Supplementary material for the paper '"The emergence of clusters in
self-attention dynamics"

This appendix is organized as follows:

* Appendix A: Well-posedness results.

* Appendix B: Convergence of the self-attention matrix to a low-rank matrix (proof of
Theorem 2.1).

* Appendix C: Clustering towards vertices of convex polytopes (proofs of Theorems C.5 and
3.1).

* Appendix D: Clustering towards hyperplanes (proof of Theorem 4.1).
» Appendix E: A mix of hyperplanes and polytopes (proof of Theorem 5.1).
* Appendix F: Numerical experiments.

A Well-posedness

We collect several facts regarding the global-in-time existence and uniqueness of solutions to all
systems under consideration. Throughout the remainder of the paper, we use the terminology "tokens"
and "particles" interchangeably.

To prove these results, we leverage the underlying continuity equation (see (5)). For the sake of future
use, we prove a more general well-posedness result for the continuity equation than what is needed in
this paper.

A.1 Notation.

We denote by P.(IR?) the set of compactly supported probability measures on R¢, and by P, (R?)
the set of probability measures 1 on R? having finite second moment: {,, [#[? du(z) < +o0. Let
C°(R; P.(R?)) denote the Banach space of continuous curves R > t +> pu(t) € P.(R?). Here

P.(R9) is endowed with the weak topology, which coincides with the topology induced by the
Wasserstein distance W), for any p € [1, +0).

As seen below, for compactness purposes regarding solutions to the continuity equation, we consider
an additional property on the support of such curves, summarized by the following definition.

Definition 3 (Equi-compactly supported curves). The set CO, (R; P.(R%)) consists of all elements
p e CO(R; P(R?)) such that for any to,t, € R, there exists a compact subset K < R? such that
supp(u(t)) = K for any t € [to, t1].

We emphasise that there exist elements in C°(R; P.(R?)) which do not satisfy this property with
1 1
regard to their support—e.g., u(t) = (1 — e 2 )dg + e 7oL

A.2 Well-posedness of the ODEs

For any initial datum, i.e. a sequence of n points in RY, the dynamics (1) is well-posed, in the sense
that it admits a unique solution defined for all times.

Proposition A.1. For any initial datum Xo = (29,...,22) € (R%)", there exists a unique Lipschitz
continuous function R 3 t — X(t) = (x1(t),...,zn(t)) such that x;(-) solves (1) and satisfies
z;(0) = 22 for any i € [n].

0
n

We postpone the proof which is seen as a corollary of the well-posedness for the corresponding
continuity equation. It follows that the equation (4) is also well-posed:

Proposition A.2. For any initial datum Zo = (29, ...,2%) € (R4, there exists a unique Lipschitz
continuous function R 3 t — Z(t) = (z1(t),...,zn(t)) such that z;(-) solves (4) and satisfies
2(0) = 2Y for any i € [n].

Proof of Proposition A.2. Since the equations (1) and (4) are related by the change of variables
x;(t) = eV z;(t), Proposition A.2 is an immediate consequence of Proposition A.1. O
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A.3 The continuity equation

To prove Proposition A.1, we show a more general result concerning global existence and uniqueness
of solutions to the corresponding continuity equation®

Oep + div(X[p]p) =0 in (0, +00) x RY
_ - Rd (&)
Hit=0 = Mo inR )
when X[u] is the attention kernel
f Ty du(y)
X[p)(w) = ©)

f Q0K dp(y)
R4

We will make use of the following notion of solution.

Definition 4. Fix j1g € P.(R?). We say that t — p(t) =: pi; is a solution to the Cauchy problem (5)
if ue CO (R, P.(RY)), the function

RBt'—’f d,ut

is absolutely continuous for every g € C*(R%), and

[ swram = [ swane)+ [ [ ot 2lndie) dusto) as

holds for almost every t € R.

We will make use of the following lemma regarding (6).

Lemma A.3. For any R > 0 there exists a constant C1(R) > 0 such that for any j1,v € P.(R?)
with support in B(0, R),

1X [l e (masray < [V ]op R, Q)
I Vo X (1]l oo (rasmaxay < 20QT Kllop|[V lop B2 ®
1X[p] () = X[V]C) L= (B0, Ryra) < CL(R)Wa(p, v). ©

Proof. We henceforth set G(x,y) := e{Q%: Ky To show (7), since G > 0 we see that for any = € R?,

J G(z,y)|yl du(y)
2] ()] < [V ]op =1

< V]epR
f Gla,y) du(y)
B(0,R)

We now show (8). Note that V,G(z,y) = Q" KyG(z,y), thus, arguing as above, we find

[ w6 wlivelauw)
IV X [ ()] < 2L

J G(z,y) du(y)
B(0,R)

f G(x,wnyndu(y)f IV.G(z, 4) | du(y)
B(0,R) B(0,R)

1V]op
fB(O , S daw) fB(O , S ) dnw)

< 2[Q" Kop |V op R2.

3which can be seen as a mean-field limit, and is sometimes also referred to as a Vlasov equation.
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We finally prove (9). Using the fact that
[, stenant > 6(a.1) ) (B0, ),

—with an analogous bound for v—, we see that it suffices to bound

Lw G(z,y)Vydu(y) de G(z,y)dv(y) — JRd G(z,y)Vydr(y) J]Rd G(z,y) du(y)‘

from above. We rewrite this difference by making p — v appear artificially, and we then use the
triangle inequality along with the fact that both §,, G(z,y)Vydu(y) and §, G(z,y) du(y) are

bounded from above (by ¢/@" Kllo» R max(1, [V |opR)). We thus end up with the task of bounding
from above the absolute values of

| s —anw ad | G@yvy(d - . (10)
R4 R4

For the first integral, from the Kantorovich-Rubinstein duality we deduce

f Gz, y)(dv — du)(y)
Rd

We now recall the following inequality relating Wasserstein distances of different orders: for any
p = 1 and any bounded set B, for all Radon measures p, v supported in B,

Wi(p,v) < Wy(p,v) < diam(B)'~» Wy (p,v) /7. (12)
Using (12) and the fact that the Lipschitz constant ||G(z, -)|co.1(B(0,r)) is uniformly bounded for
|| < R by some Cg > 01in (11), we end up with

|, st - aw)| < Camaiu).

The same chain of inequalities applies to the second integral in (10) (with the additional multiplier
|V |l opR), which finally leads us to (9). O

inf
(z,y)eB(0,R)?

< |G(z, )| cor (B0, RY) W1k, V). (1)

The following existence and uniqueness result is adapted from [PRT15, Theorem 2.3]. In fact, the
result holds true for any vector field X'[] on R? satisfying conditions analog to those entailed by
Lemma A.3.

Proposition A.4. For any initial condition g € P.(R?), the Cauchy problem (5) admits a unique
solution p € CO (R; P.(RY)) in the sense of Definition 4.

Furthermore, we have the following stability estimate for solutions: for any R > 0 and T > 0, there
exists a constant C (T, R) > 0 such that for any jio, vy € P.(R?) with support in B(0, R),

Wa(u(t), v(t)) < e T Wy (o, vo) (13)
forany t € [0, T), where u(t) and v(t) solve (5) with initial conditions o and vy respectively.
Results of this nature can be found in the literature—see for instance [PRT15]. They are however
not sufficient for our purposes. We wrote Proposition A.4 in the W5 setting instead of the usual W}
setting (used for instance for the classical Dobrushin estimate [Dob79, Gol13]) because it allows to
extend the results of [WHL19] without difficulty from classical ResNets to self-attention dynamics.
We recall that the goal of [WHL19] is to import classical (mean-field) optimal control tools such as

the Pontryagin maximum principle and the analysis of Hamilton-Jacobi-Bellman equations to deep
learning, and relies heavily on W5 estimates (e.g., in [WHL19, Section 4]).

Proof of Proposition A.4. To ease reading, we split the proof in three parts.

Part 1: Existence. Fix an arbitrary 7' > 0. For k > 1, set

We define a sequence of curves p* : [0, 7] — P.(R?) by the following scheme*:

*In other words we "freeze" the vector field X' on each interval of the form [£7y,, (£ 4+ 1)7%), and during this
time interval, we follow the flow generated by this vector field starting from z* (£7y,).
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(i) p*(0) == po;
Gi) pb (O + ) = (@;[#k(mﬂ)# pk () for £ € {0,...,25 — 1} and t € (0, 73,

where for any z € RY, (I)tX[u"' ()] (z) is the unique solution to the Cauchy problem

{z)(t) = X[p"(r)](y(t))  on [0, 7]
y(0) = .

(The above problem indeed has a unique solution for any 2 € R? by virtue of the Cauchy-Lipschitz
theorem, using (8).) By construction, u* € C°([0, T]; P.(R?)) for any k > 1.

We begin by showing that there exists a radius R = R(T) > 0 independent of k such that
supp(*(t)) = B(0, R) for any k > 1 and ¢ € [0, 7. To this end, for any ¢ € [0, 7] and k > 1, let

Ry (t) > 0 denote the smallest positive radius® such that supp(u*(t)) = B(0, Ry.(t)). We will first
look to show that

supp(uk(ém +t)) < B(0, Ry, (b71) + t|V ||lop Rk (€7%))- (14)

Let 2 € supp(u* (b1 +1)), thus p* (14, +t)(B(z,€)) > 0 for any € > 0. By the change of variables
formula, we find that

dp® (1) (2) > 0.

(® )~H(B(w,¢))

t
x[uk (erp)]

Consequently ((I)i‘-)[ltk(ém)])il(B(x’ €)) n supp(p*(¢7)) # &, and let z be an element lying in

this set. From the Duhamel formula, we gather that

Blypyger(2) = y() = 2 + j X[t (Cr)](y(s)) ds.

Since z € (@}[M(hk)])—l(B(gg, €)), we find that

z+ f X[k (er)](y(s)) ds — x| < e.
0

Using the triangle inequality, (7), and since z € supp(u*(¢7y)) implies z € B(0, Ry, ({1})), we
deduce that
|| < &+ t|V]op Ri(€1i) + Ri(€7y).

Since € > 0 is arbitrary, this inequality yields (14). We now use (14) to prove the original claim.
Using the definition of the radius Ry (t), we evaluate (14) at ¢ = 73, and find

Rk((g + 1)Tk) < (1 + HVHOka)Rk(ng)'
By induction, we deduce that
Ry (€r) < (L+ |V ]opTi) Ri(0),

whence

k
T 2
Raftn) < (14 Wl ) Ra(0) < V0 Ry

where Rg > 0 denotes the smallest positive radius such that supp(ug) < B(0, Rp). Since the above
bound is independent of k, the claim follows, yielding the desired radius R = R(T") > 0 bounding

the support of every element in the sequence. In turn, we also deduce that ;¥ € C (R; P,(R%)) for
any k > 1.

