
A Proofs

A.1 Proof of Thm. 1

We begin by stating the following theorem, which follows from well-known results in oracle com-
plexity (see [31, 27]):
Theorem 3. For any T > 1, any algorithm in Adet[Azr and any dimension d � 2T , there is a vector
x⇤

2 Rd (where kx⇤
k 

1
2) and a positive definite matrix M 2 Rd⇥d (with minimal and maximal

eigenvalues satisfying 1
2  �min(M)  �max(M)  1), such that the iterates x1, . . . ,xT produced

by the algorithm when ran on the strictly convex quadratic function f(x) := (x� x⇤)>M(x� x⇤)
satisfy

min
t2{1,...,T}

kxt � x⇤
k � exp(�T) .

For completeness, we provide a self-contained proof in Appendix D. Basically, the theorem states
that for any algorithm in Adet [Azr, there is a well-conditioned5 but still “relatively hard” strictly
convex quadratic function, whose minimum cannot be detected with accuracy better than exp(�T).
Remark 5 (Extension to any algorithm). Up to the constants, a lower bound as in Thm. 3 is widely
considered to hold (with high-probability) for all algorithms based on a first-order oracle, not just for
deterministic or zero-respecting ones (see [27, 33]). In that case, our Thm. 1 can be easily extended
to apply to all oracle-based algorithms which utilize function values and gradients, since the only
point in the proof where we really need to restrict the algorithm class is in Thm. 3. Unfortunately, we
are not aware of a result in the literature which quite states this, explicitly and in the required form.
For example, there are algorithm-independent lower bounds which rely on non-quadratic functions
[35], or apply to quadratics, but not in a regime where �max(M)/�min(M) is a constant as in our
case [33].

Given the theorem, our first step will be to reduce it to a hardness result for optimizing convex
Lipschitz functions of the form x 7! kM1/2(x� x⇤)k:
Lemma 1. For any algorithm in Adet [Azr, any T > 1 and any dimension d � 2T , there is a
vector x⇤

2 Rd (where kx⇤
k 

1
2) and a positive definite matrix M 2 Rd⇥d (with 1

2  �min(M) 
�max(M)  1), such that the convex function

f̂(x) := kM1/2(x� x⇤)k

satisfies the following:

• f̂(·) is 1p
2

-Lipschitz, and f̂(0)  1
2 .

• If we run the algorithm on f̂(·), then mint2{1,...,T} kxt � x⇤
k � exp(�T).

Proof. We will start with the second bullet. Fix some algorithm A in Adet [Azr, and assume by
contradiction that for any x⇤,M satisfying the conditions in the lemma, the algorithm runs on f̂(·)
and produces iterates such that mint2{1,...,T} kxt � x⇤

k < exp(�T) (either deterministically if the
algorithm is deterministic, or for some realization of its random coin flips, if it is randomized). But
then, we argue that given access to gradients and values of f(x) := f̂2(x) = (x� x⇤)>M(x� x⇤),
we can use A to specify another algorithm in Adet [Azr that runs on f(·) and produces points
x1, . . . ,xT such that mint2{1,...,T} kxt � x⇤

k < exp(�T), contradicting Thm. 3. To see why, note
that given access to an oracle returning values and gradients of f(·) at x, we can simulate an oracle
returning gradients and values of f̂(·) at x via the easily-verified formulaes

f̂(x) =
p
f(x) and rf̂(x) =

1

2
p
f(x)

rf(x)

(and for x = x⇤ where f̂(·) is not differentiable, we can just return the value 0 and the generalized
gradient set at 0). We then feed the responses of this simulated oracle to A, and get the resulting

5In the sense that �max(M)/�min(M)  2.

12

x1, . . . ,xT . This give us a new algorithm A0, which is easily verified to be in Adet [Azr if the
original algorithm A is in Adet [Azr.

It remains to prove the second bullet in the lemma. First, we have f̂(0) = kM1/2x⇤
k p

kMkkx⇤
k 

1
2 . Second, we note that for any x 6= x⇤, f̂(·) is differentiable and satisfies

krf̂(x)k =
kM(x� x⇤)k

2kM1/2(x� x⇤)k


�max(M) · kx� x⇤
k

2
p

�min(M) · kx� x⇤k
=

�max(M)

2
p
�min(M)

,

which by the conditions on M , is at most 1

2
p

1/2
= 1p

2
.

Next, we define a function g(·) with two properties: It is identical to x 7! kxk in parts of Rd (in fact,
as we will see later, in “almost” all of Rd), yet unlike the function x 7! kxk, it has no stationary
points, or even ✏-stationary points.
Lemma 2. Fix some vector w 6= 0 in Rd, and define the function

gw(x) := kxk �
⇥
4w̄>(x+w)� 2kx+wk

⇤
+
,

where ū := u/kuk for any vector u, and [v]+ := max{v, 0}. Then gw(·) is 7-Lipschitz, and has no
✏-stationary points for any ✏ < 1p

2
.

Proof. In the proof, we will drop the w subscript and refer to gw(·) as g(·).

The functions x 7! kxk, x 7! 4w̄>(x+w), x 7! 2kx+wk and x 7! max{0, x} are respectively
1-Lipschitz, 4-Lipschitz, 2-Lipschitz and 1-Lipschitz, from which it immediately follows that g(·) is
1 + 4 + 2 = 7 Lipschitz. Thus, it only remains to show that g(·) has no ✏-stationary points.

It is easily seen that the function g(·) is not differentiable at only 3 possible regions: (1) x = 0, (2)
x = �w, and (3) {x : 4w̄>(x+w)� 2kx+wk = 0} (or equivalently, {x : w̄>(x+w) = 1

2} if
we exclude x = �w), which are all measure-zero sets in Rd. At any other point, g(·) is differentiable
and the gradient satisfies

rg(x) = x̄� 1w̄>(x+w)> 1
2
· (4w̄ � 2(x+w)) .

Moreover, at those differentiable points, if w̄>(x+w) < 1
2 then

krg(x)k = kx̄k = 1 ,

and if w̄>(x+w) > 1
2 , then by the triangle inequality,

krg(x)k = kx̄� (4w̄ � 2(x+w)) k = k4w̄ � 2(x+w)� x̄k

� 4kw̄k � 2kx+wk � kx̄k = 4� 2� 1 = 1 .

Thus, no differentiable point of g is even 0.99-stationary. It remains to show that even the non-
differentiable points of g are not ✏-stationary for any ✏ < 1p

2
. To do so, we will use the facts

that @(g1 + g2) ✓ @g1 + @g2, and that if g1 is univariate, @(g1 � g2)(x) ✓ conv{r1r2 : r1 2

@g1(g2(x)), r2 2 @g2(x)} (see [14]).

• At x = 0, we have
@g(x) ✓ conv{u� 2w̄ : kuk  1} = {u� 2w̄ : kuk  1} .

Any element in this set has a norm of ku� 2w̄k = k2w̄� uk � 2kw̄k � kuk � 2� 1 = 1
by the triangle inequality. Thus, x = 0 is not ✏-stationary for any ✏ < 1.

• At x = �w, we have
@g(x) ✓ conv{�w̄ � v · (4w̄ � 2u) : v 2 [0, 1], kuk  1}

= conv{2vu� (1 + 4v)w̄ : v 2 [0, 1], kuk  1} .

For any element in the set {2vu� (1+4v)w̄ : v 2 [0, 1], kuk  1} (corresponding to some
v,u), its inner product with �w̄ is

�2vw̄>u+ (1 + 4v) � �2v + (1 + 4v) � 1 .

Thus, any element in the convex hull of this set, which contains @g(x), has an inner product
of at least 1 with �w̄. Since �w̄ is a unit vector, it follows that the norm of any element in
@g(x) is at least 1, so this point is not ✏-stationary for any ✏ < 1.

