr((a, b) crosses Gi)
√
dℓiσ

∗(a, b)

≤ ∥a− b∥σ∗(a, b) +

(√
d∥a− b∥
ℓi+1

2
√
dℓi+1 +

√
d∥a− b∥

ℓi

√
dℓi

)
σ∗(a, b)

≤ (1 + 3d)∥a− b∥σ∗(a, b).

Using the linearity of expectation, the following is a straightforward corollary of Lemma B.1.

Corollary B.2. E
[∑

(a,b)∈A×B ϕi(a, b)
]
= O(d)w(σ∗).

Redistribution of Budgets to cells: In this section, we distribute the total budget on all edges of σ∗

to non-empty cells of Gi and show that the budget assigned to any cell □ ∈ Gi is at least w(σ□)/2.
For any cell □ at level i of T , we define a budget ϕ□ as follows. For any edge (a, b) ∈ A×B with
σ∗(a, b) > 0, if

• both a and b lie inside □: We assign the entire budget of (a, b) (i.e, ϕi(a, b)) to ϕ□.

• only a or b is inside □: We assign half the budget of (a, b) (i.e, ϕi(a, b)/2) to ϕ□.

It is easy to observe that the total budget of all cells at level i of T is equal to the total budget of all
edges carrying a positive amount of supplies in σ∗.

For any cell □, the following lemma relates the cost of σ□ to the budget assigned to □.
Lemma B.3. For any cell □ at a level i < h of T , w(σ□) ≤ 2ϕ□.

Proof. To prove the lemma, we show that there exists a transport plan σ′ on the instance I□ that has
a cost no more than ϕ□. Assuming this and considering that σ□ is a 2-approximate transport plan
on I□, we get w(σ□) ≤ 2w(σ′) ≤ 2ϕ□, as desired. Recall that V□ = (A ∪ B) ∩□. For any point
u ∈ V□, let □u be the child of □ that contains u. For any edge (u, v) with σ∗(u, v) > 0, consider
the following cases:

• If u, v ∈ V□ and □u ̸= □v , then σ′ transports σ∗(u, v) supplies from c□u
to c□v

. Note that
the edge (u, v) contributes to ϕ□ by σ∗(u, v)(

√
dℓi+1 + ∥c□u

− c□v
∥), which is greater

than the cost of transporting σ∗(u, v) supplies from c□u
to c□v

.

• If u ∈ V□ and v /∈ V□, then if u is a supply point, then σ′ transports σ∗(u, v) supplies from
c□u

to c□. Otherwise, u is a demand point and σ′ transports σ∗(u, v) supplies from c□ to
c□u

. Note that (u, v) contributes to ϕ□ by σ∗(u, v)
√
dℓi
2 , which is greater than the cost of

transporting σ∗(u, v) supplies between c□u
and c□.

• If u, v ∈ V□ and □u = □v or if u, v /∈ V□, then σ′ do not transport any supplies to/from
the points u and v.

5

Published as a conference paper at ICLR 2023

By the discussion above, the cost of σ′ is no more than ϕ□. However, σ′ might not be a feasible
transport plan for the instance I□. In that case, we can improve σ′ as follows. For any points
a, b ∈ V□ and a′, b′ /∈ V□ such that σ∗(a, b′), σ∗(a′, b) > 0, the transport plan σ′ transports supplies
from c□ to c□a

and from c□b
to c□, which we replace with a direct transportation from c□b

to c□a

without increasing the cost of σ′. Similarly, for any pair of cell centers cu and cv in I□, where σ′

transports supplies both from cu to cv and from cv to cu, we replace them with a direct transportation
of supplies from one to the other without increasing the cost of σ′. The obtained transport plan is a
feasible solution for the instance I□ with a cost w(σ′) ≤ ϕ□.

Combining Lemma B.4, Corollary B.2, and Lemma B.3, we get the following.