Using the above fact, along with (7) and the definition of p* (¢7, + t), we find that
Wa (i (€r, + ), 1" (071,)) < [V]op Rt

>This radius always exists, since p*(t) is compactly supported.
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forany £ € {0,...,2% — 1}, ¢ € (0,7] and k > 1. Gluing these inequalities (for different £ and t)
with the triangle inequality yields

Wa (18 (1), 1°(9)) < [V]opRIt — 5|

for any ¢ € [0,7]. Since p*(0) = g for any k > 1, and since P2(R?) is the completion of P,
for the Wasserstein distance Wa, the Arzela-Ascoli theorem implies the existence of a subsequence
uniformly converging to some p* € CO([0, T]; Po(R%)). Since for any ¢ € [0, T'] the curves p*(t)
have their support enclosed in B(0, R) for any k > 1, we even deduce that u* € C2 (R, P.(R%)).
Note moreover that p*(0) = o and that

Wa (™ (t), 1% (s)) < [V]op Rt — ]
for any ¢, s € [0, T].

The fact that 1* is a solution of (5) follows exactly from the same computations as in [PRT15, p. 4711-
4712], starting from (A.2) therein. We do not reproduce here this argument since the computations are
the same word for word. The fact that for any 7' > 0 we have sup,¢o 7] W1(p*(?), pF(t)) — 0 as
k — 400, which is instrumental in [PRT15, p. 4711-4712], follows in our case from the left-hand-side
of (12).

Part 2: Uniqueness. Regarding uniqueness, we proceed as follows. We first recall the following
estimate from [PR16, Proposition 4]. Let p > 1, lett > 0, let v,w € C%! n L®([0,¢] x R4 RY)
(both with Lipschitz constant L > 0, say), and let z1, v € P.(R%). Then
Lt
pt1 er (elt —1)

Wy (@0) 1, (D)) < e v MWyl v) + ———[v = w o (ogxremsy. (15
Now assume that there are two solutions i and v of (5), with a spatial support that is locally bounded in
time, and having the same initial condition. Define v(¢, z) := X[u(t)](x) and w(t, x) := X[v(t)](z).
Also set

to :=inf{t = 0: Wa(u(t),v(t)) # 0},
and assume that ¢y # +00. Fix T' > ¢¢ and take R > 0 such that y; and v; are supported in B(0, R)
for any t € [0, T]. Using (15) with p = 2, and setting C2(R) := 2|Q T K op |V | opR? in (8), we find

Wa(p(to + ), v(to + ) < e2E Wy(u(to), v(to))
CQ(R)S _ 1

Se
4 Ca(R) sup  u(7,-) —w(r, )| Lo (ra)-

02 (R) T€[to,to+s]

Choose s > 0 sufficiently small so that e©2()s — 1 < 2Cy(R)s. Then, by virtue of (9) and the fact
that Wa(u(to), v(to)) = 0, we deduce

Wa(u(to + s), v(to + 5)) < 25¢2U°  sup  Wy(u(r), v(7)). (16)
TE€[to,to+s]

We choose s' > 0 satisfying both eC>(®)s" — 1 < 2C5(R)s’ and 25'e“2(R)s" < 1. Applying (16) to
every s € [0, s'] we obtain

sup Wa(u(to + 8), v(to + ) < 25'e“2¥ sup  Wa(u(r),v(71))
s€[0,s] TE[to,to+s']
< sup Wa(u(to + s),v(to + s)),
s€[0,s’]

which is a contradiction. Therefore p(t) = v(¢) for any ¢ > 0, which proves uniqueness, as desired.
Part 3: Stability. We do not detail the proof of estimate (13), which is very similar to the proof of
(2.3) in Theorem 2.3 of [PRT15]: it follows from (15) with p = 2, and the argument after (A.7) in
[PRT15], with W5 instead of W;. See also [PR13, Theorem 3]. ]

We conclude this section with the proof of Proposition A.1, which follows as a corollary of the above
derivations.
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Proof of Proposition A.1. We first show existence. We apply Proposition A.4 with pg := % Z;—Ll 0,0,
which in turn yields a solution () to (5). Following the proof of Proposition A.4, we also know that
this solution satisfies p(t) = ((I)tX[u(t)] )#tto for any t € R, and the vector field X'[p(t)] satisfies the
assumptions of the Cauchy-Lipschitz theorem. In particular, () is of the form p(t) = % Z;.Lzl Oz, (t)
for some Lipschitz curves R 3 — (1), for i € [n]. Then ¢ — u(t) = ;- 3.7 0y, (1) is a solution
to the Cauchy problem (5)-(6) in the sense of Definition 4.

Secondly, we show uniqueness. Suppose that X (t) = (z1(¢), ..., z,(t)) and X*(¢) are two Lipschitz

solutions to (1), with the same initial conditions. Then for a.e. ¢ > 0, using the equation (1) and the
fact that the attention matrix coefficients P;;(t) defined in (2) belong to [0, 1], we obtain

gy XD < [V oy mas s (1)

(and analogously for x*(¢)). Using Gronwall’s inequality, we deduce the existence of two con-
stants c1,co > 0 such that for any ¢t > 0 and for any i € [n], |2;(¢)| and |z} (¢)| are bounded
from above by clec2t It then follows that the empirical measures u(-) = * Z —1 0z, and

pE() = 5 2 1 d,% ) belong to CY (R, P.(R%)). Moreover, they satisfy u(t) = (®f, L)) #H0
and p*(t ) (® X[k (1)] )# 110 and are thus solutions to (5). Using the uniqueness result of Proposition
A.4, we obtain that y = p* which concludes the proof. O

B Convergence of the self-attention matrix: proof of Theorem 2.1

Throughout this section we focus on the following dynamics:

n Cwi(t),z;(t))
. e :
-ri(t) = Z (ZZ—l e<wi(t)7$k(t)>> xj(t)' 17

j=1

Note that for d = 1, the dot products in (17) are just multiplications of scalars.
We begin with the following observation, which holds for any d > 1
Lemma B.1. Forany 1, ...,x, € R% the function f : R¢ — R defined by

fix—log (Z e<z’xj>> (18)

=1

is convex.

Proof. Using the elementary inequality (a + b) > 2(ab)? for any a, b > 0, we have

(e, xj>) (Z exp<<y,xj>>>

[ exp (G ) + o)) + explCamy + pa)) | (19)

exp <<“””2“’ o+ xk>> (20)
1

exp(f () + f(y))

<
3

I
N = </——\\
gk &Mﬁ

<

Il
—
ks

Il
—

v
D=
3

j=1k=
= exp <2f (J?—Fy)) .
2
Taking the log on both sides yields the statement. O

The following lemma also holds for any d > 1

Lemma B.2. Let R 3 t +— {x;(t)}c[n) be a solution to (17). Then for any i,j € [n], the map
R >t~ |z;(t) — x;(t)| is non-decreasing.
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Proof. The dynamics (17) can be equivalently written as

i(t) = Vf(zi(t))

where f is as in (18). By convexity of f (Lemma B.1),

Slilt) = 2 (O = Galt) — &5 (0) 2a(t) — 25 (6)

=(Vf(zi(t)) = Vf(z;(t), @i(t) —z;(t)) =0,
as desired. O]

We now present the proof of Theorem 2.1, which assumes d = 1. We recall that in the statement,
V is a positive scalar, but by reparametrizing time we may assume that V' = 1, so the 1d dynamics
under consideration is really given by (17). Also, to ease notations we focus on QK = 1, but the
proof adapts straightforwardly to the setting QK > 0 assumed in the statement of Theorem 2.1.

As seen in Section B.1, it is not difficult to prove the convergence of the coefficients P;;(¢) of the
attention matrix for indices i € [n] for which z;(¢) becomes unbounded as ¢ — +00. This is the case
for at least n — 1 of the particles x;(¢t) (Lemma B.6). But should one particle z;(t) remain bounded,
proving the convergence of P;;(t) for j € [n] is slightly tedious (Section B.2).

Since d = 1, up to relabeling, we can order the initial collection of particles (which, we recall, are
assumed distinct):

z1(0) < ... < x,(0).
We set
c:= r[mn |zi+1(0) — z;(0)]. (21)
i€[n—1
According to Lemma B.2, we have |z;(t) — z;(t)| = c for any i # j and any ¢ > 0. In particular,
particles never "collide".

B.1 Results about unbounded particles

In this section we gather several results concerning the indices ¢ corresponding to particles x; (%)
which are not uniformly bounded in time. In particular, in Lemma B.4 we show that for such indices
i, P;;(t) converges toward 0 or 1 for any j € [n].

Lemma B.3. Let A > 0 denote the unique positive real number satisfying A? = n? exp(—A?). If
T (to) > A for some time tg = 0, then there exists ¢1 > 0 such that x,,(t) = cie® for any sufficiently
large t > 0. Similarly, if 1(ty) < —A for some ty = 0, then x1(t) < —ci1e® for any sufficiently
larget > 0.

Proof. The two cases are symmetric since the evolution (17) commutes with the involution of (R%)"

given by (z1,...,2,) — (—x1,..., —2,). We thus focus on the case x,,(tg) > A.
If 2,,(t) = 0 for some ¢ > 0, then
" eTn(t)(z; (t)—zn ()
Z (Zk ) exn (zk (t)zn(t))> T (t) (22)
zn(t) 2 () (2 ()= (1))
ZTin-Deenm 2, et z;(?) 23)

{je[n]: x;(t)<0}
. 0) e
T 14 (n—1)e—can(®) T (t)
7:”71(7:)2
S Inlt) e . (25)
n Zn (1)

We provide some detail on the above sequence of inequalities. First of all, to pass from (22) to (23),
we use

(24)

eZn()(@r(t)=zn(t)) £ g—czn(t)
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for j = n and for any k € [n] (which holds by virtue of (21)), combined with the fact that

Z 6a:n(t)(wk(t)7zn(t)) >1
k=1

for all indices j such that () < 0. To pass from (23) to (24), we use e®»(V?z > —%(t), which
holds for any z < 0.

For any B > A, we clearly have

2
B e B
——n
n

We then deduce from (24) and the fact that «,, (¢t9) > A that x,,(¢t) — 400 as t — +00. Moreover due

to the fact that the expression in (25) is bounded from below by =3 (t)
large, we deduce that

> 0.

whenever x,,(t) is sufficiently

t

Tp(t) = coe?n
for any sufficiently large ¢ > 0.

Coming back to (24), we find that for sufficiently large ¢ > 0,

1 *
T (t) = xp(2) — — el |
1+ (n— 1)e—ccoe2n

%log(xn( t)=1-0 (e*ﬁ) ,

This implies that

whence
log(z,(t)) = t+ O(1)
for sufficiently large ¢ > 0, as desired. ]

Here and in what follows, ¢, denotes the Kronecker symbol.

Lemma B.4. [fi € [n] is such that x;(t) is not uniformly bounded with respect to t > 0, then x;(t)
converges to either —o0 or +0 as t — +00. Moreover,

1. ifz;(t) — +o0, then for any j € [n], P;;(t) converges to 0, as t — +0, with doubly
exponential rate.

2. if xi(t) — —oo, then for any j € [n], P;;(t) converges to 61; as t — 400, with doubly
exponential rate.