13

• At any x in the set {x : w̄>(x+w) = 1
2} \ {0,�w}, we have

@g(x) ✓ conv {x̄� v · (4w̄ � 2(x+w)) : v 2 [0, 1]}

= {x̄� v · (4w̄ � 2(x+w)) : v 2 [0, 1]}

=

⇢✓
1

kxk
+

2v

kx+wk

◆
x�

✓
4v

kwk
�

2v

kx+wk

◆
w : v 2 [0, 1]

�
. (5)

Let x = x| + x?, where x? = (I � w̄w̄>)x is the component of x orthogonal to w, and
x| 2 span(w). Thus, any element in @g(x) can be written as

✓
1

kxk
+

2v

kx+wk

◆
x? + a ·w

for some scalar a. Since w is orthogonal to x?, the norm of this element is at least
✓

1

kxk
+

2v

kx+wk

◆
kx?k �

1

kxk
· kx?k .

Noting that

kx?k
2 = x>(I � w̄w̄>)2x = x>(I � w̄w̄>)x = kxk2 � (w̄>x)2 = kxk2(1� (w̄>x̄)2)

and plugging into the above, it follows that the norm is at least
p
(1� (w̄>x̄)2).

Now, let us suppose that there exists an element in @g(x) with norm at most ✏. By the above,
it follows that q

(1� (w̄>x̄)2)  ✏ . (6)

However, we will show that for any ✏ < 1p
2

, we must arrive at a contradiction, which implies
that x cannot be ✏-stationary for ✏ < 1p

2
. To that end, let us consider two cases:

– If w̄>x̄  0, then by Eq. (6), we must have w̄>x̄  �
p
1� ✏2. But then, for any

u 2 @g(x), by Eq. (5) and our assumption that w̄>(x+w) = 1
2 ,

w̄>u = w̄>x̄� v ·

✓
4� 2 ·

1

2

◆
 �

p
1� ✏2 � 3v  �

p
1� ✏2 .

This implies that kuk �
p
1� ✏2 for any u 2 @g(x). Thus, if there was some

u 2 @g(x) with norm at most ✏, we get that ✏ �
p
1� ✏2, which cannot hold if

✏ < 1p
2

.

– If w̄>x̄ > 0, then by Eq. (6), we have w̄>x̄ �
p
1� ✏2. Hence,

w̄>(x+w) � kxk
p
1� ✏2+kwk � (kxk+kwk)

p
1� ✏2 � kx+wk

p
1� ✏2 .

However, dividing both sides by kx +wk, we get that w̄>(x+w) �
p
1� ✏2. If

✏ < 1p
2

, it follows that w̄>(x+w) > 1p
2

, which contradicts our assumption that x
satisfies w̄>(x+w) = 1

2 .

Lemma 3. Fix any algorithm in Adet [Azr, any T > 1 and any d � 2T . Define the function

hw(x) := max{�1 , gw(M1/2(x� x⇤))}

= max

⇢
�1, kM1/2(x� x⇤)k �

h
4w̄>(M1/2(x� x⇤) +w)� 2kM1/2(x� x⇤) +wk

i

+

�
,

where M,w⇤ are as defined in Lemma 1, gw(·) is as defined in Lemma 2, and w is a vector of norm
1

300 exp(�T) in Rd. Then:

• hw(·) is 7-Lipschitz, and satisfies hw(0)� infx hw(x)  3
2 .

14

• Any ✏-stationary point x of hw(·) for ✏ < 1
2
p
2

satisfies hw(x) = �1.

• There exists a choice of w, such that if we run the algorithm on hw(·), then with
probability at least 1 � T exp(�d/18) over the algorithm’s randomness (or determin-
istically if the algorithm is deterministic), the algorithm’s iterates x1, . . . ,xT satisfy
mint2{1,...,T} hw(xt) > 0.

Proof. The Lipschitz bound follows from the facts that z 7! max{�1, z} is 1-Lipschitz, x 7!

M1/2(x � x⇤) is kM1/2
k  1-Lipschitz, and that gw is 7-Lipschitz by Lemma 2. Moreover, we

clearly have infx hw(x) � �1, and by definition of hw(·) and Lemma 1,

hw(0)  k �M1/2x⇤
k = f̂(0) 

1

2
.

Combining the two observations establishes the first bullet in the lemma.

As to the second bullet, let ĝ(x) := gw(M1/2(x � x⇤)) (so that hw(x) = max{�1, ĝ(x)}). It is
easily verified that u 2 @gw(x) if and only if M1/2u 2 @ĝ(x + x⇤). By Lemma 2, gw has no
✏-stationary point for ✏ < 1p

2
, which implies that ĝ(x) has no ✏-stationary points for any ✏ less than

�min(M1/2) 1p
2
�

1
2
p
2

. But since hw(x) = max{�1, ĝ(x)}, it follows that any ✏-stationary points
of hw(·) must be arbitrarily close to the region where hw(·) is different than ĝ(·), namely where it
takes a value of �1. Since hw(·) is Lipschitz, it follows that its value is �1 at the ✏-stationary point
as well.

We now turn to establish the third bullet in the lemma. A crucial observation here is that

hw(x) = gw(M1/2(x� x⇤)) = f̂(x) 8x : w̄>
⇣
M1/2(x� x⇤) +w

⌘


1

2
, (7)

where f̂(x) = kM1/2(x� x⇤)k is the “hard function” defined in Lemma 16. To see why, note first
that by definition of gw(·) in Lemma 2, for any x which satisfies the condition in the displayed
equation above, we have gw(M1/2(x� x⇤)) = kM1/2(x� x⇤)k = f̂(x). On the other hand, since
this is a non-negative function, it follows that it also equals max{�1, gw(M1/2(x� x⇤))} = hw(x)
for such x, establishing the displayed equation above.

Next, we will show that Eq. (7) also holds over a set of x’s which have a more convenient form.
To do so, fix some x which satisfies the opposite condition w̄>

⇣
M1/2(x� x⇤) +w

⌘
> 1

2 . Then

multiplying both sides by kM1/2(x� x⇤) +wk, we get

w̄>M1/2(x� x⇤) + w̄>w >
1

2
kM1/2(x� x⇤) +wk �

1

2

⇣
kM1/2(x� x⇤)k � kwk

⌘
.

Since 1
2  �min(M)  �max(M)  1 by Lemma 1, it follows that

w̄>M1/2(x� x⇤) + kwk >
1

2

✓
1
p
2
kx� x⇤

k � kwk

◆
.

For x = x⇤, the condition above is trivially satisfied. For x 6= x⇤, dividing both sides by kM1/2(x�

x⇤)k (which is between kx� x⇤
k and 1p

2
kx� x⇤

k) and simplifying a bit, we get that

w̄>
⇣
M1/2(x� x⇤)

⌘
>

1

2
p
2
�

3kwk

2 · 1p
2
kx� x⇤k

>
1

2
p
2
�

exp(�T)

100kx� x⇤k
.

Noting that any x which does not satisfy the condition in Eq. (7) satisfy the condition above, we get
that Eq. (7) implies

hw(x) = f̂(x) = kM1/2(x�x⇤)k 8x 6= x⇤ s.t. w̄>
⇣
M1/2(x� x⇤)

⌘


1

2
p
2
�

exp(�T)

100kx� x⇤k
.

(8)
6Also, the equation can be verified to hold in the corner case where M1/2(x� x⇤) +w = 0, in which the

condition in Eq. (7) is undefined.