E

h−1∑
i=0

∑
□∈Ci

w(σ□)

 ≤ 2

h−1∑
i=0

E

∑
□∈Ci

ϕ□

 = 2

h−1∑
i=0

E

 ∑
(a,b)∈A×B

ϕi(a, b)

= O(d log√d/ε n)w(σ

∗). (3)

Next, we show that the expected distortion cause by moving the points to the centers of the cells
of Gh is also bounded by O(d log√d/ε n)w(σ

∗). For any non-empty cell □ ∈ Ch, σ□ moves the

supplies or demands of the only point in V□ to c□. Since the diameter of the cells at level h is
√
dℓh,

E

 ∑
□∈Ch

w(σ□)

 ≤ E

 ∑
□∈Ch

√
dη(□)ℓh

 = 2
√
dUE [ℓh] . (4)

Thus, it remains to bound the expected value of ℓh.

Lemma B.4. E [ℓh] = O(
√
dCmin log√d/ε n).

Proof. For any level i, recall that ℓi = 2(ε
4
√
d
)i. We bound the probability that h = i as follows.

Let (u, v) be the closest pair of points in A ∪ B. Then, the probability that h = i is no more than
the probability that u and v lie inside different cells of Gi (i.e, the edge (u, v) crosses the grid Gi),
which is at most

√
d∥u−v∥

ℓi
.

Define hmax = ⌈log 4
√

d
ε

2
√
d

Cmin
⌉, where Cmin denotes the distance of the closest pair of points in

A ∪B. Note that h ≤ hmax, since the diameter of any cell with side-length ℓhmax
= 2(ε

4
√
d
)hmax is

less than Cmin and no two points of A∪B can lie inside the same cell of a grid with cell-side-length
ℓhmax . Since the spread of A ∪B is nO(1), hmax = O(log√d/ε n). Thus,

E [ℓh] =

hmax∑
i=1

ℓiPr(h = i) ≤
hmax∑
i=1

ℓi

√
dCmin

ℓi
= O(

√
dCmin log√

d
ε

n).

Plugging the expected value of ℓh from Lemma B.4 into Equation 4,

E

 ∑
□∈Ch

w(σ□)

 ≤ 2
√
dUE [ℓh] = O(dUCmin log√d/ε n) = O(d log√d/ε n)w(σ

∗), (5)

where the last equality holds true since w(σ∗) ≥ UCmin. The following is a straight-forward
corollary from the combination of Equation 3 and Equation 5.

Corollary B.5. E
[∑

□∈T w(σ□)
]
= O(d log√d/ε n)w(σ

∗).

6

Published as a conference paper at ICLR 2023

C MISSING DETAILS OF SECTION 4

C.1 INPUT TRANSFORMATION

Let A′ ∪ B′ be the input point set. Similar to Agarwal et al. (2022), we transform A′ ∪ B′ into
another point set A ∪B such that

(T1) The coordinates of the points in A ∪B are positive integers bounded by nO(1),

(T2) Any optimal matching with respect to A ∪B is a (1 + ε) approximation for A′ ∪B′, and,

(T3) The cost of the optimal matching of A and B is at least 5
√
dn/ε and at most 5d3/2n log n/ε.

The details of this transformation are as follows. Recall that the hierarchical greedy algorithm
described in Section 1 computes, in expectation, an O(d log n)-approximation of the cost of the
optimal matching. Suppose θ is the minimum value returned by O(log n) independent executions
of the hierarchical greedy algorithm on A′ ∪ B′. Note that θ is an O(d log n)-approximation of
the optimal matching cost with a high probability. Using θ, we can transform any point p′ =

(px1
, . . . , pxd

) ∈ A′ ∪B′ into another point p = (⌈ 5d
3/2n logn

εθ px1
⌉, . . . , ⌈ 5d

3/2n logn
εθ pxd

⌉) to obtain
a set of points A ∪ B. If any pair of points (a, b) ∈ A× B map to the same location, we match the
two and remove them from A ∪B. The resulting point set satisfies (T1)–(T3).

C.2 RETRIEVING AN APPROXIMATE BIPARTITE MATCHING

In this section, we show how to retrieve a matching M on the point set A ∪ B using an identical
approach as described in Section 3. We process the grids ⟨Gh, . . . ,G1⟩ in the decreasing order of
their level. For any cell □ of Gh, we map the unique point in V□ to the center point c□. Inductively,
assume that for a level i < h, after processing all non-empty cells of Gi+1, conditions (i)–(iii)
defined in Section 3 hold for each cell of that grid. For each non-empty cell □ of Gi, we show how
to process □ so that conditions (i)–(iii) hold for □ as well. For any two children □1,□2 ∈ C[□],
we match σ□(c□1

, c□2
) many unmatched points that are mapped to c□1

to the unmatched points
that are mapped to c□2

. Additionally, for any child □1 ∈ C[□] with σ□(c□1
, c□) > 0, we map

σ□(c□1
, c□) unmatched points from c□1

to c□.