Proof. We assume that x;(t) is not uniformly bounded with respect to ¢ > 0. Without loss of
generality, we assume that there exists a sequence of positive times {tk};:iol with ¢, — 400 such
that x;(t;,) — +00. Necessarily, z,,(tx) — +00. We notice that if z;(¢) > 0 for some ¢ > 0, then,
arguing as in (22)—(23)—(24), we have

n eri(t)(z; (1) —zn(t)) T (t) n
nit) _ —i () (1)
Z( " (n(t)—zn(t))) i) = e .0

1 enilt

For sufficiently large integers k& > 1, from (26) we get @;(tx) > 0 and &, (tx) > 0. But as ; and x,,
increase, the lower bound in (26) becomes larger. It follows that

, zn(t) _ mi(t)
i(t) = =
zi(t) 2n 2n
for sufficiently large ¢, implying that x;(¢) — +o0 with exponential rate as ¢ — +0.

We now prove point 1. regarding P(t). We assume that z;(t) — 400 as t — +o0. In this case, for
j # n (namely j € [n — 1]),

zi(t)z,;(t
Pij (t) _ ne (t)z;(t) < eii(t)(wj(t)*mn(t)) < efcwi(t),
Z t)fEk(t
k=1
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thus P;;(t) converges to 0 as t — 400 (with doubly exponential rate). Consequently, we also deduce
that

converges to 1, also with doubly exponential rate, as t — +oo0.

The case where x;(t) — —oo is symmetric. This concludes the proof. O

Our last result is useful in the next section.

Lemma B.5. For any i € [n] such that x;(t) is not uniformly bounded with respect to t > 0, there
exists some v; € R, v; # 0 such that x;(t) = y;et + o(e!) as t — +c0.

Proof. Without loss of generality we assume that ;(t) — +00 as t — +o0. For j # n, we find

zi(t)z;(t) zi (t)(z; (t)—zn (1))
€ ) € —cz;
Pylt) = — _ < ememilt),

@i (D (t) @i (D) (@ () =z (1)
k=1 k=1

Consequently,
Pin(t) =1 — ne~ o),

Therefore, using Lemma B.3 and the fact that x;(t) > biei for some b; > 0 (thanks to (26)), we
gather that

i (t) = (1 - ne_cxf'(t)> T (t) — ne” @ ey et
> <1 — ned’"ez"> Tp(t) — ne~ e ¢ et 27

for some ¢; > 0 independent of ¢. We also notice that due to (17), ;(t) < x,(t). Using (27), firstly
for i = n, together with the trivial upper bound z,,(t) < Ce' for some C' > 0 independent of ¢
(immediately seen from (17)), we obtain

() = 2n(t) (1 o (e_b>)

«Tn(t) = Vnet + O(Qt)

for some 7,, > 0. Now using (27) for the index ¢, we gather that

as t — +o00, which yields

i (t) = xp(t) + 0 <ed’i83"> ,
and so we deduce that
zi(t) = et + o(eh).
Similarly, if x;(t) — —oo, then x;(t) = y1€! + o(e'). This proves Lemma B.5 (and shows that
Yi € {71, M })- O

B.2 Results about bounded particles

In this section we collect results concerning particles which remain uniformly bounded in time. The
following lemma entails that there can be at most one particle with this property.

Lemma B.6. Consider
%B = {z e [n]: =) € LOO([O,+oo))}.

Then #% € {0,1}.
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Proof. We first prove that either x1 (t) — —o0 or x,,(t) — +00 as t — +00. By contradiction, if this
is not the case, then by Lemma B.3, (z1(t),...,x,(t)) € [-A, A]" for any ¢ > 0. We denote by .¥
the set of configurations (xF,...,z%) € [— A A]” such that |z} — 2%[ > |2;(0) — z;(0)[ > 0 for
any distinct ¢, j € [n]. For any X* = (zF,...,2%) € .J, the function f defined in (18) (with anchor
points given by X*) is strictly convex—the equality in the inequality between (19) and (20) is never
achieved. Therefore, the proof of Lemma B.2 shows that if X* is seen as an initial datum for the
dynamics (17), then

v(X*) = 4

dt |t=0

|27 (t) — 25 ()] > 0.

Since .¥ is compact, vy := infxxcy v(X*) > 0. Hence, t — |21 (t) — x,(t)| grows at least linearly,
which is a contradiction.

We may therefore assume without loss of generality that 1 (t) — —o0 as ¢ — +00. We prove that
2 (t) converges to either —o0, or 0, or +00, as t — +00. We assume in the sequel that z,, (¢) does not
converge to —co or 0. For any i € [n], if there exists £ > 0 and a sequence of positive times {sj}; %
tending to +oo such that z;(si) < —¢, then it follows from (26) that ;(t) — —oo. Therefore, by
our assumptions, we have lim 1nft4+oo xn(t) = 0. Also, since z,,(t) - 0, there exists € > 0 and a
sequence of positive times {t; }; ] tending to o0 such that z,,(¢;) = ¢ for any integer k > 1. For
any ¢t > 0 such that z,,(t) > ¢, we mtroduce the set of indices

N(t) = {i e [n]: z;(t) <0},
and we write
e Ozt g (1)

n(t) = ewn,(t)an(t) +jeN(t) Z eaa,](t)w (28)
Z etn(D)zk(t) Z en (D)2 (t) jEN(t)

According to Lemma B.4, any point z;(¢) which takes negative values for arbitrarily large times and
does not converge to —oo has to converge to 0. Therefore, the second term in the lowermost bound in
(28) is lower bounded by — 5 for sufficiently large ¢. All in all, we gather that @, (t) > 5 and x,,(t)
converges to +0o0 as t — +o0. If it converges to 0, then necessarily z,_1(t) — —o0 by combining
Lemma B.2 with Lemma B.4. This proves Lemma B.6 in this case.

From now on we assume that z,,(t) — +o00. Using (26) we see that if there exists € > 0 such that
x;(t) > € for an unbounded sequence of times ¢, then x;(t) — +00. The same is true symmetrically
when z;(t) < —e for an unbounded sequence of times ¢. Thus if ¢ € 9%, necessarily z;(t) — 0. By
Lemma B.2 this can be true for at most one index 4, which concludes the proof of Lemma B.6. [

If B = &, Theorem 2.1 follows from Lemma B.4. From now on, we assume that #% = 1, and we
denote by ig € [n] its unique element. We distinguish two cases: either iy € {1, n} (Lemma B.7), or
10 ¢ {1,n} (Lemma B.8).

Lemma B.7. If z,(t) is bounded as t — +o, then Py, (t) — 1, and P,;(t) — 0 forany j € [n—1],
ast — +oo. Similarly, if ©1(t) is bounded as t — +, then P11(t) — 1, and Py;(t) — 0 for any
je[n—1], ast — +oo.

Proof. The two cases (t — x,,(t) bounded or t — a1 (¢) bounded) are symmetric since the evolution
(17) commutes with the involution of (R?)™ given by (1, ...,z,) — (—z1,...,—,). Whence,
we only address the first one: we assume that x,(¢) is bounded as ¢ — +00. We first notice that
all particles x;(t) for j € [n — 1] tend to —c0 as t — 400 due to Lemma B.6. We now prove the
following properties:

1. x,(t) > 0 for any sufficiently large ¢;

2. z,(t) > 0ast — +oo;

3. forany j € [n — 1], P;(t) — Oast — +oo.
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To prove point 1., we notice that for sufficiently large ¢, x;(¢) < 0 for any ¢ € [n — 1]. If in addition
Zn(t) < 0, then due to (17), all z;(¢t) (¢ € [n]) remain negative and due to (17), z,(t) — —o0 as
t — 400, which is a contradiction.

For point 2., we fix € > 0, and set
THi={t=0:2,0) > ¢}

We prove that if TS is unbounded, then z,,(t) — 400 as t — +o0, which is a contradiction. As
a consequence, T is bounded for any ¢ > 0, which implies (in conjunction with point 1.) that
2, (t) — 0ast — +o0. So let us assume that T is unbounded. We notice that for any § > 0, if
t € TZ is sufficiently large then

ezn(t)rj(t)xj )| <é

for any j € [n — 1] since x(t) — +00 as t — +00. Therefore,
" 2
2 enziO g (1) > e e — (n—1)8 =0,

where we took 6 > 0 sufﬁcwntly small for the last inequality to hold. Consequently,

Z exn(t)xj(t)xj ()
n(t) = =

Z T (t) 2 (t

e p, (1) — (n —1)8
en®? yn—1

It is not difficult to see that this implies that x,,(t) — +00 as t — +o0, which is a contradiction.
For point 3., we first notice that for any j # n, since z; (t) = —oo,

n e%i () (zr(t)—zn (1)) z1(t) n
. M s (02 (1)
ZIOEDY (Z?zleﬂﬂj(t)(me(t)—wn(t))> Tt < =7 e '

Using Lemma B.3, we deduce the existence of some co > 0 such that
z;(t) < —coe
for any sufficiently large ¢ > 0. We now prove that for any j # n,
z; ()2 (t) — 2, (1)? o . (29)

— 400

Due to the ordering of the particles, it is enough to prove (29) for j = n — 1. Fix j = n — 1 and
k > 0, and assume that

wn(t)aj(t) = wn(t)* — &
for some ¢ > 0. Then, using the fact that

e (t)x;(t) = wn(t)2k (1)
for any k € [n — 2], we get

eri (B)zn(t)

Pnj(t) = ern(? 4 (n — 1)evn (i)

=g,

where ¢ = —_. We obtain
n+e

En () < Popn(t)2n () + Poj )z (t) <z (t) + ex;(2),
hence

%(xn(t)(a?n(t) — (1)) = & (t)2n(t) — 2;(t)) — a(t)3;(2)
(

(
(wn(t) + &2 (1)) (220 (1) — (1)) — 2n(t)2;(2)
—e;(t)? + 2 (£) (262 (8) + 220 (t) — 2;5(t) — &5(1))
< —ewj (1) + n (1) (220 () — 221 (1)), (30)

N
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where in the last line we used the fact that 2;(¢) > x; (), which is due to (17), and that 2 (¢) < x; (%),
which is due to the ordering of the particles. Since z;(t) < —cqge’ and 1 (t) > —cq¢€’, the upper
bound in (30) is negative if ¢ is large enough. We therefore conclude that for any fixed , if there exist
unbounded times ¢ such that x,, (t)z; () = x,,(t)? — K, then z,, (t)x; (t) = 2, (t)? — & for any ¢ large
enough. But this is excluded since x,,(t) > 0 and z;(t) — —o0 as ¢ — +00. This concludes the
proof of (29), and the lemma follows by plugging this information into the definition of P,,;(¢). [

Lemma B.8. Ifiq ¢ {1,n} and x;,(t) remains uniformly bounded in t, then for any j € [n — 1],
there exists some o € 0, 1] such that P;;(t) — o ast — +o0.

Proof. Assumethatig ¢ {1,n}. Thenz1(t) — —oo and ,,(t) — +o0ast — +00. Also, x;, (t) — 0
due to (26).