15

With this equation in hand, let us first establish the third bullet of the lemma, assuming the algorithm
is in Adet (namely, it is deterministic). In order to do so, let xf̂

1 , . . . ,x
f̂
T be the (fixed) iterates

produced by the algorithm when ran on f̂(·), and choose w in hw(·) to be any vector orthogonal to
{M1/2(xf̂

t � x⇤)}Tt=1 (which is possible since the dimension d is larger than T). By Lemma 1, we
know that for all t, kxf̂

t � x⇤
k � exp(�T), in which case we have

w̄>
✓
M1/2(xf̂

t � x⇤)

◆
= 0 <

1

2
p
2
�

exp(�T)

100 exp(�T)


1

2
p
2
�

exp(�T)

100kxf̂
t � x⇤k

.

Thus, xf̂
t satisfies the condition in Eq. (8), and as a result, hw(xf̂

t) = f̂(xf̂
t) for all t. Moreover,

using the fact that xf̂
t is bounded away from x⇤, it is easily verified that the condition in Eq. (8) also

holds for x in a small local neighborhood of xf̂
t , so actually hw(·) is identical to f̂(·) on these local

neigborhoods, implying the same values and gradient sets at xf̂
t . As a result, if we run the algorithm

on hw(·) rather than f(·), then the iterates x1, . . . ,xT produced are identical to xf̂
1 , . . . ,x

f̂
T . Since

kxf̂
t � x⇤

k > 0, we have hw(xt) = f̂(xf̂
t) = kM1/2(xf̂

t � x⇤)k > 0 for all t as required.

We now turn to establish the third bullet of the lemma, assuming the algorithm is randomized. As
before, we let xf̂

1 , . . . ,x
f̂
T denote the iterates produced by the algorithm when ran on f̂(·) (only

that now they are possibly random, based on the algorithm’s random coin flips). The proof idea is
roughly the same, but here the iterates may be randomized, so we cannot choose w in some fixed
manner. Instead, we will pick w independently and uniformly at random among vectors of norm
1

300 exp(�T), and show that for any realization of the algorithm’s random coin flips, with probability
at least 1�T exp(�d/18) over w, mint hw(xt) > 0. This implies that there exists some fixed choice
of w, for which mint hw(xt) > 0 with the same high probability over the algorithm’s randomness,
as required7. To proceed, we collect two observations:

1. By Lemma 1, we know that for any realization of the algorithm’s random coin flips,
mint2{1,...,T} kx

f̂
t � x⇤

k � exp(�T) > 0.

2. If we fix some unit vectors u1, . . . ,uT in Rd, and pick a unit vector u uniformly at random,
then by a union bound and a standard large deviation bound (e.g., [34]), Pr(maxt u>ut �

a)  T · Pr(u>u1 � a)  T exp(�da2/2). Taking w = u, ut = M1/2(xf̂
t � x⇤) for

all t (for some realization of xf̂
t), and a = 1/3, it follows that for any realization of the

algorithm’s random coin flips, maxt w
>(M1/2xf̂

t � x⇤) � 1/3 with probability at most
T exp(�d/18) over the choice of w.

Combining the two observations, we get that for any realization of the algorithm’s coin flips, with
probability at least 1� T exp(�d/18) over the choice of w, it holds for all xf̂

1 , . . . ,x
f̂
T that

w̄>
✓
M1/2(xf̂

t � x⇤)

◆
<

1

3
<

1

2
p
2
�

exp(�T)

100 exp(�T)


1

2
p
2
�

exp(�T)

100kxf̂
t � x⇤k

,

as well as kxf̂
t � x⇤

k > 0. Using the same argument as in the deterministic case, it follows from
Eq. (8) that hw(·) and f̂(·) coincide in small neighborhoods around xf̂

1 , . . . ,x
f̂
T , with probability at

least 1� T exp(�d/18). Since the algorithm’s iterates depend only on the local values/gradient sets
returned by the oracle, it follows that for any realization of the algorithm’s coin flips, with probability
at least 1� T exp(�d/18) over the choice of w, the iterates x1, . . . ,xT and xf̂

1 , . . . ,x
f̂
T are going

7To see why, assume on the contrary that for any fixed choice of w, the bad event mint hw(xt)  0 occurs
with probability larger than T exp(�d/18) over the algorithm’s randomness. In that case, any randomization
over the choice of w will still yield mint hw(xt)  0 with probability larger than T exp(�d/18) over the
joint randomness of w and the algorithm. In particular, this bad event will hold with probability larger than
T exp(�d/18) for some realization of the algorithm’s randomness.

16

to be identical, and satisfy

min
t

hw(xt) = min
t

hw(xf̂
t) = min

t
f̂(xf̂

t) > 0 .

This holds for any realization of the algorithm’s random coin flips, which as discussed earlier, implies
the required result.

The theorem is now an immediate corollary of the lemma above: With the specified high probability
(or deterministically), mint hw(xt) > 0, even though all ✏-stationary points (for any ✏ < 1

2
p
2

) have
a value of �1. Since hw is also 7-Lipschitz, we get that the distance of any xt from an ✏-stationary
point must be at least 0�(�1)

7 = 1
7 . Simplifying the numerical terms by choosing a large enough

constant C and a small enough constant c, and relabeling hw as f , the theorem follows.

A.2 Proof of Thm. 2

Lemma 4. If A is an (L, ✏, T,M, r)-smoother satisfying TICF, then for any constant function f and
any x 2 Rd : kE [A (f,x)]k  ✏.

Proof. Denote v := E [A (f,x)], and note that by the TICF property v does not depend on x. Let
f̃ be the ✏-approximation of f implicitly computed by A, then by the definition of a smoothing
algorithm, we have for all x 2 Rd:

���v �rf̃ (x)
���  ✏

=) kvk2 �
D
rf̃ (x) ,v

E
=
D
v �rf̃ (x) ,v

E


���v �rf̃ (x)
��� · kvk  ✏kvk

=)
D
rf̃ (x) ,v

E
� kvk2 � ✏kvk .

Define the one dimensional projected function f̃v(t) := f̃(t · v). Then for all t � 0,

f̃v (t)� f̃v (0) =

Z t

0
f̃ 0
v(z)dz =

Z t

0

D
rf̃ (z · v) ,v

E
dz

�

Z t

0

�
kvk2 � ✏kvk

�
dz = t

�
kvk2 � ✏kvk

�
= tkvk (kvk � ✏) . (9)

On the other hand, f̃v(t), f̃v(0) are both ✏-approximations of the same constant, since f is a constant
function. Thus, |f̃v(t)� f̃v(0)|  2✏. Combining this with Eq. (9) yields for all t � 0

2✏ � tkvk (kvk � ✏) (10)

This can hold for all t � 0 only if (kvk � ✏)  0, implying the lemma.

We now show that without loss of generality we can impose certain assumptions on the parameters of
interest. First, if ✏ � 1 then the right hand side of Eq. (4) is negative for any c2 < 1, which makes
the theorem trivial. Consequently, we can assume ✏ < 1. Using Lemma 11 in Appendix E, this
also implies that L �

1
8 since otherwise an L-smooth ✏-approximation does not exist in the first

place in case of 1-Lipschitz function x 7! |x1| (in particular, no such smoother exists). Therefore, ifp
log ((M + 1) (T + 1)) �

p
d

32r then

L
p

log ((M + 1) (T + 1)) �
1

8
·

p
d

32r
>

1

256
·

p
d

r
(1� ✏) ,

which proves the theorem. Thus we can assume throughout the proof that

p
log ((M + 1) (T + 1)) <

p
d

32r
=)

1

16r

s
d

log ((M + 1) (T + 1))
> 2 . (11)

17

Figure 2: Illustration of g(x), where � = {0, �1, . . . , �K} ⇢ [0, 1]

Our strategy is to define a distribution over a family of "hard" 1-Lipschitz functions over Rd, for
which we will show that Eq. (4) must hold for some function supported by this distribution. By
Eq. (11) we can define the set

� :=

(
16r

r
log ((M + 1) (T + 1))

d
· k

����� k = 0, 1, . . . ,

$
1

16r

s
d

log ((M + 1) (T + 1))

%)

That is, a grid on [0, 1] which consists of points of distance 16r
q

log((M+1)(T+1))
d one from another.