C.3 QUALITY OF APPROXIMATION

In this section, we show that the cost returned by the algorithm is an O(d log log n)-approximate
matching cost. To do so, using an argument identical to Section 3, we can show that the total cost of
the transport plans computed at all cells of level i (in expectation) is at most O(d)w(M∗).

Lemma C.1. E
[∑

□∈Ci
w(σ□)

]
≤ O(d)w(M∗).

Summing over all O(log log n) levels of T , we get the following corollary.

Corollary C.2.
∑h−1

i=1 E
[∑

□∈Ci
w(σ□)

]
= O(d log log n)w(M∗).

Furthermore, using an argument identical to Section 3, we can show that the expected cost of moving
the points to the centers of the cells of the grid Gh is O(d log log n)w(M∗).

Lemma C.3. E
[∑

□∈Ch
w(σ□)

]
= O(d log log n)w(M∗).

Thus, the computed cost would be an O(d log log n)-approximation of the optimal matching cost,
in expectation.

C.4 EFFICIENCY OF OUR ALGORITHM

In this section, we analyze the efficiency of our EBM algorithm and show that the running time
of our algorithm is O(T (n, ε/d) log log n). To do so, first, in Lemma C.4, we show that for each
non-zero level 0 < i ≤ h, the algorithm requires O(T (n, ε/d)) time to process all cells at level i.
Summing over all levels 0 < i ≤ h, the total running time of our algorithm on all non-root cells is
O(T (n, ε/d) log log n). Second, in Lemma C.7, we show that, with probability at least 1− ε√

d
, no

7

Published as a conference paper at ICLR 2023

edges of an optimal matching will cross G1. In this case, all children of the root cell □∗ are neutral
cells and the problem instance I□∗ is an empty instance. By constructing O(log√d/ε n) randomly-
shifted hierarchical partitions, with a high probability, in at least one partition, all children of the
root are neutral cells. Thus, with a high probability, we obtain a randomly shifted partition where
no computation is needed for the root cell and the total running time of our algorithm would be
O(T (n, ε/d) log log n). We describe the details of each step in the following.
Lemma C.4. For any level 0 < i ≤ h, our EBM algorithm processes all cells of level i in at most
T (n, ε/d) time.

Proof. For any cell □, recall that n□ denotes the number of points in I□. Define ni =
∑

□∈Ci
n□.

For any cell □ ∈ Ci, the spread of the points in I□ is O
(

d
εn

1/2i
)

. Therefore, since T (n, ε) =

Õ(nk/ε) with k ≥ 1, the execution time of our algorithm over all cells of level i is∑
□∈Ci

T
(
n□,

ε

dn1/2i

)
≤ T

(
ni,

ε

dn1/2i

)
.

Additionally, since ni ≤ n, we have E
[
nk
i

]
≤ nk−1E [ni] =

(
E[ni]
n

)
nk. Therefore,

∑
□∈Ci

T
(
n□,

ε

dn1/2i

)
≤ T

(
ni,

ε

dn1/2i

)
≤ n1/2iE [ni]

n
T
(
n,

ε

d

)
. (6)

In Corollary C.6 below, we show that E [ni] ≤ n1− 1

2i . Plugging into Equation 6, the time taken to
process all cells of level i is

E [ni]

n1− 1

2i

T
(
n,

ε

d

)
≤ T

(
n,

ε

d

)
,

as desired.

Next, we bound the expected value of ni. For any cell □ and any child □′ ∈ C[□], the weight of c□′

in I□ is the minimum number of matching edges connecting a point inside □′ to a point out of it in
any perfect matching. Summing over all cells of level i, ni is upper-bounded by the number of edge
of M∗ crossing the grid Gi+1. The following lemma bounds this number as a function of w(M∗)
and ℓi+1.
Lemma C.5. For any 0 < j ≤ h, the expected number of matching edges in M∗ crossing Gj is at
most

√
dw(M∗)/ℓj .