We write x;, (t) = y;, (t)e~". Since v, > 0 and 71 < 0, we notice that the function

Z ey,

g0 (SN

1+ 2 evi?
ie[n]\{io}
takes value —oo at —oo, and +00 at +00, and has a positive derivative. Thus, it takes the value 0
exactly once, and we denote this point by 6. We prove that y;,(t) — 6y as t — +00. We observe
that
emin ™’ =1 4 o(1).
Using Lemma B.5 we have

Yio (t> = etjjio (t) — Yio (t)

e¥io (1) (7;+o(1)

= (Pioio (t) - 1)yio (t) + e 2

i o(1
jelnTgioy | 1o+ Y, ero®@Orto)
ke[n]\{io}
We recognize that the sum in the above expression is roughly equal to g(y;, ). If the latter is not close

to 0 for large times, then ¥;, (¢) necessarily have a huge magnitude due to the e*' factor, leading to a
contradiction. Fix ¢ > 0. If y;, (¢t) > 6y + € for some large time ¢ > 0, then, noticing that

|yio (£)] = €', ()] = o(e"), (31)

(75 + o(1)).

we get
o (£) = o(e") + € (g (4 (1) + 0(i, (1)) ).
But g(y;,(t)) = § = d(¢), and hence
. g 2s
Yio (8) = 56
for any larger time s > ¢, which contradicts (31). We get a similar contradiction if y;, (t) < 0y — ¢
for large enough ¢. This concludes the proof that y;, (t) — 6o.

As a consequence, x;, (t)x;(t) — 6y, for any i # iy, and we deduce Lemma B.8. O

B.3 Concluding the proof of Theorem 2.1

Proof of Theorem 2.1. By Lemma B.6, there is at most one index iy € [n] for which the particle
x4, (t) remains bounded for any ¢ > 0. In turn, for any ¢ € [n]\{io}, we may invoke Lemma B.4
which entails that P;;(¢) converges to either d1; or §,,; as t — +oco (with doubly exponential rate).
And by ordering of the particles, for indices ¢; < %o different from 7o, and P;, j(t) — 0y then
necessarily P;,;(t) — d,; as well. Consequently, all but at most one row of P(t) converge to
either e; = (1,0,...,0) ore, = (0,...,1) as t — +oo. For the iyp-th row, we may invoke either
Lemma B.7 or Lemma B.8. The former applies if iy € {1,n}, and entails that the io-th row of P(t)
converges either to e or e,,, while the latter applies if ig ¢ {1,n}, and entails that the i(-th row of
P(t) converges to some vector o € R? with non-negative entries. Finally, since the ig-th row of P(t)
has entries which sum up to 1, then so does a.. These conclusions lead us to a final limit matrix P*
which has precisely the form indicated in Fig. 2 (namely, P* € ), as desired. O
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Remark 5 (Higher dimensions). The extension of Theorem 2.1 to d = 2 is not straightforward due
to rare pathological situations. For example, suppose d = 2, n = 2, and the initial configuration
21(0) = (1,¢) and x2(0) = (1, —¢). One can check that z;(t) — (1,0) ast — +oo, fori = 1,2,
which means that a single cluster appears. However, the self-attention matrix converges toward the
identity (which has rank 2). Therefore, it is not true in full generality that the rank of the limiting
self-attention matrix is equal to the number of clusters as t — +0o0, although we believe that the
result is true for almost all initial conditions.

C Clustering toward vertices of convex polytopes: proofs of Theorems C.5
and 3.1

In this section, we focus on proving the result in the case
V=1,
We also provide a full picture of the behavior of the dynamics in the case V' = —1I; in Appendix C.2.

C.1 Clustering towards vertices of convex polytopes: Theorem 3.1

In this section, we prove Theorem C.1—namely, we show that particles {z;(t)};c[n following the
rescaled dynamics

n e**(Az;(t),Az; (t))

. €

Zl(t) = Z Zn 0% Az (1), Azi () (Zj (t) - Zl(t)) (32)
k=1

j=1
converge, as t — 00, toward points lying on the boundary of a particular convex polytope. In (32) we
made use of the shorthand notation

D=

A= (Q'K)". (33)
The precise statement is the following:
Theorem C.1. Suppose V = Iy and Q" K > 0. Then, for any initial datum {2:(0)}iemn) © R?, the
solution to (32) is such that its convex hull conv ({z;(t)};e[n]) converges to some convex polytope
K < R% ast — +oo. Furthermore, let ¥V = {v1,...,vm} (m < n) denote the set of vertices of K,
and consider

8= {x e K: |Az|* = m[aﬁ@%f‘”ﬁ}’
je[m

with A defined in (33). Then S has finite cardinality, and V < 8§ < 0K u {0}. Finally, for any
i € [n] there exists a point Z € 8 such that z;(t) — Z as t — +o0. In particular, z;(t) converges
either to some point on the boundary of K, or to 0.

C.1.1 The convex hull is shrinking

To prove Theorem C.1, we begin with the following illustrative result.

Proposition C.2. Suppose V = I and Q7K > 0. Then the solution {zi(+) }ie[n) to (32) is such that
t — conv({2;(t)}e[n]) is non-increasing in the sense of set-inclusion.

Proof of Proposition C.2. Fixt > 0 and let H c R¢ be a closed half-space which does not contain
any of the points z;(t). We define the map

s m[uﬁ dist(z;(s), H)
€N
for s > 0. We claim that
« is non-decreasing on [t, +00). (34)
Before proving (34), let us show how to conclude the proof of Proposition C.2 using this claim. It
follows from (34) that if conv({z;(t) }ic[n]) N H = &, then conv({z;(t') }ie[n]) N H = & for any
t' = t. Writing the convex set conv({z;(t) }ie[n]) as

conv({zi(t)}iepn)) = ﬂ H = ﬂ RNH,
H' open half-space H closed half-space
conv({z;(t)}ic[n)) < H' conv({zi(t)}ien)) "H=0
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we get that conv({z;(t') }ie[n]) < conv({2i(t)}ie[n)) for any ¢’ > ¢.

‘We now turn to the proof of the claim (34). Denoting by n the unit outer normal to /1 and by proj;;
the orthogonal projection onto the closed set H, we have

dist(z, H) = (x — proj (), n).
If t — z(t) is a differentiable curve, writing z(t) = {z(¢),n)n + v(t) where v(¢) € H we have
<& (proj (z(t))) = v(t), whence
d .
Edlst( x(t), H) = {(&(t), n). (35)

Let T > t denote the infimum of the times for which one of the points z;(¢) lies in H. Now fix
€ [t,T), and denote by M (s) the set of indices ¢ € [n] such that dist(z;(s), H) is minimal. For
h — 0, we have

o : . d .
a(s+h) = Z.elig) dist(z;(s + h),H) = ielig) (dlst(zi(s),H) + hadlst(zi(s)7 H)+ 0(h)>

= as) + h( min L dist(z(s), H)) +o(h).

€M (s) dt
Consequently,

da d
Z(s) = = H).
az (8 = i g dist(zi(s), H)

Moreover, for any i € M (s), one has
d 39 2
S aist(z(s), H) 2 uls)m = ) Py(s)z5(s) — 2:(5),m) > 0,
j=1

where the last inequality comes from the fact that each term in the sum is non-negative, since
i € M(s). This proves (34) (and, as a byproduct, that T = +00). O

The following fact immediately ensues.

Corollary C.3. For any i € [n] andt = 0, z(t) € conv({2;(0)}ic(n]). In particular, z;(-) is
uniformly bounded in time.

C.1.2 Proof of Theorem C.1

Proof of Theorem C.1. As a consequence of Proposition C.2, the set conv({z;(t)};e[n]) converges as
t — 400 toward some convex polytope K. In the remainder of the proof, we look to show that the
particles z;(t) can in fact converge only to some well-distinguished points lying on the boundary of
this polytope.

Step 1. The candidate set of limit points. We denote by ¥ = {vy, .. vm} the set of vertices of
KC. Writing any « € K as a convex combination of these vertices: x = Z 1 o;jv; for some weights

aj = 0with 3770 a; = 1, we gather that

j=

|Az|? = { Az, Z a; Av; Z a; (Az, Avj) < rnax(Az Avj). (36)

j=1
Let § < K denote the set of points w € K such that

| Aw|? = max{Aw, Av;). 37
je[m]

The following holds—we postpone the proof to after that of the theorem.

Claim 1. ¥ < 8. Moreover, if 0 € K, then 0 € 8. Finally, 8 < 0K u {0}, and S has finite cardinality.
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Figure 9: An example configuration of the sets § and Ss in R2. The set S consists of all green nodes
along the boundary of 0/C, while S; is the union of all yellow "hemispheres”. The latter are pairwise
disjoint and are the connected components of S5, which we denote by 6, for k € [M].

Now, for 6 > 0, we define the set S5 of points in /C at distance at most § from §:
S5 = {z e K: dist(z,8) < ¢}.

Since § is finite, there exists a sufficiently small 6y > 0 such that for any § < &y, the set S5 has
M := #S8 connected components, with any two of these connected components being separated by
a distance of at least dg. Our goal is to prove that for any ¢ € [n], and for sufficiently large ¢, the
particle z;(t) remains in one of these connected components. In the sequel, we fix ¢ € [n].

Step 2. z;(t) must grow if it is not already in S5. We now prove that there exists some vy = () > 0
(depending only on the geometry of ) such that for any ¢ € (0, §p], there exists T'(§) > 0 such that
ift > T(d) and z(t) ¢ Ss, then

d
— || Az (8)]* = ~0.
dtH zi()]° =~ (38)

To this end, we observe that

2 . " o(Azi(t), Az (1))e*
2 dt HAZ ( )H = <AZL(t)7AZL(t)> = Z (Zk o(Azi (1), Az (t) >62,> <A(Z]( ) Zz(t)),AZZ(t»

j=1

a;(t)e?t
:Z W a;(t) (39)
J=1_

=b; (1)

where we have set
a;(t) == (A(z;(t) — zi(t)), Az (1))

(To obtain the last equality in (39), divide both the numerator and the denominator by elAzi(t)]*e* 2
The following holds.

Claim 2. There exists some constant ' = ' (K) > 0 depending only on the geometry of K such that
the following holds. Fix § € (0,60]. There exists T'(6) > 0 such that ift = T'(5) and z;(t) ¢ S,
then there exists j € [n] such that a;(t) = ~'0.

We postpone the proof of this claim to after that of the theorem. We seek to use this claim in obtaining
a lower bound of b;(¢) for any j, whenever 0 is small enough and ¢ is large enough. Since by Corollary
C.3, forany j € [n], t — z;(t) is uniformly bounded on [0, +c0), we gather that a;(-) € L*(0, +00).
So, we may set

K := maxsup |a;(t)].
jeln] 120

B(t) :={j € [n]: a;(t) = 0}.

Let ¢ > 0 be fixed. We define
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We pick an index jo(t) maximizing a;(t), namely

Jo(t) € argmaxa;(t).
jeln]

Observe that jo(t) € B(t) since a;, ) (t) = a;i(t) = 0. Clearly

bi(t) =0 forall j € B(t). (40)
In fact, we also have
; t
b 1) = 200 (41

Now suppose that j ¢ B(t); since a;(t) > —x, and

2t

e%i (t)e™ 1

—a. 2t
m < < e Mo
Z eak(t)th
k=1

n 2
Z eak(t)e ¢
k=1

we gather that
bj(t) = —re 0w O
Using (40), (41) and (42) in (39), we find

1d
2 dt
The above inequality along with Claim 2 lead us to deduce that there exists 7'(0) > 0 (possibly larger

’

than 7”(9)) such that (38) holds whenever t > T'(6), with v = 7., as desired.