We further define the "inflation" of � by 4r
q

log((M+1)(T+1))
d around every point:8

� :=

(
x 2 R

����� 9p 2 � : |p� x|  4r

r
log ((M + 1) (T + 1))

d

)

Now we define the function g : R ! R as the unique continuous function which satisfies (see Fig. 2
for an illustration)

g(0) = 0

g0 (x) = 1
{x/2�}

Finally, we are ready to consider
fw (x) = g (hx,wi) ,

where w 2 S
d�1 is drawn uniformly from the unit sphere. The distribution over w specifies a

distribution over the functions fw. We start by claiming that these functions are indeed in our
function class of interest:
Lemma 5. For all w 2 S

d�1, fw(·) is 1-Lipschitz.

Proof. It is clear by construction that g is 1-Lipschitz. Thus
|f (x)� f (y)| = |g (hx,wi)� g (hy,wi)|  |hx,wi � hy,wi| = |hx� y,wi|  kx� yk

Lemma 6. There exists w 2 S
d�1 such that for all � 2 � : E⇠ [kA (fw, �w)k]  ✏+ 1

32 .

Proof. Let x(w)
1 , . . . ,x(w)

T be the (possibly randomized) queries produced by A (fw,0). Fix some
� 2 �, and let x̃(w)

1 , . . . , x̃(w)
T be the (possibly randomized) queries produced by A (fw, �w).

Consider the event Ew, in which for all i 2 [T] :
���hx(w)

i ,wi

��� < 4r
q

log((M+1)(T+1))
d . Note that if

Ew occurs then for all � 2 �, i 2 [T],v 2 Rd:

fw
⇣
x(w)
i + �w + v

⌘
= g

⇣D
x(w)
i + �w + v,w

E⌘
= g

⇣
� +

D
x(w)
i ,w

E
+ hv,wi

⌘
. (12)

8Note we use the quantities T + 1,M + 1 instead of the seemingly more natural T,M , since otherwise the
logarithmic term in Eq. (4) can vanish, resulting in an invalid theorem. This would have occurred for randomized
smoothing, where T = M = 1.

18

In particular, as long as kvk < 4r
q

log((M+1)(T+1))
d �

���
D
x(w)
i ,w

E���, which by Cauchy-Schwarz
implies

���
D
x(w)
i ,w

E
+ hv,wi

��� < 4r

r
log ((M + 1) (T + 1))

d
,

we get by construction of g and Eq. (12) that

fw
⇣
x(w)
i + �w + v

⌘
= g (�) .

In other words, if Ew occurs then inside some neighborhood of x(w)
i + �w, the function fw is

identical to the constant function g (�). Therefore, if Ew occurs the all-derivatives oracle O1 satisfies

O
1
fw

⇣
x(w)
i + �w

⌘
= O

1
x 7!g(�) . (13)

Recall that we use the abbreviation O
1
x 7!g(�) since the oracle’s response does not depend on the input

point for constant functions. We will now show that conditioned on Ew, for all i 2 [T]:

x̃(w)
i = x(w)

i + �w , (14)

in the sense that for every realization of A0’s randomness ⇠ they are equal. We show this by induction
on i. For i = 1, using TICF:

x̃(w)
1 = A

(1) (⇠, �w) = A
(1) (⇠,0) + �w = x(w)

1 + �w .

Assuming this is true up until i, then by the induction hypothesis, Eq. (13) and TICF:

x̃(w)
i+1 = A

(i)
⇣
⇠, �w,O1

fw

⇣
x̃(w)
1

⌘
, . . . ,O1

fw

⇣
x̃(w)
i

⌘⌘

= A
(i)
⇣
⇠, �w,O1

fw

⇣
x(w)
1 + �w

⌘
, . . . ,O1

fw

⇣
x(w)
i + �w

⌘⌘

= A
(i)
⇣
⇠, �w,O1

x 7!g(�), . . . ,O
1
x 7!g(�)

⌘

= A
(i)
⇣
⇠,0,O1

x 7!g(�), . . . ,O
1
x 7!g(�)

⌘
+ �w

= A
(i)
⇣
⇠,0,O1

fw

⇣
x(w)
1

⌘
, . . . ,O1

fw

⇣
x(w)
i

⌘⌘
+ �w

= x(w)
i+1 + �w .

Having established Eq. (14), we turn to show that for all � 2 �:

E⇠ [A (fw, �w)|Ew] = E⇠ [A (x 7! 0,0)|Ew] . (15)

Indeed, by Eq. (14), Eq. (13) and TICF:

E⇠ [A (fw, �w)|Ew] = E⇠

h
A

(out)
⇣
⇠, �w,O1

fw

⇣
x̃(w)
1

⌘
, . . . ,O1

fw

⇣
x̃(w)
T

⌘⌘���Ew

i

= E⇠

h
A

(out)
⇣
⇠, �w,O1

fw

⇣
x(w)
1 + �w

⌘
, . . . ,O1

fw

⇣
x(w)
T + �w

⌘⌘���Ew

i

= E⇠

h
A

(out)
⇣
⇠, �w,O1

x 7!g(�), . . . ,O
1
x 7!g(�)

⌘���Ew

i

= E⇠

h
A

(out) (⇠,0,O1
x 7!0, . . . ,O

1
x 7!0)

���Ew

i

= E⇠ [A (x 7! 0,0)|Ew] .

We now turn to show that Ew is likely to occur. Fix some realization of A’s randomness ⇠, and
let q⇠

1, . . . ,q
⇠
T be the (deterministic) queries produced by A (y 7! 0,0). We claim that if for all

i 2 [T] :
���hq⇠

i ,wi

��� < 4r
q

log((M+1)(T+1))
d then

⇣
q⇠
1, . . . ,q

⇠
T

⌘
=
⇣
x(w)
1 , . . . ,x(w)

T

⌘
independently

of w. We show this by induction on i. For i = 1:

q⇠
1 = A

(1) (⇠,0) = x(w)
1 .

19

Assuming true up until i, then

q⇠
i+1 = A

(i)
⇣
⇠,0,O1

x 7!0

⇣
q⇠
1

⌘
, . . . ,O1

x 7!0

⇣
q⇠
i

⌘⌘

= A
(i)
⇣
⇠,0,O1

fw

⇣
q⇠
1

⌘
, . . . ,O1

fw

⇣
q⇠
i

⌘⌘

= A
(i)
⇣
⇠,0,O1

fw

⇣
x(w)
1

⌘
, . . . ,O1

fw

⇣
x(w)
i

⌘⌘

= x(w)
i+1 ,

where we used the assumption on q⇠
i and the induction hypothesis. Recall that by assumption on the

algorithm
���q⇠

i

���  r for all i 2 [T]. Using the union bound and concentration of measure on the
sphere (e.g., [34]) we get

Pr
w

[¬Ew | ⇠] =Pr
w

"
9i 2 [T] :

���hq⇠
i ,wi

��� � 4r

r
log ((M + 1) (T + 1))

d

#

=Pr
w

"
9i 2 [T] :

����

⌧
1

r
q⇠
i ,w

����� � 4

r
log ((M + 1) (T + 1))

d

#

T · 2 exp

0

BBB@
�

d ·

✓
4
q

log((M+1)(T+1))
d

◆2

2

1

CCCA

=
2T

(M + 1)8 (T + 1)8


2

(M + 1)8 (T + 1)7
.