Proof. For any edge (a, b) ∈ M∗, the probability that the edge (a, b) crosses the grid Gj

is Pr((a, b) crosses Gj) ≤
√
d∥a−b∥
ℓj

. Let Xj(a, b) be an indicator random variable such that

Xj(a, b) = 1 if (a, b) crosses Gj and Xj(a, b) = 0 otherwise. Thus, E [Xj(a, b)] ≤
√
d∥a−b∥
ℓj

.
Define Xj to be a random variable indicating the number of edges of M∗ crossing Gj ; i.e,
Xj =

∑
(a,b)∈M∗ Xj(a, b). Using the linearity of expectation, the expected value of Xj is

E [Xj] =
∑

(a,b)∈M∗

E [Xj(a, b)] ≤
√
dw(M∗)

ℓj
.

By invoking Lemma C.5 on level i + 1, as discussed above, E [ni] ≤
√
dw(M∗)/ℓi+1. By defini-

tion, ℓi+1 = δn1/2i and from property (3) of the input transformation, w(M∗) ≤ 5d3/2n log n/ε.
Therefore,

E [ni] ≤
√
dw(M∗)

ℓi+1
≤ 5d2n log n/ε

5d2n
1

2i log n/ε
≤ n1− 1

2i .

Thus, we get the following corollary.

8

Published as a conference paper at ICLR 2023

Corollary C.6. For any 0 < j ≤ h, E [ni] ≤ n1− 1

2i .

Finally, we show that with probability at least 1− ε/
√
d, no edges of an optimal matching M∗ cross

the grid G1.

Lemma C.7. Let M∗ be an optimal matching on the point set A∪B. Then, with probability at least
1− ε/

√
d, no edge of M∗ crosses G1.

Proof. Recall that ℓ1 = 5d5/2n log n/ε2. For any pair of points (a, b) ∈ A×B, the probability that
the edge (a, b) crosses the grid G1 is upper-bounded as follows.

Pr((a, b) crosses G1) ≤
√
d∥a− b∥

5d5/2n log n/ε2
. (7)

Let X(a,b) be an indicator random variable where X(a,b) = 1 if (a, b) crosses G1 and X(a,b) = 0

otherwise. Clearly, E
[
X(a,b)

]
= Pr((a, b) crosses G1). Define X =

∑
(a,b)∈M∗ X(a,b) to be the

number of edges of M∗ crossing the grid G1. By the linearity of expectation and Equation 7,

E [X] =
∑

(a,b)∈M∗

E
[
X(a,b)

]
≤

∑
(a,b)∈M∗

√
d∥a− b∥

5d5/2n log n/ε2
=

w(M∗)

5d2n log n/ε2
≤ ε√

d
,

where the last inequality follows from property (T3) in the input transformation. Therefore, with
probability at least 1− ε/

√
d, X = 0 and no edge of M∗ crosses the grid G1.

D A FASTER RELATIVE APPROXIMATION ALGORITHM VIA APPROXIMATE
NEAREST NEIGHBOR

Both of our algorithms in Section 3 and Section 4 build a hierarchical structure and create an in-
stance of the optimal transport at each cell of this hierarchical structure. Our algorithms then use
an additive approximation algorithm for each such instance to obtain a 2-approximate transport plan
(Lemma 2.2). In this section, we show that, instead of boosting the additive approximation, if we
are only interested in achieving a relative approximation, it suffices if we find a certain bi-criteria
approximate transport plan (defined below). In Euclidean setting, this bi-criteria approximate trans-
port plan can be found significantly faster than additive approximate transport plans and therefore,
we obtain faster execution times for our relative approximation algorithms (Theorems 1.3 and 1.4).