Step 3: z;(t) cannot circulate indefinitely between the connected components of S;. Since
z; € L®([0, +0)) by Corollary C.3, from (32) we gather that 2; € L*([0, +0)) as well. And since
any two connected components of S;, are separated by a distance at least y, we deduce that it takes
a time at least

do

|zl o (o, 400)

for all j € [n]\B(t). (42)

— kne %00 (e

()

Q.
A i t 2 > ]O(t)
Az ()] > 2O

T()Z

for z; to go from one connected component of s, to another one. Fix § € (0, §y) such that

Toydo

§ < —-01%
8R| Alop

(43)

where R := maxXepn] |25/ L ([0,4-0))- Denote by
Q... G

the connected components of S5, each of which being the intersection of & with a Euclidean ball of
radius § centered at some point of § (see Fig. 9). For any k € [M],

sup | Az|* — inf [Az]® < 4R[A]op6. (44)

TEGB
We introduce the following binary relation on [M]:

k> (<= inf |Az|* > sup |Az|?,
TEB, xTE€EGy

which is transitive. The underlying idea is the following: if ¢ is sufficiently large, and if z; starts from
some connected component 6., then the only connected components 6, which z; is able to visit
later on are those for which k > /. This travel of z; has to stop after some time since [M] is finite, >
is transitive, and for any ¢, the relation ¢ > ¢ does not hold.

Let T = T'() be as in Step 2. Suppose that t5 > t; > T and ky, ko € [M] are distinct and such that
zi(t1) € By, 2i(ta) € By, and z;(t) ¢ Ss for any ¢ € (¢1,t2). Per Step 2 (more specifically, (38)),

|Az(t2)[? = | Azi(t1)]* + Tovdo-
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Therefore using (44) twice and since 9 is chosen as in (43), we gather that

|Azi(t2)[* — AR[ Alopd > [Azi(t1)[* + Toydo — 4R[Afopd

inf |Az|? >
ace%kz
> inf [Az|® + Toydo — 4R| Alopd
:I:E%kl
45
> sup [Aa|? + Tordo — 8R[AJopd &

IEC@kl

> sup |Az|?.
:L’Ec@kl

Whence ko > k1. We therefore deduce that there exist some 77 > T and k € [M] such that
zi(t) ¢ S5\ Gy forany ¢t = T".

Step 4. Conclusion. To conclude, it remains to be shown that z;(¢) stays in Gy, for ¢ large enough.
For this, in addition to (43), we impose

vTo

51 < 0
8R[Alopdo

(46)

For r > 0, we denote by 6}, the intersection of K with the closed Euclidean ball of radius "
having the same center as 6. In particular, ‘6% = @y,. If, after time 1", z; travels from 6, to the

1
complement of G,*, it spends a time at least

(0% —5%)

1Zill e ([0,+00))
1 1 1
in B, \G7. Per Step 2 (used with §2), | Az;||* has to increase by at least

3% (64 - 9) 7o

|26l oo o,400)) 201l Lo (0, +00))

> 4R|Alopb @7)

during this travel (the last inequality in (47) stems from (46)). This implies that z; cannot reenter
1

@, after having reached the boundary of 6!, due to (44). Thus z;(t) ¢ Ss for any sufficiently large
t, which is impossible due to Step 2 and the uniform boundedness of ¢ — | Az;(t)|. Hence, for

1
sufficiently large ¢, z;(t) € 6, . Since 6 may be chosen arbitrarily small, this concludes the proof of
Theorem C.1. O

C.1.3 Proving Claims 1 and 2
We now address the proofs of the two claims which were instrumental in what precedes (along with a

sketch of the proof of 7 < §, as implied).

Proof of Claim 1. The fact that 0 € § if 0 € K is immediate. We now show that § is finite and
8§ < 0K U {0}. Let w € S\{0}. As
w = Z QU
j=1

for some «; > 0 with Z;’;l a; = 1, and since (37) holds by definition, it follows that a;; = 0 for
any j not attaining the maximum in (37). Let | = [m] denote the set of all such indices. We have

w = Z Oljl)j
7€l

with |Aw|? = (Aw, Av;) for any j € |. Whence w is the orthogonal projection onto span{v;} jei
with respect to (A-, A-). This yields § < 0K. Moreover, since for each subset | € [m] there exists a
unique such projection w, § is finite.
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Sketch of proof of ¥ < 8. We notice that for any ¢ € [n] and for ¢ large enough, we have

6e2f’<Azi (t),Az; (t))

i (t) = = = i(t) — z;i(t (48)
z ( ) J; <2k=1 e <Azi(t),Azk(t)>> (Z]( ) Z ( ))

( 662t<AZi (t),Az; (b))

S n e2t Azi(t), Az (t
FEM;(t) Din g et A1), Az (1))
where M;(t) is the subset of [n] containing all indices j such that

max(Azi(t), Azx(t)) — (Az(t), Az (1)) < e

) (2;(t) — z()), (49)

(all other terms in the sum (48) are negligible). Due to the convergence of conv({z;(t)};ef,]) toward
K, we also know that for ¢ large enough,

» all the points z;(t) are contained in a small neighborhood of /C,

* near any element of ¥/, there exists some particle z;(¢).

Assume, for the sake of contradiction, that there exists a vertex v; € 7 such that v; ¢ §. Set
C := conv({v; }ie[m)\(;3)- In particular, dist(v;,C) > 0 since v; is a vertex of K. If | < [n] denotes
the set of indices 4 such that z;(t) lies near v;, then M;(t) n | = F for any i € |, since v; ¢ §. For
i € |, using (49), we find that dist(z;(¢),C) decays as t — +o0 as long as i ¢ M, (t)—indeed, (49)
implies that z;(t) is attracted by C. This implies that v; ¢ conv({zx(t")}xe[n)) for ¢’ large enough.
This is a contradiction since K < conv ({zx ()} xe[n]) for any ¢ > 0 according to Proposition C.2. [J

Proof of Claim 2. To simplify the notation, we only prove Claim 2 when A = I;. Assume thatt > 0
and that z;(t) ¢ Ss.

First case. Firstly, we prove the claim in the case where z;(¢) ¢ S5,. For this, we notice that the
function
2
[z - max{uj, ) — |z
€[n]

is continuous, and by definition of §, f is strictly positive on the compact set K\Int(S;,) (the
complement in K of the interior of S;,). Hence f(x) > ¢ in this set for some constant ¢ > 0. Setting

K. := {z e R?: dist(z,K) < &},
by continuity we find that f(x) > ¢//2 for z € K \Int(S;,) and for sufficiently small € > 0 (fixed in

the sequel). For sufficiently large ¢, we have z;(t) € K. for any i € [n], thus

C/

g%@i (), 2(t) — zi(t)) = }g[i};i]@i(t)a v —2i(t) = 5

Since ¢ is independent of §, we deduce the claim in this case (notice that it suffices to prove the claim
for sufficiently small 9).

Second case. Secondly, we prove the claim when z;(t) € 85,\Ss. The proof mainly relies on the
following result:

Lemma C.4. For any w € S, there exists 3 > 0 such that if°® x € K n B(w, dy), then

ax(z,v; — z) > fllz - w]. (50)
em

J

We postpone the proof of Lemma C.4 and show how to conclude the proof of Claim 2. Fix § > 0.
We set
B

= 6R

SHere, B(y, r) denotes the closed ball with center ¢ € R? and radius > 0.
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where
R :=max|z;| o .
jeln] ” J HL (R)

Since conv({z;(t)}e[n]) converges to K as ¢ — +co, there exists 7'(6) > 0 such that for any
t = T(0),if z;(t) € B(w, d9)\B(w,d) for some w € §, then

[2:(t) =z <
for some x € K n (B(w, §p)\B(w, §)). Therefore, using Lemma C 4,

max{z;(t),v; — z(t)) = max{z,v; —x) — 3Rn
jelm] j€[m]

> 0 —3Rn
B
= —4.
2
To summarize, we have found that for any § > 0 there exists T(6) > 0 such that if ¢ > T'(0) and
Zi (t) S 850\85, then
B

max{(z;(t),v; — z;i(t)) = =0. (1)
je[m] 2

Combining (51) with

%%@i (t), 2 (t) — zi(t)) = ;g[an}f]@(t)’ v; — zi(t))

concludes the proof of Claim 2 in this second case. O

Proof of Lemma C.4. Let us first address the case where w = 0. Writing any = € K\{0} as a convex
combination of the vertices: x = Z;nzl ajv;, we find

m

0= =z, Z a;(vy—z) )= Z a;{z,v; — x). (52)
j=1 j=1

We can exclude having {(x,v; — ) = 0 for all j € [m], as this would necessarily imply that
|lz|* = 237" aj{z,v; — x) = 0. We deduce from (52) that

ax{z,v; —x) >0
je[m]

for any x € K\{0}. Hence, it is sufficient to prove (50) for || small enough. We notice that for any
x € KC\{0} written as above,

m

e = > ajlv;,@).

j=1
Hence x — max;c[,,){v;, ) is positive for z € K\{0}. Since this function is continuous and
homogeneous in x, we deduce the existence of S > 0 such that

max vy, 7) > 26|
je[m]

for any x € K. For 2 € K with |z| sufficiently small, we obtain (50).
We now assume that w € §\{0}. We set
= {j € [n]: |w|? = (w,v;)}
and
A := span ({vj —w: j€ Iu,}) ,
which is orthogonal to w. We also introduce
R = (Rw &) .A)L,

and we denote by 7g the orthogonal projection on %R. We claim that there exists some p > 0 such
that for any j € [m], we have

(w = v;,w) > plmgy -
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This follows from the observation that [m] is finite, and that |7gv;|| > 0 implies (w — v, w) > 0.
Therefore, for any « € K, writing = as a convex combination of the vertices, namely z = 2311 ;vj,
we find that

m m

plraz| < Y, ajlmav] < Y aw —vj,w) = (w -z, w). (53)
j=1 j=1
Fix x € K n B(w, dp). We write © = w + ¢'u with 0 < ¢’ < §p and |u| = 1. Then we have the
orthogonal decomposition
u=bw+a+r (54)

where a € A, r € R and b € R. Since a is a convex combination of the form

a= Z Bj(v; —w),

J€lw

we have
lal® = > Biv; —w,a),

jelw

whence
max{a, v; —w) > [al?.
J€ly

‘We deduce that

mzllx@, vj— Ty = m?x<w + 6'u, (v; — w) — 0wy
J€Elw J€lw

= —§b|w|? - 5%+ Ijrgtj{(cz, v — w)

> —§'b|w|? — 6" + &'||al?. (55)
Notice that b < 0 by combining (53) and (54). Since ||u| = 1 and using (53) we have
1=0"+ [af® + r]* < Ja|® + xb? < &([a]® + %)

where k := 1 + p~2|w|*. We deduce that either ||a|? > (2x)~! or —b = |b| > (2)~ 2. Plugging
this knowledge in (55) and using the fact that |w| > 0, we finally deduce the existence of an a > 0
(independent of § > 0 and x € L n B(w, dp)) such that

ax{z,v; —z) = ad’ — 6% = alr — w|| - |z — w|*.
je[m]

This proves (50) when |z — w| < a/2.
It thus remains to show that (50) holds for all z € K n (B(w, do)\B(w, §)). To this end, we notice
that z — maxen,){x,v; — x) is continuous in the connected set K n (B(w, do)\B(w, §)), non-
negative according to (36), and it is nowhere O (by definition of §). Therefore, it is strictly positive,
and denote by o’ > 0 some lower bound. Then for z € K n (B(w, do)\B(w, §)), we have

/

(6%
> Sl - wl.

max{z,v; — &)=
jelm]

This concludes the proof of Lemma C.4. O

C.2 A cluster at the origin

We complete this section by addressing the case V' = —I;, for which the convergence of the solutions
of (1) is the simplest, since a unique cluster forms at the origin. We also suppose that QT K = I,: in
other words, we consider the dynamics

. n REACENO
xi(t) = - Z (ZZ—l e<wi(t),$k(t)>) xj(t)v te [Oa +OO)7 (56)

J=1

with a prescribed initial condition {z;(0)};c[,) < R%.