This inequality holds for any realization of A’s randomness ⇠, hence by the law of total probability

Pr
⇠,w

[¬Ew] 
2

(M + 1)8 (T + 1)7
.

In particular, since Pr⇠,w [¬Ew] = Ew [Pr⇠ [¬Ew|w]], there exists w 2 S
d�1 such that

Pr
⇠
[¬Ew] 

2

(M + 1)8 (T + 1)7
. (16)

For this fixed w, we have for all � 2 � by the law of total expectation and the triangle inequality:

kE⇠ [A (fw, �w)]k 

���������

E⇠ [A (fw, �w)|Ew] · Pr
⇠
[Ew]

| {z }
(⇤)

���������

+

���������

E⇠ [A (fw, �w)|¬Ew] · Pr
⇠
[¬Ew]

| {z }
(⇤⇤)

���������
(17)

On one hand, by Eq. (15):
(⇤) = E⇠ [A (x 7! 0,0)|Ew] · Pr

⇠
[Ew] = E⇠ [A (x 7! 0,0)]� E⇠ [A (x 7! 0,0)|¬Ew] · Pr

⇠
[¬Ew]

Using Lemma 4, and by incorporating the definition of M in Eq. (2) and Eq. (16) we get

k(⇤)k  ✏+M ·
2

(M + 1)8 (T + 1)7
 ✏+

2

(M + 1)7 (T + 1)7
. (18)

On the other hand, by Eq. (2) and Eq. (16) again we have

k(⇤⇤)k  kE⇠ [A (fw, �w)|¬Ew]k ·Pr
⇠
[¬Ew]  M ·

2

(M + 1)8 (T + 1)7


2

(M + 1)7 (T + 1)7
.

(19)
Overall, plugging Eq. (18) and Eq. (19) into Eq. (17), gives

kE⇠ [A (fw, �w)]k  ✏+
4

(M + 1)7 (T + 1)7
 ✏+

1

32
,

where the last inequality simply follows from the fact that M > 0, T � 1.

20

From now on, we fix w 2 S
d�1 which is given by the previous lemma and denote f = fw. Denote

by f̃ the ✏-approximation of f with L-Lipschitz gradients implicitly computed by A. We turn our
focus to the directional projection:

' : [0, 1] ! R
'(t) = f̃ (t ·w)

Note that by assumption on f̃ , ' is differentiable, and '0 is L-Lipschitz. Lemma 6 ensures us that '0

is relatively close to zero on the grid �, as showed in the following lemma.

Lemma 7. 8� 2 � : |'0 (�)|  2✏+ 1
32

Proof. By Cauchy-Schwarz, Lemma 6 and the definition of a smoother, we get that for all � 2 �:

|'0 (�)| =
���
D
rf̃ (�w) ,w

E��� 
���rf̃ (�w)

��� · kwk =
���rf̃ (�w)

���



���E [A (f, �w)]�rf̃ (�w)
���+ kE [A (f, �w)]k  ✏+ ✏+

1

32

By combining the fact that '0 has small values along the grid �, with the fact that '0 is L-Lipschitz,
we can bound the oscillation of ' along the unit interval.

Lemma 8. |' (1)� ' (0)|  2✏+ 1
32 +

4Lr
p

log((M+1)(T+1))p
d

Proof. Denote �i = 16r
q

log((M+1)(T+1))
d · i, and note that for all i 2

hj
1

16r

q
d

log((M+1)(T+1))

ki
:

�i 2 �. Then

|' (1)� ' (0)| =

����
Z 1

0
'0 (t) dt

���� 
Z 1

0
|'0 (t)| dt =

j
1

16r

q
d

log((M+1)(T+1))

k
�1X

i=0

Z �i+1

�i

|'0 (t)| dt



1

16r

s
d

log ((M + 1) (T + 1))

!
·max

i

Z �i+1

�i

|'0 (t)| dt (20)

By Lemma 7 we have |'0 (�i)| , |'0 (�i+1)|  2✏ + 1
32 . Recall that '0 is L-Lipschitz, so |'0 (t)| is

majorized on the interval [�i, �i+1] by the piecewise linear function (see Fig. 3)

l (t) =

(
2✏+ 1

32 + L (t� �i) �i  t  �i+�i+1

2

2✏+ 1
32 + L (�i+1 � t) �i+�i+1

2 < t  �i+1

Consequently,
Z �i+1

�i

|'0 (t)| dt 

Z �i+1

�i

l (t) dt

=

✓
2✏+

1

32

◆
· 16r

r
log ((M + 1) (T + 1))

d
+ L

8r

r
log ((M + 1) (T + 1))

d

!2

, (21)

where the last equality is a direct calculation. Plugging Eq. (21) into Eq. (20), we get that

|' (1)� ' (0)|  2✏+
1

32
+

4Lr
p

log ((M + 1) (T + 1))
p
d

21

Figure 3: Illustration of l(t)

We are now ready to finish the proof. Notice that ' (0) = f̃ (0) , ' (1) = f̃ (w). Additionally, a
direct calculation shows that f(0) = 0, f(w) � 1

2 . Using the fact that kf̃ � fk1  ✏, Lemma 8
reveals

1

2
 |f(w)� f(0)| 

���f̃(w)� f̃(0)
���+ 2✏ = |' (1)� ' (0)|+ 2✏

 4✏+
1

32
+

4Lr
p
log ((M + 1) (T + 1))

p
d

=) L
p
log ((M + 1) (T + 1)) �

1

16
·

p
d

r

✓
15

128
� ✏

◆
.

B (�, ✏)-Stationarity

In the recent work by Zhang, Lin, Sra and Jadbabaie [37], the authors prove that for nonconvex
nonsmooth functions, finding ✏-approximately stationary points is infeasible in general. Instead, they
study the following relaxation (based on the notion of �-differential introduced in [21]): Letting
@f(x) denote the generalized gradient set9 of f(·) at x, we say that a point x is a (�, ✏)-stationary
point, if

min{kuk : u 2 conv{[y:ky�xk� @f(y)}}  ✏ , (22)
where conv{·} is the convex hull. In words, there exists a convex combination of gradients at a
�-neighborhood of x, whose norm is at most ✏. Remarkably, the authors then proceed to provide a
dimension-free, gradient-based algorithm for finding (�, ✏)-stationary points, using O(1/�✏3) gradient
and value evaluations, as well as study related settings.

Although this constitutes a very useful algorithmic contribution to nonsmooth optimization, it is
important to note that a (�, ✏)-stationary point x (as defined above) does not imply that x is �-close to
an ✏-stationary point of f(·), nor that x necessarily resembles a stationary point. Intuitively, this is
because the convex hull of the gradients might contain a small vector, without any of the gradients
being particular small. This is formally demonstrated in the following proposition:
Proposition 1. For any � > 0, there exists a differentiable function f(·) on R2 which is 2⇡-
Lipschitz on a ball of radius 2� around the origin, and the origin is a (�, 0)-stationary point, yet
minx:kxk� krf(x)k � 1.

Proof. Fixing some � > 0, consider the function

f(u, v) := (2� + u) sin
⇣ ⇡

2�
v
⌘

(see Fig. B for an illustration). This function is differentiable, and its gradient satisfies

rf(u, v) =
⇣
sin

⇣ ⇡

2�
v
⌘

,
⇡

2�
(2� + u) cos

⇣ ⇡

2�
v
⌘⌘

.

9See Sec. 2 for the formal definition.

22

Figure 4: The function used in the proof of Proposition 1, for � = 1. The origin (which fulfills the
definition of a (1, 0)-stationary point) is marked with a red dot. Best viewed in color.