Given µ (with support A) and ν (with support B), let w∗ denote the cost of the optimal transport
plan from µ to ν. For parameter ε > 0 and α > 1, let (α, ε)-approximate transport plan on A ∪ B
be a transport plan σ satisfying w(σ) ≤ αw∗ + ε. Using an identical discussion as in Section 2.2,
when points have a unit diameter, by setting ε = 1/∆, the additive error of the transport plan will
be at most w∗, and as a result, any (α, 1/∆)-approximate transport plan is also an (α + 2)-relative
approximate transport plan. In the following, we show that (α, ε)-approximate transport plans can
be computed efficiently in O

(
nC2Φ(α,n)

ε2

)
time. We get the algorithms of Theorems 1.3 and 1.4

by simply replacing additive approximation algorithms used within the algorithms of Theorems 1.1
and 1.2, with a (α, ε)-approximation algorithm.

In this section, we will adapt the additive approximation algorithm of Lahn et al. (2019) (we refer to
this algorithm by the LMR-Algorithm) to obtain an (α, ε)-approximate transport plan. The execu-
tion time of this adaptation is Õ(nΦ(n, α)/ε2) time which is significantly faster than the execution
time of O(n2/ε+ n/ε2) achieved by the LMR-algorithm; here, Õ hides factors of poly(logn).

Overview of the LMR-Algorithm: For input points A ∪ B of size n and diameter C, the LMR-
Algorithm computes an ε-close transport plan on A∪B as follows. Initially, the distances are scaled
by 4/ε and rounded down so that the distance between any two points is an integer bounded by
O(C/ε). Furthermore, all demands and supplies are scaled and rounded so that the total supplies
and demands are integers and O(n/ε). The LMR-algorithm then iteratively executes phases of the
Gabow and Tarjan’s matching algorithm to match the demands to supplies. Within each phase, the
dual weights of the free supply nodes increase by at least 1. Using the fact that the largest edge cost

9

Published as a conference paper at ICLR 2023

is C/ε, the authors show that the algorithm transports all supplies in O(C/ε) phases. The algorithm
then rescales the supplies and costs and maps the solution computed by this algorithm to an ε-close
transport plan.

As shown by Lahn & Raghvendra (2019), one can execute each phase of Gabow and Tarjan’s algo-
rithm by simply implementing a partial-DFS procedure and adjusting the dual weights during the
procedure. Such a partial-DFS based implementation raises the dual weight of each free supply
node increases by exactly 1. Using the arugments in Lahn et al. (2019), it follows that the algorithm
transports all the supplies in O(C/ε) phases. In order to speed up a phase of Gabow and Tarjan’s
algorithm, Agarwal and Sharathkumar Agarwal & Sharathkumar (2014) relaxed the feasibility con-
ditions to the following.

y(b)− y(a) ≤ αd(a, b), if σ(a, b) < min{η(a), η(b)},
y(b)− y(a) ≥ d(a, b), if σ(a, b) > 0. (8)

They showed how one can maintain these relaxed feasibility conditions and implement a partial-
DFS in O(nΦ(n, ε)) time. Similar to this, we can relax the feasibility conditions for the LMR
algorithm and then execute the phases of the LMR algorithm using an approximate nearest neighbor
data structure. Consequently, we find an (α, ε)-approximate transport plan in O(nC2Φ(n, ε)/ε2)
time leading to Theorems 1.3 and 1.4

E ADDITIONAL EXPERIMENTS

In this section, we show the results of our additional experiments. In addition to the two datasets
(15D and Real) introduced in Section 5, we use three more datasets in our experiments: (i) a uniform
distribution inside a unit square (Uniform), (ii) 3-dimensional Gaussian mixture with 2 mean points
centered at (0.24, 0.24, 0.24) and (0.72, 0.72, 0.72) inside a unit cube (Bimodal), and (iii) a uniform
distribution from inside a 2-dimensional unit square placed on a random plane in 6-dimensional
space (6D).

E.1 COMPARISON WITH SINKHORN ALGORITHM

In this experiment, we want to determine, for any distribution and any fixed sample set drawn from
that distribution, how long it takes for the Sinkhorn algorithm to compute a transport plan with a
comparable cost to ours. Using a binary search, we identify, for each sample set, the value of the
regularization parameter η in the Sinkhorn algorithm which results in a cost that is nearly identical
to the cost computed by our algorithm. Figure 3 depicts the results of this experiment.