Theorem C.5 (Convergence toward the origin). Suppose V = —I; and Q" K = 1. Then, for any
initial sequence of tokens {x;(0)}ie[n) < R? and for any i € [n], we have |z;(t)| — 0 ast — +o0.

Remark 6. In the setting of Theorem C.5, the self-attention matrix P(t) defined in (2) converges, as
t — +0, to the n x n matrix with all entries equal to 1/n.
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C.2.1 Proof of Theorem C.5

We begin by showing that for any ¢ € [n], the solution to (56) is uniformly bounded for all ¢ > 0. In
the sequel, we fix an initial configuration {z;(0)},e[,) < R%.

Lemma C.6. The trajectories of (56) are uniformly bounded in time—namely, there exists R > 0
(depending solely on n and the initial configuration) such that the solution x;(-) to (56) satisfies
|z:(t)|| < Rforany i€ [n]andt > 0.

Proof of Lemma C.6. We fix i € [n]. For ¢t = 0, we denote by D;(¢) the set of points x(¢) such that
{@i(t), zk(t)) = 0. We also set

Si(t) := Z e@i(t)’””“(t»@i(t),xk(t)>,
k‘EDi(t)

and
n

R;(t) := Z e£mi(8),m (1))
k=1
Since 1 + & < e whence e~ %z < 1, we deduce that

Z BEAOER (t)><xi (), zk(t))

1 d k=1 S ( )+ n
- (1?2 = — <
)] i 0
Now since 1 — x < e~ whence e* < 1 + e*z, we find that R;(¢) < n + S;(t). Consequently, if we

assume that |z;(¢)|? > 2n then S;(¢) > 2n, and therefore

1d -S; (t) +n
— @) < ——F < -1
2 dt n+ S5i(t)
This shows that |z;(¢)| < max{|x;(0)||,v2n} for any ¢ > 0, which concludes the proof. O

By virtue of Lemma B.1, we are able to characterize the stationary configurations for the dynamics
(56)—namely, the set of points (Z1,...,Z,) € (R?)" satisfying

i (Zi,Tj)
X (i) 50
o e<zz ,Tk>
for all ¢ € [n].
Lemma C.7. The only stationary configuration for the dynamics (56) is T, = ... = T, = 0.

Proof. Assume that (Z1,...,7,) € (R?)" is a stationary configuration for the dynamics (56). We
consider f : R? — R defined as

fix—log (Z e<x’xﬂ'>> .

j=1

Per Lemma B.1, f is convex, whence
f(x) = f(Zi) + <V f(@i), 2 — Ti)

for x € R% and i € [n]. Since V £(Z;) = 0 for any i € [n], we gather that f(x) > f(&;), whence Z;
is a global minimizer of f for any i € [n]. By convexity, f is constant on conv ({Z; }e[,,]). Since f is
analytic on the affine space E spanned by the points Z;, i € [n], it is then constant on E as well. Now
assume that not all of the points Z; are equal, and pick an index iy € [n] such that Z;, is not equal to
the projection of the origin onto E. Then there exists some jy € [n] such that (Z;, — Z;,, Zi,) # 0.
For any s € R, we set P; := Z;, + s(Z;, — Zj,) € E, and we notice that f(Ps) > (Ps, ;, ), where
the lower bound tends to +c0 either when s — +4-00 or when s — —o0. This contradicts the fact that
f is constant on E. We conclude that the Z; are all equal for i € [n]. The only value they can then
take is necessarily 0. O
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+0
Lemma C.8. The trajectories of (56) satisfy J |5 (t)||? dt < +oo for any i € [n].
0

Proof. The function

Lt i i RENORION

i=1j=1

is non-increasing, as demonstrated by the following simple computation:

A (t Y v ) (815 - &S/ (i ()
dlf ) _y ST @ 0O (1), a5 (1)) = 2 Y <xi(t)7 3 o) J(t>>xj(t)>
i=1 =1

i=1j=1

= =2, X e On O o).

i=1j=1

Being non-negative, £ (t) thus converges as t — +00. Since (z;(t),z;(t)) = R for some (possibly
negative) R € R by virtue of Lemma C.6, we deduce that

o R (TTNN a0 ) R
. 2 — xi(t),x;(t . 2 — o .
L |3 (t)[ dt < e . i;;e |4 (t)[~ dt = e="(<£(0) tﬂlfocg(t)),

which concludes the proof. O
We are now able to conclude the proof of Theorem C.5.

Proof of Theorem C.5. We set X (t) := (z1(t),...,z,(t)) € (RY)™. If X(t) does not converge to 0,
the compactness provided by Lemma C.6 implies that there is a sequence {tk};’ﬁ with £, — +00,
and X* = (z¥,...,2¥) € (RY)™\{0}, such that X(t;) — X* as k — +c0. To conclude the proof,
it suffices to show that X* is a stationary configuration of the dynamics: this directly leads to a
contradiction per Lemma C.7. Therefore, assume that X* is not a stationary configuration of the
dynamics. We denote by X*(t) = (¥(t),...,z%(¢)) the solution of (56) with initial condition X*.
Then, there exists ¢ € [n] such that 2 (0) # 0. We set e = |£(0)[. We select Ty > 0 (possibly
small) such that |z (¢)| = e/2 for ¢ € [0, Tp]. It follows from (13) (which is verified according to
Corollary A.4) that for any § > 0 there exists kg € N such that |X (¢ + t) — X*(¢)| < § for any
t € [0,Tp] and any k > ko. By (9) (which is verified according to Corollary A.4), we obtain that
| (te + 1) — 29(t)| < C6 for t € [0,Tp] and any k > ko. Choosing § > 0 sufficiently small, we
obtain that |4;(ty + t)| = e/4 fort € [0,Tp] and any k > k. This contradicts Lemma C.8. O

D Clustering toward hyperplanes: proof of Theorem 4.1

To ensure clarity, we present the proof of Theorem 4.1 under the assumption that V' is diagonalizable.
However, this assumption is not necessary. In Remark 8, we explain how the proof can be modified
to accommodate for non-diagonalizable V.

Let us therefore assume that V' is diagonalizable. Let (1, ..., ®q) be an orthonormal basis of
eigenvectors associated to eigenvalues (A1, ..., \g), ordered in a decreasing manner with respect
to their modulus: |A1] = ... = |A4|. (Starting from this point and throughout, we use the symbol
A exclusively to denote the eigenvalues of V'.) Except for A; € R, all the other eigenvalues (and
eigenvectors) may be complex. We denote by (¢7, ..., ¢}) the dual basis of (¢1,...,¢q).

D.1 Some monotonicity properties and bounds

To start, we present some general facts that are prove useful in all subsequent sub-cases.

Lemma D.1. Suppose k € [d] is such that A, = 0. Thent — max e[, @} (2;(t)) is a non-increasing
and bounded function, and t — minje(,) @5 (2;(t)) is a non-decreasing and bounded function. In
particular, t — i (2;(t)) is uniformly bounded as a function on [0, +00) for any i € [n].
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Proof. For any k € [d] and any t > 0, set

ap(t) = ;?[13] er(z(),  Be(t) = max o} 5 (2(1))

Let i € [n] be an index such that a;(t) = ¢} (2;(¢)). Then we have

o) - X R0t (V50 — 5 —AkEPw (P25 (1) — 2 (1) > 0

where the last inequality stems from the fact that A\;;, > 0 and the choice of index . This proves that
ay(+) is non-decreasing, as desired. Arguing similarly, one finds that 8j(-) is non-increasing. As a
consequence, ay(0) < ag(t) < Bi(t) < Bk (0) for any ¢ = 0, which shows that a(+) and B (+) are
bounded.

Corollary D.2. If V only has real non-negative eigenvalues (namely spec(V) < [0,+00)), then
2() € L2 ([0, +o0)).

Lemma D.3. Fix k € [d] and i € [n]. Then there exists a constant C > 0 such that
lof (e zi(1)| < Celwlt
holds forallt > 0

Proof. We naturally make use of the equation for x;(t) := eV z;(¢). Fix t > 0. We have

S I O)F = 2Re (PG et ) - 2Re <2 P (t)soi(v%(t))soz(xi(t)))

Choosing ¢ € [n] running over the set of indices such that |} (z;(t))| is maximal, we obtain
d
- maX|¢k($a(t))\2 < 2|\ max [ (x; (1)),
dt je[n] j€[n]
We conclude the proof by applying Gronwall’s lemma. O

D.2 Proof of Theorem 4.1

We now prove Theorem 4.1. We again recall that \; is simple and positive, and the eigenvalues of V'
are ordered in decreasing order of modulus: \; > || = ... = |Ag|-

Proof of Theorem 4.1. We look to prove that for any i € [n], the component of z;(t) along the

principal eigenvector o1, i.e. p¥(z;(t)), converges as t — -+00. We also show that there exists a

set of at most 3 real numbers (depending on the initial datum (z1(0), .. ., 2,(0))) such that for any
€ [n] the limit of p¥(z;(¢)) belongs to this set. Theorem 4.1 directly follows from these facts.

Leti € [n] be fixed. Recall from Lemma D.1 that ¥ (z;(¢)) is uniformly bounded for any ¢ € [0, +00).
We set

a:= lim jrg[m] 01 (2(1)), b:= lim max oy i (25(t))- (57)

(Note that by Lemma D.1, a = minjep,) ¢7 (2;(0)) and b < max e[, 5 (25(0)).) For c € {0, a, b},
we define the candidate limiting hyperplanes for z;(¢):

H,:={zeR%: ¥ (x) =c}.
We show that z;(t) converges either to Hy, to H, or to Hy. If a = b = 0, then according to (57) all

particles converge to Hy and there is nothing left to prove. We now distinguish two scenarios:
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(i) either for any & > 0, |¢¥(2;(t))] < ¢ for ¢ large enough—in which case, we deduce that
z;(t) converges toward Hy as t — +o0—,

(ii) or loF (i (tg))| > o for some gy > 0 and for some sequence of positive times {¢x}; %
with t — 400.