First, we note that

1

2

✓
rf(0, �) +

1

2
rf(0,��)

◆
=

1

2
((1, 0) + (�1, 0)) = (0, 0),

which implies that (0, 0) is in the convex hull of the gradients at a distance at most � from the origin,
hence the origin is a (�, 0)-stationary point. Second, we have that

krf(u, v)k2 = sin2
⇣ ⇡

2�
v
⌘
+
⇣ ⇡

2�

⌘2
(2� + u)2 cos2

⇣ ⇡

2�
v
⌘

. (23)

For any (u, v) of norm at most 2�, we must have |u|  2�, and therefore the above is at most

sin2
⇣ ⇡

2�
v
⌘
+
⇣ ⇡

2�

⌘2
(2� + 2�)2 cos2

⇣ ⇡

2�
v
⌘

 4⇡2
⇣
sin2

⇣ ⇡

2�
v
⌘
+ cos2

⇣ ⇡

2�
v
⌘⌘

= 4⇡2 ,

which implies that the function is 2⇡-Lipschitz on a ball of radius 2� around the origin. Finally, for
any (u, v) of norm at most �, we have |u|  �, so Eq. (23) is at least

sin2
⇣ ⇡

2�
v
⌘
+
⇣ ⇡

2�

⌘2
(2� � �)2 cos2

⇣ ⇡

2�
v
⌘

� sin2
⇣ ⇡

2�
v
⌘
+ cos2

⇣ ⇡

2�
v
⌘

= 1 .

Remark 6 (Extension to globally Lipschitz functions). Although the function f(·) in the proof has a
constant Lipschitz parameter only close to the origin, it can be easily modified to be globally Lipschitz
and bounded, for example by considering the function

f̃(x) =

(
f(x) kxk  2�

max
n
0, 2� kxk

2�

o
· f

⇣
2�
kxkx

⌘
kxk > 2�

,

which is identical to f(·) in a ball of radius 2� around the origin, but decays to 0 for larger x, and
can be verified to be globally bounded and Lipschitz independent of �.
Remark 7 (Extension to constant distances). The proof of Thm. 1 uses a (more complicated) construc-
tion that actually strengthens Proposition 1: It implies that for any �, ✏ smaller than some constants,
there is a Lipschitz, bounded-from-below function on Rd, such that the origin is (�, 0)-stationary, yet
there are no ✏-stationary points even at a constant distance from the origin. In more details, consider
the function

ĝw(x) := max{gw(0)� 1 , gw(x)} ,

where gw(·) is as defined in Lemma 2. gw(·) is 7-Lipschitz and has no ✏-stationary points for
✏ < 1/

p
2. Therefore, it is easily verified that for any w, ĝw(·) is 7-Lipschitz, bounded from below,

23

and any ✏-stationary point is at a distance of at least 1/7 from the origin10. However, we also claim
that the origin is a (�, 0)-stationary point for any � 2 (0, 1/7). To see this, note first that for such �,
by the Lipschitz property of gw(·), we have ĝw(x) = gw(x) in a �-neighborhood of the origin. Fix
any w such that kwk = �

2 , and let v be any vector of norm � orthogonal to w. It is easily verified
that w̄>(v +w) < 1

2 , in which case

rĝw(v) = rgw(v) = v̄ ,

and therefore 1
2 (rĝw(v) +rĝw(�v)) = 0.

We end by noting that if we drop the the conv{·} operator from the definition of (�, ✏)-stationarity
in Eq. (22), the goal becomes equivalent to finding points which are �-close to ✏-approximately
stationary points – which is exactly the goal we study in Sec. 3, and for which we show a strong
impossibility result. This impossibility result implies that a natural strengthening of the notion of
(�, ✏)-stationarity is already too strong to be feasible in general.

C Smoothed GD suffers from dimension

In this appendix, we formally prove that randomized smoothing can indeed lead to strong dimension
dependencies in the iteration complexity of simple gradient methods – in particular, vanilla gradient
descent with constant step size – even for simple convex functions. Thus, the dimension dependency
arising from applying gradient descent on a randomly-smoothed function is real and not merely an
artifact of the analysis (where the standard upper bound on the number of iterations scales with the
gradient Lipschitz parameter). We note that we focus on constant step-size gradient descent for
simplicity, and a similar analysis can be performed for other gradient-based methods, such as variable
step-size gradient descent or stochastic gradient descent.

Given a 1-Lipschitz function f : Rd
! R, denote the smooth approximation f̃(x) = Ekvk1[f(x+

✏v)] where v is distributed uniformly over the unit ball. Let x0 be a point which is of distance at most
1 to an ✏-stationary point of f̃ , and consider vanilla gradient descent with a constant step size ⌘ > 0:

xt+1 = xt � ⌘ ·rf̃ (xt) .

The following proposition shows that for any step size, applying gradient descent to find an
approximately-stationary point of f̃ will necessitate a number of iterations scaling strongly with the
dimension:
Proposition 2. For any ✏ < 1

2 , ⌘ > 0, there exists f,x0 as above such that min{t : krf̃(xt)k 

✏} = ⌦
⇣p

d
✏

⌘
.

Proof. We will show the claim holds for f (x) := |x1|. In a nutshell, the proof is based on the
observation that rf̃(x) is close to zero only when |x1| = O(1/

p
d). Thus, gradient descent must hit

an interval of size O(1/
p
d). But in order to guarantee this, and with an arbitrary bounded starting

point, the step size must be small, and hence the number of iterations required will be large.

Proceeding with the formal proof, note that f̃ (x) = Ekvk1 [|x1 + ✏v1|], hence

rf̃ (x) = Ekvk1 [sign (x1 + ✏v1)] · e1

=

✓
Pr

kvk1
[x1 + ✏v1 > 0]� Pr

kvk1
[x1 + ✏v1 < 0]

◆
· e1

=

✓
1� 2 · Pr

kvk1
[x1 + ✏v1 < 0]

◆
· e1

=

✓
1� 2 · Pr

kvk1

h
v1 < �

x1

✏

i◆
· e1 (24)

10The last point follows from the fact that if y is an ✏-stationary point of ĝw(·), then we can find a point x
arbitrarily close to y such that ĝw(x) 6= gw(x), hence gw(x) < gw(0)�1, and as a result gw(0)�gw(x) > 1.
But gw(·) is 7-Lipschitz, hence kxk > 1/7, and therefore kyk � 1/7.

24

We draw several consequences from Eq. (24). First, if x1 = 0 then Prkvk1

⇥
v1 < �

x1
✏

⇤
= 1

2 due to
symmetry around the origin, so in particular

rf̃ (0) = 0 . (25)

Second, if x1 � ✏ then Prkvk1

⇥
v1 < �

x1
✏

⇤
= 0, and if x1  �✏ then Prkvk1

⇥
v1 < �

x1
✏

⇤
= 1.

Overall
|x1| � ✏ =) rf̃ (x) = sign(x1) · e1 . (26)

Third, since probabilities are bounded between zero and one, we obtain the global upper estimate
���rf̃ (x)

���  1 . (27)

Lastly, Prkvk1

⇥
v1 < �

x1
✏

⇤
equals to the volume of the intersection of the halfspace�

v 2 Rd
�� v1 < �

x1
✏

with the unit ball, normalized by the unit ball volume. In particular,

since this intersection is a subset of the spherical sector associated with the spherical cap�
v 2 S

d�1
�� v1 < �

x1
✏

, its normalized volume is less then the surface area of the cap. By well

known estimates of spherical cap (for example [4]):

Pr
kvk1

h
v1 < �

x1

✏

i
 Pr

kvk=1

h
v1 < �

x1

✏

i
 exp

✓
�
dx2

1

2✏2

◆
. (28)

By combining Eq. (24) and Eq. (28) we get
���rf̃ (x)

��� � 1� 2 exp

✓
�
dx2

1

2✏2

◆
.