E.2 COMPARISON WITH THE LMR ALGORITHM

In this experiment, we use the LMR algorithm as the blackbox solver in our 1-Wasserstein algorithm.
We compare our result with the result of applying the LMR algorithm on the entire pointset. In
this experiment, we compared the execution time of our 1-Wasserstein algorithm with the LMR
algorithm when the two algorithms produce comparable costs. Figure 4 shows the cost and running
time plots of the executions of our algorithm and that of the LMR algorithm for four data sets we
use in our experiments, i.e. Uniform, Bimodal, 15D-Uniform and the Real dataset.

We can see in Figure 4 that while computing similar costs, the running time of our algorithm grows
drastically slower than the LMR algorithm in all the cases.

E.3 COMPARISON WITH THE GEOMETRIC-ADDITIVE ALGORITHM

In this experiment, we compared the performance of our 1-Wasserstein and EBM algorithms to the
Geometric Additive algorithm from Section 2.1. The results are illustrated in Figure 5.

REFERENCES

Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching with
metric and geometric costs. In Proc. ACM Symposium on Theory of Computing, pp. 555–564,

10

Published as a conference paper at ICLR 2023

(a) 2D: n - time (b) Real: n - time (c) 6D: n - time (d) 15D: n - time

(e) 2D: n - time ratio (f) Real: n - time ratio (g) 6D: n - time ratio (h) 15D: n - time ratio

(i) 2D: cost - time (j) Real: cost - time (k) 6D: cost - time (l) 15D: cost - time

(m) 2D: n - η (n) Real: n - η (o) 6D: n - η (p) 15D: n - η

Figure 3: Comparison of our 1-Wasserstein algorithm with Sinkhorn algorithm while producing
solutions of similar quality. (a)-(d) Sample size and execution time, (e)-(h) Sample size and the ratio
of the execution time of Sinkhorn and our Wasserstein algorithm, (i)-(l) Cost and execution time,
(m)-(n) Sample size and value of the regularization parameter η in Sinkhorn algorithm.

2014. doi: 10.1145/2591796.2591844. URL https://doi.org/10.1145/2591796.
2591844.

Pankaj K Agarwal, Sharath Raghvendra, Pouyan Shirzadian, and Rachita Sowle. An improved
ε-approximation algorithm for geometric bipartite matching. In 18th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2022). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2022.

Nathaniel Lahn and Sharath Raghvendra. A faster algorithm for minimum-cost bipartite matching
in minor-free graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 569–588. SIAM, 2019.

Nathaniel Lahn, Deepika Mulchandani, and Sharath Raghvendra. A graph theoretic additive ap-
proximation of optimal transport. In Advances in Neural Information Processing Systems 32, pp.
13813–13823, 2019.

11

https://doi.org/10.1145/2591796.2591844
https://doi.org/10.1145/2591796.2591844

Published as a conference paper at ICLR 2023

(a) 2D: n - cost (b) Bimodal: n - cost (c) 15D: n - cost (d) Real: n - cost

(a) 2D: n - time (b) Bimodal: n - time (c) 15D: n - time (d) Real: n - time

Figure 4: (a)-(d) comparing the cost computed by our 1-Wasserstein algorithm vs cost returned
by LMR algorithm on Uniform, Bimodal, 15-D Uniform, and Real dataset. (e)-(h) comparing the
running time of our 1-Wasserstein algorithm vs the running time of LMR algorithm on Uniform,
Bimodal, 15-D Uniform, and Real dataset.

(a) 2D: n-cost (b) Bimodal: n-cost (c) 15D: n-cost (d) Real: n-cost

(e) 2D: n-time (f) Bimodal: n-time (g) 15D: n-time (h) Real: n-time

Figure 5: (a)–(d) estimated 1-Wasserstein distance, and (e)–(h) execution times of the algorithms

12

	Missing details of Section 2.1
	Missing details of Section 3
	Missing details of Section 4
	Input Transformation
	Retrieving an approximate bipartite matching
	Quality of Approximation
	Efficiency of our Algorithm

	A Faster Relative Approximation Algorithm via Approximate Nearest Neighbor
	Additional Experiments
	Comparison with Sinkhorn algorithm
	Comparison with the LMR algorithm
	Comparison with the Geometric-Additive algorithm