Since case (i) is straightforward, let us handle case (ii). Without loss of generality, we can extract a
subsequence of times (which we do not relabel, for simplicity of notation) along which

@1 (2i(tk)) > €o. (58)
Let ¢ € (0, 0] be fixed and to be chosen later. We set

<Qetvzi JKetVz 5 (t )>,

so that
1 d w](t) "
e rals 2 S (P15 (0) — e ). (59)

We look to obtain a lower bound for the right-hand side in the above identity. Let us use the shorthand
cre 1= (Qpr, Kpe)

for k, ¢ € [d]. By assumption, c11 > 0. We have ¢ (e!V 2;(t)) = e ¢f(2;(t)) and the following

spectral expansion holds:
d

eV z(t) = D) ™ok (zi(t) gk
k=1
Using this fact, as well as Lemma D.3, we gather that

w(t) = ene™ ol )Pt ) = | Y (e 2 )ek (¢ 2(0)
(k,0)#(1,1)

< D lewellek (V)] leF (V1)
(k,0)#(1,1)

< C?QTK|op Z okl +Ixel)t
(k,£)#(1,1)

< C?QTK [op(d — 1) ePrHraDt (60)

~
=:C’

holds forall ¢ > 0 and j € [n]. Now since A; > 0, Lemma D.1 implies that for any ¢ > 0 there exists
an index io(t) € [n] such that
1 (Zig() () = . (61)

With jo(t) € arg max [, w;(t), using (60) and (61) we see that
Wi (1) (t) = Wig(1) (t) = e} (2(t))be 1t — et aDr, (62)

Now for any ¢ within the sequence {¢ },’:201 combining the first inequality in (62) with the fact that
c11 > 0, (58) and (60), we deduce that

20",
01 (2jor) (1) — @F (2ig (1) (1)) = ot (r=lrzl)t, (63)

As A1 > |Az|, for ¢ large enough, we find that we can lower bound the above expression by —5. We
now define the set of indices

N(t) :={j € [n]: ¥7(2(t)) — T (2(t)) = 0}.

Take ¢ within the sequence {¢;}; % such that ¢} (z;(t)) < b — ¢ and large enough so that (63) is
lower bounded by — % (if such a ¢ does not exist, we immediately conclude that 7 (2;(t)) — b as
t — +00). Using (61) and the subsequent derivations, we deduce that
3e
P (2ot (1)) — DT (aa(1)) > =
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and since 5 (z;(t)) — ¢ (zi(t)) = 0 for j ¢ N(t), we expand in (59) to get

1 d eWiow®) 3¢ ewi(t)

GO S (P H0) - et E). 6

<~ —aom a T T w1
Zkzl e k(t) 4 JEN(t) kazl € k(t
On another hand, for j € N (t), we may use (60) to find

w;(t) < crrpf(zi(t))2e?Mt 4 OTePatRat, (65)
We set

Co := max ¢} (z;(0)) — min o7 (z;(0)).
J€[n] je[n]

Using the monotonicity properties from Lemma D.1, as well as (65) in (64), we obtain
exp (e11pf (24(1)) 22t 4 CreutPabt)
exp <011<P>f (zz(t)) be2Mit — (’\1+|>‘2\)t) .

Given our choice of ¢, we have ¢ (2;(t))? — bp¥ (2i(t)) < —e(b — ¢€), so, we conclude from the
inequality just above that

1 d 3
A—law’f(zz(t)) > ﬁ — Conexp ( —ce(b—e)e*Mt 4 20/6()‘1+|>\2\)t), (66)
Since A1 > |Aq/, it follows from (66) that there exists 7' > 0 such that for any ¢ within the sequence
{ti}i2 for which ¢ > T and ¢F (2;(t)) € [e,b — €], there holds
d )\18
(1) = —.
ot = 38
This shows the existence of a larger time horizon 77 > T such that ¢¥ (z;(
t = T". And since ¢ can be taken arbitrarily small, we deduce that ¥ (z; (¢
namely that z;(t) converges toward Hy, as t — +c0.

1d 3e
Al dt@l (Zl(t)) an C()n

t)) = b — ¢ whenever
) converges toward b,

Arguing in the same way as above, and assuming without loss of generality that ¢ < 0, we may find
that all indices 4 € [n] for which ¥ (2;(tx)) < —eo for some g9 > 0 and some sequence t;, — 400,
the particle z;(t) converges toward H, as t — +00. This concludes the proof. O

D.3 Remarks

Remark 7. Theorem 4.1 establishes the convergence of ©¥(z(t)) for any i € [n] ast — +w0,
but does not preclude the fact that ||z;(t)| may diverge toward + (along the hyperplane) as
t — +00. This is indeed expected (and observed numerically—see Fig. 6) when V' has some negative
eigenvalues. We also note that when all the eigenvalues of V' are non-negative, Corollary D.2 shows
that all the z;(t) remain bounded.

Remark 8 (The case where V' is not diagonalizable). If V' is not assumed to be diagonalizable,

Lemma D.3 (or, at least the proof thereof) requires some modifications. Let § := Ay — |A2| > 0. Let
€ > 0 be fixed and to be chosen later. We decompose V' in Jordan blocks, and we consider

= D%, (67)
k=1

where Fy, is the span of the Jordan chain corresponding to the k-th Jordan block. By a slight abuse
of notation (solely for the purpose of this remark), we denote by \j, the eigenvalue associated to the
k-th Jordan block. We recall that we can choose a basis (i1, . .. , Pk, j, ) of each Fy, in a way that
Vig, reads in this basis as’

>\k 9

(68)
5
Ak

"Recall that Jordan blocks are commonly written with a +1 in the superdiagonal. This can be replaced by
any non-zero complex scalar as done here—see [HJ12, Chapter 3, Corollary 3.1.21].
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We observe that if € is chosen sufficiently small (depending only on §), Lemma D.3 may be replaced
by the following estimate in each Fy:

3C>0, V=0, Vie[n], |rg (V)| < Celsl+or, (69)

Here, g, denotes the orthogonal projection onto Fy. To prove estimate (69), we follow the proof of

Lemma D.3, with | 7wg, (2:(t))|* playing the role of -3 | 0% (z;(t)) . The key observation is that

combining (67) and (68) we obtain
|7, (Vi ()| < ([Ak] + 0)|[7rar, (2:(2)) ],
provided ¢ is chosen sufficiently small. Then (69) follows as in Lemma D.3.

With (67) at hand, the proof of Theorem 4.1 carries through, under the impactless modification that
CeM+X20+0t yoplaces (60) (and subsequent estimates are modified in the same way).

E A mix of hyperplanes and convex polytopes: proof of Theorem 5.1

In this section, we establish the proof for Theorem 5.1. Since the proof is essentially a combination of
the proofs of Theorems 4.1 and C.1, we may occasionally skip certain details and refer to the proofs
of these two results. As done throughout this work, we set

A= (QTK)%.

We denote by 75 : R? — F the projection onto F parallel to €, and by 7 : R? — € the projection
onto 6 parallel to F. The set & (conv({2;(t)}e[»])) is a convex subset of F which is non-increasing
with respect to ¢ (the proof of this fact is identical to that of Proposition C.2). It therefore converges
toward some convex polytope K as ¢t — +00.

Fix i € [n]. We have

6<Aetv zi(t),AetV 2 (t)>

77%(Zt(t)) = Z <ZZ 6<Aefvz,;(t),AetVzk(t)>> W‘J(V(Zj(t) - Zl(t)))
j=1 =1

e<AetV 2i (), A (25 (t)—zi ()

= ]; (ZZ=1 e<AetVZi(t),Ae‘V(zk(t)—zi(t)») W?T(V(ZJ (t) - Z’L(t)))

From this point on, we follow the proof of Theorem C.1, and we solely highlight the changes
compared to the original proof. Roughly speaking, this new proof amounts to adding projections e
at several places. We denote by § < F the set of points w € K such that

I (Aw) | = mex {ms (Aw), ms (4vy) -

The fact that § < 0K and that § has finite cardinality is proved precisely as Claim 1 (in the proof of
Theorem C.1), simply by replacing all occurrences of A- by 7% (A-). Once again, s denotes the set
of all points in K at distance < § to some point of S.

Step 2 in the proof of Theorem C.1 (i.e., (38)) is replaced by the following statement:

Step 2’:  There exists a constant v = (k) > 0 (depending only on the geometry of K) such that
for any ¢ € (0, do], there exists T' = T'(6) > O such that if ¢ > T and 7% (2;(t)) ¢ Ss, then

d
s (Az(®)1* > .
We now proceed in proving this statement.

Proof of Step 2°. We set

a;(t) := (mg (Azi(1)), o (A2 (t) — 2:(t)))

and
ri(t) := (A" 2(t), Ae® (2 () — () — a;(t)e* M.
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5 g (A=) = (e (A2:(1)), w5 (A (1))

n 6<A zi(t),AetV 2 (t)>
= 2 (ZZ—l e<Ae‘Vzi(t),AetVzk(t)>> <W?(A(ZJ (t) - Zl(t)))a W?(Azl(t))>

n 6<Aetvz,(t) AetV (z;(t)—2i(t)))
Z (At 2 (8),Aet (25 (1) — 23 (1)) <7T9(A(Zj (t) - Zt(t)))a ﬂ-?(AZl(t))>
k=

j=1

n ot (DM (2)
Z prprErCew ol KIOR (70)

=:b; (%)
We now make use of the following adaptation of Claim 2.
Claim 3. There exists some constant v = v/ (K) > 0 depending only on the geometry of K such that

the following holds. Fix § € (0, o). There exists T = T(0) > 0 such thatift = T and z;(t) ¢ S5 X,
then there exists j € [n] such that a;(t) = ~'0.

Compared to Step 2 in the proof of Theorem C.1, we now have to estimate the coefficients r;(t). To

this end, setting y; (t) := Ae'V z;(t) for j € [n], we notice that r;(t) = Py (t) + P2(t) + P3(t) where
Py(t) = (mg(yi(t)), mo (y; (1) — wilt))
Py(t) = (e (yi(t)), ma (y; (£) — wi(t))
Ps(t) = (m(yi(t)), me(y; (t) — wi(t))

By virtue of Lemma D.3 we have |73 (y;(t))| < Ce*? and |mg(y;(t))| < Ce'l2l forany t = 0 (or

Cetlral+e it ch is not diagonalizable—see Remark 8), hence

|ri(t)] < CetPrtiral), (71)

)

)
)
)

Since Wg:(ZJ (t)) is uniformly bounded in ¢ € [0, +00) for any j € [n] due to Corollary C.3, we get
a;(-) € L*(0, +). So, we may set

K := maxsup |a;(t)].
Jj€ln] 120

Let¢ > 0. We define
B(t) := {j € [n]: aj(t)e”lt +7ri(t) = 0}
Let jo(t) € arg max;cp,)(a;(t)e**** + r;(t)). Note that jo(t) € B(t) since
Qjo (t)eQ/\lt + 7 (t) = ai(t)eQ)\lt (t)
We notice the following three properties:
* For j = jo(t), we have b;, ;) (t) = aj%t)(t) (recall the definition of b; in (70));
* forany j € B(t)\{jo}, we have b;(t) > 0;
* for any j ¢ B(t), we have
bj(t) = —kexp (—ajo (t)e2 Mt 4 Ce(’\1+|/\2\)t) .
Indeed, using the fact that j € B(t) and (71), we find
exp (a;(t)e* 1t + r;(t)) - 1

Z exp (ak(t)e”‘lt + ri(t)) Z exp (ak(t)e2)‘1t + 7i(t))
k=1

1
exp (ajo (1)1 + 15, (1))
< exp <_aj0 (t)e”‘lt + Ce(/\1+|>\2|)t) .