In particular,

|x1| �

p
2 log(10)✏
p
d

=)
���rf̃ (x)

��� �
4

5
. (29)

We are now ready to describe the choice of x0 which will prove the claim, depending on the value of
⌘.

Case I: ⌘ 
5
p

2 log(10)✏

2
p
d

We set x0 = e1. First, x0 is indeed at distance 1 from 0, which by Eq. (25) is a stationary point.
Furthermore, by the definition of gradient descent, Eq. (24) and Eq. (27), for all t  2

p
d

5
p

2 log(10)✏
�

2
5 :

(xt+1)1 =

x0 � ⌘

tX

i=1

rf̃ (xi)

!!

1

� 1�
5
p
2 log(10)✏

2
p
d

· t · 1

�

p
2 log(10)✏
p
d

So by Eq. (29), for every t  2
p
d

5
p

2 log(10)✏
�

2
5 :

���rf̃ (xt)
��� �

4
5 . Consequently, the minimal t for

which the gradient norm is less than ✏ satisfies t > 2
p
d

5
p

2 log(10)✏
�

2
5 = ⌦(

p
d
✏).

Case II: 5
p

2 log(10)✏

2
p
d

< ⌘  2

In this case, we define the real function

� (s) := 2s� ⌘
⇣
rf̃ (s · e1)

⌘

1

25

On on hand, by assumption on ⌘ and Eq. (29):

�

 p
2 log(10)✏
p
d

!
=

2
p
2 log(10)✏
p
d

� ⌘
⇣
rf̃ (s · e1)

⌘

1


2
p
2 log(10)✏
p
d

�
5
p
2 log(10)✏

2
p
d

·
4

5

= 0

On the other hand, ⌘
2 >

5
p

2 log(10)✏

4
p
d

>
p

2 log(10)✏p
d

and by Eq. (27):

�
⇣⌘
2

⌘
= ⌘ � ⌘

⇣
rf̃

⇣⌘
2
· e1

⌘⌘

1

� ⌘ � ⌘ · 1

= 0

Notice that � is continuous since f̃ is smooth, so by the intermediate value theorem there exists

s⇤ 2

p
2 log(10)✏p

d
, ⌘
2

�
such that � (s⇤) = 0. Equivalently,

s⇤ � ⌘
⇣
rf̃ (s · e1)

⌘

1
= �s⇤ . (30)

We set x0 = s⇤e1. First, x0 is of distance at most ⌘
2  1 from 0, which by Eq. (25) is a stationary

point. Furthermore, by the definition of gradient descent and Eq. (30) we get

x1 = s⇤e1 � ⌘rf̃ (s⇤e1) = �s⇤e1 = �x0 .

Inductively, due to the symmetry of f̃ with respect to the origin, we obtain xt = (�1)tx0. In

particular, since s⇤ �

p
2 log(10)✏p

d
Eq. (29) ensures that for all t 2 N :

���rf̃ (xt)
��� �

4
5 > ✏.

Case III: ⌘ > 2

Set x0 = e1, which satisfies the distance assumption as explained in case I. By the definition of
gradient descent and Eq. (26):

x1 = e1 � ⌘rf̃ (e1) = (1� ⌘) e1 .

Notice that (1� ⌘) < �1, so by invoking Eq. (26) we get

x2 = x1 � ⌘rf̃ (x1) = (1� ⌘) e1 + ⌘e1 = x0 .

We deduce that for all t 2 N : xt+2 = xt, and in particular by Eq. (26):
���rf̃ (xt)

��� = 1 > ✏.

D Proof of Thm. 3

Our proof will closely follow the analysis employed in [24, Theorem 3] for a slightly different setting.

Fix an iteration budget T and some dimension d � T . Let A be the symmetric d ⇥ d tridiagonal
matrix defined as

81  i < T A(i, i) = 2 , A(i, i+ 1) = �1

81 < i  T A(i, i� 1) = �1

A(T, T) = k :=

p
2 + 3

p
2 + 1

A(i, j) = 0 for all other (i, j) .

Also, for some constant b to be determined later, define the quadratic function

g(x) := x>Mx�
1

4
e>1 x+ b where M =

1

8
(A+ 4I) .

26

It is easily verified that this function can be equivalently written as

g(x) =
1

8

x2
1 +

T�1X

i=1

(xi � xi+1)
2 + (k � 1)x2

T � 2x1

!
+

1

2
kxk2 + b . (31)

We first collect a few useful facts about g(·), stated in the following two lemmas:
Lemma 9. M satisfies 1

2  �min(M)  �max(M)  1. As a result, M is positive definite, and g(·)
is strictly convex and has a unique minimum.

Proof. A is symmetric, and for any x 2 RT , we have

x>Ax = x2
1 +

T�1X

i=1

(xi � xi+1)
2 + (k � 1)x2

T .

This is non-negative, which establishes that A is a positive semidefinite matrix. Hence, by definition
of M , �min(M) = 1

8 (�min(A) + 4) � 1
8 · 4 = 1

2 , which implies that M is positive definite. As a
result, g(·) is strictly convex and has a unique minimum. Also, by the displayed equation above,

x>Ax  x2
1 + 2

T�1X

i=1

(x2
i + x2

i+1) + (k � 1)x2
T  3x2

1 +
T�1X

i=2

(2x2
i + 2x2

i+1) + (k � 1)x2
T

= 3x2
1 + 4

T�1X

i=2

x2
i + (k + 1)x2

T  4kxk2 ,

where we use the fact that k  3. This establishes that �max(A)  4, and therefore �max(M) =
1
8 (�max(A) + 4)  1.

Lemma 10. The minimum x⇤ of g(·) is of the form x⇤ = (q, q2, . . . , qT , 0, . . . , 0), where q =
p
2�1p
2+1

.

Moreover, kx⇤
k 

qp
2�1
2 < 1

2 .

Proof. By the previous lemma and the fact that g(·) is differentiable, x⇤ is the unique point satisfying
rg(x⇤) = 0. Thus, it is enough to verify that the formula for x⇤ stated in the lemma indeed satisfies
this equation. Computing the gradient of g(·) using the formulation in Eq. (31)), we just need to
verify that

6q � q2 � 1 = 0 , 8i 2 {2, . . . , T � 1} qi�1
� 6qi + qi+1 = 0 , (k + 4)qT � qT�1 = 0 ,

or equivalently,
1� 6q + q2 = 0 , (k + 4)q � 1 = 0 ,

which is easily verified to hold for the value of q stated in the lemma. Finally, we have

kx⇤
k
2 =

dX

i=1

(x⇤
i)

2 =
TX

i=1

q2i <
1X

i=1

qi =
q

1� q
=

p
2� 1

2
,

implying kx⇤
k 

qp
2�1
2 as required.

Finally, we assume that the constant term b in Eq. (31) is fixed so that g(x⇤) = 0, which means that
g(·) can be written in the form

g(x) = (x� x⇤)>M(x� x⇤) . (32)

With this construction in hand, we now turn to prove the theorem. We will start with the family of
zero-respecting algorithms Azr, using any dimension d � T , and take g(·) as the “hard” function
on which we will prove a lower bound (note that by the lemmas above and Eq. (32), it satisfies the
conditions stated in the theorem).

27

Consider any algorithm in Azr. By definition of zero-respecting algorithms, its first query point is
the origin, x1 = 0. Now, note that by the structure of g(·) as specified in Eq. (31), when querying
the oracle at x1 = 0, it receives a gradient supported on the first coordinate. Because of the zero-
respecting assumption, it means that support(x2) ✓ {1}, which again by Eq. (31) means that the
returned gradient is supported on the first two coordinates. Continuing this process, it is easily seen
by induction that

support(xt) ✓ [t� 1] .

for all t, and in particular, support{x1, . . . ,xT } ✓ [T � 1]. As a result,

min
t2{1,...,T}

kxt � x⇤
k
2
� (x⇤

T)
2,

which by Lemma 10 is at least q2T =
⇣p

2�1p
2+1

⌘2T
. Taking a square root, we get that

min
t2{1,...,T}

kxt � x⇤
k �

 p
2� 1

p
2 + 1

!T

� exp(�T) ,

as stated in the theorem.

We now turn to prove the theorem for deterministic algorithms. This time, we will let the dimension
be any d � 2T . Fixing an algorithm, and letting u1, . . . ,uT be orthonormal vectors to be specified
shortly, we prove the lower bound for the function

g̃(x) :=
1

8

(u>

1 x)
2 +

T�1X

i=1

(u>
i x� u>

i+1x)
2 + (k � 1)(u>

T x)
2
� 2u>

1 x

!
+

1

2
kxk2 + b . (33)

Importantly, we note that
g̃(x) = g(Ux)

where g(·) is the function defined previously in Eq. (31), and U is an orthogonal matrix whose first T
rows are u1, . . . ,uT , and the rest of the rows are some arbitrary completion of the first T rows to an
orthonormal basis. Thus, g̃(·) is equivalent to g(·) up to a rotation of the coordinate system specified
by U . In particular, using Eq. (32), it follows that

g̃(x) = (Ux� x⇤)>M(Ux�w⇤) = (x� U>x⇤)>(U>MU)(x� U>x⇤)

= (x� x̃⇤)>M̃(x� x̃⇤) ,

where M̃ = U>MU and x̃⇤ = U>x⇤. Thus, we see that g̃(·) has the form required in the theorem,
with a matrix M̃ whose spectrum is identical to M , and a minimizer x̃⇤ = U>x⇤ whose norm is the
same as kx⇤

k (and therefore satisfying the conditions in the theorem).

We now specify how to choose u1, . . . ,uT in the function definition, so as to get the lower bound on
mint kxt� x̃⇤

k: Since the algorithm is deterministic, its first query point x1 is known in advance. We
therefore choose u1 to be some unit vector orthogonal to x1. Assuming that u2,u3, . . . are orthogonal
to {u1,x1} (which we shall justify shortly), we have by Eq. (33) that g̃(x1) and rg̃(x1) depend only
on x1,u1, and not on u2,u3, As the algorithm is deterministic and depends only on the observed
values and gradients, this means that even before choosing u2,u3, . . ., we can already simulate
its next iteration, and determine the next query point x2. We now pick u2 to be some unit vector
orthogonal to u1 as well as to x1,x2. Again by the same considerations, if we assume u3,u4, . . .
are orthogonal to {ui,xi}

2
i=1, we have that g̃(x2) and rg̃(x2) depend only on {ui,xi}

2
i=1, and

independent of u3,u4, So again, we can simulate it and determine the next query point x3. We
continue this process up to iteration T , where we fix uT orthogonal to {ui,xi}

T�1
i=1 and to xT (this

process is possible as long as the dimension d is at least 2(T � 1) + 1 + 1 = 2T , as we indeed
assume).

As a result of this process, we get that u>
T xt = 0 for all t 2 {1, . . . , T}. Also, since x̃⇤ = U>x⇤, we

also have u>
T x̃

⇤ = u>
TU

>x̃⇤ = x⇤
T . Using Lemma 10, we get that for all t 2 {1, . . . , T},

kxt � x̃⇤
k
2
� (u>

T (xt � x̃⇤))2 = (0� x⇤
T)

2 =

 p
2� 1

p
2 + 1

!2T

,

28

which implies that

min
t2{1,...,T}

kxt � x⇤
k �

 p
2� 1

p
2 + 1

!T

� exp(�T)

as required.

E Technical lemmas

Lemma 11. Denote by f(·) the L0-Lipschitz function x 7! L0|x1|. Assume f̃(·) has L-Lipschitz
gradients, and satisfies

���f � f̃
���
1

 ✏. Then L �
L0
8✏ .

Proof. Due to rescaling we can assume without loss of generality that L0 = 1. Denoting by e1 the
first standard basis vector, we have

f̃ (�4✏ · e1) � f (�4✏ · e1)� ✏ = 4✏� ✏ = 3✏ ,

f̃ (4✏ · e1) � f (4✏ · e1)� ✏ = 4✏� ✏ = 3✏ ,

f̃ (0)  f (0) + ✏ = ✏ .

By the mean value theorem, there exist �4✏ < t0 < 0, 0 < t1 < 4✏ such that

@

@x1
f̃ (t0) =

f̃ (0)� f̃ (�4✏ · e1)

4✏


✏� 3✏

4✏
= �

1

2
,

@

@x1
f̃ (t1) =

f̃ (4✏ · e1)� f̃ (0)

4✏
�

3✏� ✏

4✏
=

1

2
.

So by Cauchy-Schwarz and L-smoothness of f̃ :

1 =

����
@

@x1
f̃ (t1)�

@

@x1
f̃ (t0)

���� =
���
D
rf̃ (t1 · e1)�rf̃ (t0 · e1) , e1

E���



���rf̃ (t1 · e1)�rf̃ (t0 · e1)
���  L |t1 � t0|  L · 8✏

Lemma 12. If f̃(·) has L-Lipschitz gradients and satisfies kf � f̃k1  ✏ for some 1-Lipschitz
function f(·), then for all x 2 Rd : krf̃(x)k  1 + 2✏+ L

2 .

Proof. Let x,y 2 Rd. Denote �(t) := (1� t) · x+ t · y, and notice that

f̃ (y)� f̃ (x) = f̃ (� (1))� f̃ (� (0)) =

Z 1

0

⇣
f̃ � �

⌘0
(t) dt =

Z 1

0

D
rf̃ (� (t)) , �0 (t)

E
dt

=

Z 1

0

D
rf̃ (� (t)) ,y � x

E
dt . (34)

Combining Cauchy-Schwarz with the fact that rf̃ is L-Lipschitz, we get
D
rf̃ (x)�rf̃ (� (t)) ,y � x

E


���rf̃ (x)�rf̃ (� (t))
��� · ky � xk  L kx� � (t)k · ky � xk

=)
D
rf̃ (� (t)) ,y � x

E
�

D
rf̃ (x) ,y � x

E
� L k� (t)� xk · ky � xk

29

Plugging this into Eq. (34) gives

f̃ (y)� f̃ (x) �

Z 1

0

⇣D
rf̃ (x) ,y � x

E
� L k� (t)� xk · ky � xk

⌘
dt

=
D
rf̃ (x) ,y � x

E
� L ky � xk ·

Z 1

0
k� (t)� xk dt

=
D
rf̃ (x) ,y � x

E
� L ky � xk ·


1

2
k� (1)� xk2 �

1

2
k� (0)� xk2

�

=
D
rf̃ (x) ,y � x

E
�

L

2
ky � xk3

=)
D
rf̃ (x) ,y � x

E
 f̃ (y)� f̃ (x) +

L

2
ky � xk3 .

We assume krf̃(x)k 6= 0 since otherwise the desired claim is trivial. In particular, if y = x +
rf̃(x)

krf̃(x)k
then ky � xk = 1 and inequality above reveals

���rf̃ (x)
���  f̃ (y)� f̃ (x) +

L

2
 f (y)� f (x) + 2✏+

L

2
 ky � xk+ 2✏+

L

2
= 1 + 2✏+

L

2
,

where we used the fact that kf̃ � fk1  ✏, and that f is 1-Lipschitz.

30

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] see Sec. 1, Sec. 3 and Sec. 4.

(b) Did you describe the limitations of your work? [Yes] See for example second paragraph
in Sec. 5.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] see
"Broader impact" under Sec. 5.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix A,

Appendix E of the supplementary material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

31