<
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Making use of these properties in (70) yields the desired lower bound—indeed, if ¢ is sufficiently
large and z;(t) ¢ S5 x €, we have {j € [n]: a;(t) = 70} # & according to Claim 3, and so we
deduce that

1d ' / ¢ ;
sl A= = % — gpe= 8+ CeCurabr
Taking ¢ possibly larger (and depending on §), we obtain the result of Step 2. O

Steps 3 and 4 in the proof of Theorem C.1 are essentially unchanged—we replace all the occurrences
of ||[A - || by |7 (A-)| (for instance in (44) and (45)). Although ||Az;(¢)| may not be uniformly
bounded in ¢, it is important to note that || g (Az;(¢))| is uniformly bounded. Similarly, while
Zi(t) ¢ L*([0,+0)), we do have ‘|%7Tg(2i('))HLoo([o7+oo)) < +o0. The sets S5, €), and €, are
replaced by S5 x €, 6), x € and Bf x G respectively. The conclusion is that |75 (Az;(¢))||* has to
increase by at least

N[

762 (53 — 8) - 5

|zill oo (o,400)) 20123l L (0,400))

> 4R Al ops

1
during a travel from €, x € to the complement of ‘6] x €. As in the proof of Theorem C.1 this
implies that for any i € [n] there exists s € § such that z;(¢) remains at distance at most § away from
{s} x €. This being true for any § > 0, we obtain the desired result.

F Numerical experiments

F.1 Setup

Unless indicated otherwise, all figures presented in this paper were generated by discretizing the
underlying dynamics (either (1) or (4)) using a fourth order Runge-Kutta scheme with a step size of
0.1. All points in the initial sequence were drawn independently from the uniform distribution over
the hypercube [—5, 5]¢. Random matrices (e.g., Q, K, V) have entries drawn independently from the
uniform distribution on [—1, 1]. Codes and animated plots of all examples may be found online at

https://github.com/borjanG/2023-transformers.

We now present some experiments which motivate some conjectures and claims made in what
precedes.

F.2 Eigenvalues of ALBERT’s value matrices

In Figure 10 we illustrate the eigenvalues of the value matrices Vj, for a couple of heads
h in a pre-trained ALBERT model. We focus on ALBERT-xlarge-v2 available online at
https://huggingface.co/albert-xlarge-v2. This version uses 16 heads, with sequences
of length n = 256 and tokens of dimension d = 128. While not all value matrices V}, per head
h € [16] satisfy the assumptions made in Section 4, we illustrate the eigenvalues of a couple of them
which do.

F.3 Experiments related to Theorem 2.1

We begin with the setup of Theorem 2.1, which we recall was proven to hold in the case d = 1.
Herein we present a couple of examples (Figures 11 and 12) which elucidate the role that d and n
appear to play in this fact.

Notably, as seen in Fig. 4, we believe that the conclusion of Theorem 2.1 could plausibly be extended
to any d > 1, assuming V' > 0.

F.4 Tllustrating Theorem 4.1 in R3
To precisely illustrate the appearance of at most three hyperplanes in the setting of Theorem 4.1,

we gave an example in R?. We expand on this and provide a couple of toy examples in R? for
the purpose of visualization (we recall that these are toy models, as Transformers in practice are
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Eigenvalues of value matrix for head 5 Eigenvalues of value matrix for head 14

1.5 1.5
1.0 1.0
0.5 0.5 ot
e ol
0.0 o o 0.0 ° g
. cQS
-0.51 ~0.51 .
-1.01 ~1.01
-15{ , , , -15{ , , ,
-2 -1 0 1 -2 -1 0 1

Figure 10: The eigenvalues of V5 and V14 in the pre-trained ALBERT satisfy the eigenvalue assump-
tion made in Definition 1. Furthermore, the second assumption made in Definition 1 is satisfied by
(@s, K5) and (Q14, K14) (the inner products evaluated along the eigenvector of norm 1 equal 1.3060
and 0.6719 respectively). In other words, the triples (Qy, K, V4, ) corresponding to heads h = 5 and
h = 14 in ALBERT satisfy all the assumptions made in the statement of Theorem 4.1.

t = 3.0, rank= 27 t = 5.0, rank= 15 t =10.0, rank= 3
X

1
1

|
|
|

Figure 11: We expand on Fig. 3—for the same setup, consider n = 100. The sequence length n does
not appear to influence the rank of P(t), which is expected since the rank of P corresponds to the
number of leaders.

high-dimensional), and namely focus in both examples on the case where the two latter eigenvalues
are complex. In Fig. 14, we see the effect of having eigenvalues with a negative real part, and the
complementary case is illustrated in Fig. 13.

F.5 Complementing Figure 7

In Figure 7, we illustrate the appearance of clustering in high-dimension (the ALBERT setup: n = 256
and d = 128) for generic random matrices (Q, K, V). The value matrix V' in question has 65 positive
eigenvalues, and we show the conjectured convergence of the 65 coordinates along the corresponding
eigenvectors to one of possibly 3 (generically 2) real scalars. In Figure 15, we complement this
illustration by showing the possible oscillatory and divergent behavior of the remaining coordinates.

F.6 Beyond Q" K > 0in Theorems 3.1 and 5.1

As seen throughout all the presented proofs, assumptions on the value matrix V' are significantly
more rigid than assumptions on the matrices () and K. For instance, should the eigenvalue A with the
largest real part of V' be negative, all rescaled tokens will diverge to infinity. Should )\ be complex,
we do not expect any clustering to occur (for the rescaled tokens). Yet, none of the conclusions of
Theorems 3.1 or 5.1 seem to change for generic choices of @ " K. This is illustrated in Figures 16
and 17 respectively.
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t = 0.0, rank= 40 t = 0.5, rank= 4 t = 1.0, rank= 2 t = 10.0, rank= 2

"
P ™ ™ e

-

Figure 12: We consider n = 40, Q@ = K = I; and a random matrix V' > 0 in dimensions d = 10
(first row), d = 40 (second row), and d = 80 (third row). The conclusion of Theorem 2.1 appears to
transfer to the higher dimensional case, and this would actually follow from Conjecture 4.2 (should it
hold).

t=0.0 t=25.0 t =40.0

Figure 13: We consider n = 25, @ = K = I, and V' a random matrix with positive entries
and eigenvalues {1,0.1 + 0.087,1 — 0.08:}. The pair of complex eigenvalues have a positive
real part. We not only see convergence to one of two hyperplanes determined by the direction
1 = (0.38,0.8,0.47), but in fact, the particles appear to collapse to two points. In other words, the
"hyperplanes" are of codimension 3, which is in line with Conjecture 4.2.

F.7 Beyond pure self-attention: adding a feed-forward layer

Practical implementations of the Transformer architecture combine the self-attention mechanism
with a feed-forward neural network. While extending the mathematical analysis from this paper to
such a broader setting would be challenging, we can offer some numerical insights into the expected
outcomes.
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t=0.0 t=5.0 t=10.0

gO
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—50 0
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Figure 14: We consider n = 25, Q = K = Iy, and V' a random matrix with positive entries and
eigenvalues {1, —0.05 + 0.25¢, —0.05 — 0.25¢}. The pair of complex eigenvalues have a negative
real part, which entails the rotation of the particles. We see that the particles rotate within a couple of
2-dimensional hyperplanes determined by ¢ = (—0.3, —0.8, —0.45), as implied by Theorem 4.1.

Non-clustered coordinates
1014 4

1010 4
106 4
102 4

—102 1

—106

_10%0 4

1014

0 2 4 6 8 10 12 14
t

Figure 15: We complement Figure 7 and plot the variance of the set {7} (2;(t)): i € [n]} of all
coordinates j corresponding to negative eigenvalues of V. We also show the mean along tokens of a
couple of coordinates (white lines). Coordinates diverge rapidly to +00 over time ¢; y-axis is in log
scale.

The feed-forward neural network which can be adjoined to the Transformer dynamics in one of
two ways. The first way consists in running the pure self-attention dynamics up to time ¢t < T'
(or equivalently, for O(T) layers), and then applying a pure feed-forward neural network to the
concatenated vector of clustered features at time 7". This amounts to seeing the feed-forward network
as a map from R™ to R™ (for some m > 1), which can be studied independently with existing
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t=0.0 t=1.0 t=20 t=>50

Figure 16: Here, V = I, while QTK violates the PSD assumption—it is a random matrix (with
entries drawn from the uniform distribution on [—1, 1]). Nonetheless, the clustering pattern entailed
by Theorem 3.1 persists.

t=0.0 t=>5.0 t=10.0 =150

1000

Figure 17: Here, V is paranormal, while QT K violates the PSD assumption—it is a random matrix
(with entries drawn from the uniform distribution on [—1, 1]). Nonetheless, the clustering pattern
entailed by Theorem 5.1 persists.

theory. The second way consists in using both the self-attention and feed-forward mechanisms in
parallel at every layer ¢. In this case, clustering in the exact sense of Theorems 3.1 and Theorems 5.1
would be difficult to anticipate since the weights of the feed-forward network play the role of a value
matrix V' (as they can be absorbed within V'), and the conclusions of these theorems strongly depend
on the identity-like structure.

In Figure 18, we focus on the second of the above-discussed examples, and illustrate a possible
generalization of Theorem 4.1 to this setup. For simplicity, we focus on a 2-layer neural network: we
apply a component-wise nonlinear activation function o (either the ReLU or tanh) to the self-attention
dynamics, and then multiply by a weight matrix W e R?*¢, Namely, we consider

) " Qe zi(t), KetV 2 (1))
Zl(t) =Wo |V Z n (QetVz; (1), KetV 21, (1)) (Zj (t) —Zi (t)) (72)
j=1 Zk:l e ’

for i € [n] and ¢t > 0. A bias vector b € R? (whether inside or outside the activation function) can
also be included to allow for translations. The clustering property appears to persist, the pattern
depending on the weight matrix W and on the activation function o. We leave this problem open to
further investigation.
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Figure 18: The setup of Theorem 4.1 with a 2-layer neural network appended to the dynamics (i.e.,
(72)). Top: 0 = ReLU with W = I;. Middle: ¢ = tanh with W = I;. Bottom: ¢ = ReLU with W
being a random matrix. In the first row, we see that the particles first evolve as to reach the upper
right quadrant (R~ ()? (due to the ReLU). Once they reach it, every particle eventually follows one of
three hyperplanes determined by the spectrum of V' and the projection onto (R~¢)<. In the other two
cases, all particles appear to collapse to 0.
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