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Abstract

Extracting the interaction rules of biological agents from movement sequences
pose challenges in various domains. Granger causality is a practical framework
for analyzing the interactions from observed time-series data; however, this frame-
work ignores the structures and assumptions of the generative process in animal
behaviors, which may lead to interpretational problems and sometimes erroneous
assessments of causality. In this paper, we propose a new framework for learning
Granger causality from multi-animal trajectories via augmented theory-based be-
havioral models with interpretable data-driven models. We adopt an approach for
augmenting incomplete multi-agent behavioral models described by time-varying
dynamical systems with neural networks. For efficient and interpretable learning,
our model leverages theory-based architectures separating navigation and motion
processes, and the theory-guided regularization for reliable behavioral modeling.
This can provide interpretable signs of Granger-causal effects over time, i.e., when
specific others cause the approach or separation. In experiments using synthetic
datasets, our method achieved better performance than various baselines. We then
analyzed multi-animal datasets of mice, flies, birds, and bats, which verified our
method and obtained novel biological insights.

1 Introduction
Extracting the interaction rules of real-world agents from data is a fundamental problem in a variety
of scientific and engineering fields. For example, animals, vehicles, and pedestrians observe other’s
states and execute their actions in complex situations. Discovering the directed interaction rules of
such agents from observed data will contribute to the understanding of the principles of biological
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agents’ behaviors. Among methods analyzing directed interactions within multivariate time series,
Granger causality (GC) [23] is a practical framework for exploratory analysis [49] in various fields,
such as neuroscience [65] and economics [3] (see Section 2). Recent methodological developments
have focused on inferring GC under nonlinear dynamics (e.g., [73, 31, 81, 55, 43]).

However, the structure of the generative process in biological multi-agent trajectories, which include
navigational and motion processes [54] regarded as time-varying dynamical systems (see Section
3.1), is not fully utilized in existing base models of GC including vector autoregressive [27] and
recent neural models [73, 31, 81]. Ignoring the structures of such processes in animal behaviors
will lead to interpretational problems and sometimes erroneous assessments of causality. That is,
incorporating the structures into the base model for inferring GC, e.g., augmenting (inherently)
incomplete behavioral models with interpretable data-driven models (see Section 3.2), can solve
these problems. Furthermore, since data-driven models sometimes detect false causality that is
counterintuitive to the user of the analysis, e.g., introducing architectures and regularization to utilize
scientific knowledge (see Sections 3.2 and 4.2) will be effective for a reliable base model of a GC
method.

In this paper, we propose a framework for learning GC from biological multi-agent trajectories
via augmented behavioral models (ABM) using interpretable data-driven neural models. We adopt
an approach for augmenting incomplete multi-agent behavioral models described by time-varying
dynamical systems with neural networks (see Section 3.2). The ABM leverages theory-based archi-
tectures separating navigation and motion processes based on a well-known conceptual behavioral
model [54], and the theory-guided regularization (see Section 4.2) for interpretable and reliable
behavioral modeling. This framework can provide interpretable signs of Granger-causal effects over
time, e.g., when specific others cause the approach or separation.

The main contributions of this paper are as follows. (1) We propose a framework for learning
Granger causality via ABM, which can extract interaction rules from real-world multi-agent and
multi-dimensional trajectory data. (2) Methodologically, we realized the theory-guided regularization
for reliable biological behavioral modeling for the first time. The theory-guided regularization can
leverage scientific knowledge such that “when this situation occurs, it would be like this” (i.e., domain
experts often know an input and output pair of the prediction model). Existing methods in Granger
causality did not consider the utilization of such knowledge. (3) Biologically, our methodological
contributions lies in the reformulation of a well-known conceptual behavioral model [54], which did
not have a numerically computable form, such that we can compute and quantitatively evaluate it. (4)
In the experiments, our method achieved better performance than various baselines using synthetic
datasets, and obtained new biological insights and verified our method using multiple datasets of
mice, birds, bats, and flies. In the remainder of this paper, we describe the background of GC in
Section 2. Next, we formulate our ABM in Section 3, and the learning and inference methods in
Section 4.

2 Granger Causality
GC [23] is one of the most popular and practical approaches to infer directed causal relations from
observational multivariate time series data. Although the classical GC is defined by linear models,
here we introduce a more recent definition of [73] for non-linear GC. Consider p stationary time-series
x = {x1, ...xp} across timesteps t = {1, ..., T} and a non-linear autoregressive function gj , such
that

xjt+1 = gj(x
1
≤t, ...,x

p
≤t) + ε

j
t , (1)

where xj≤t = (...,xjt−1,x
j
t ) denotes the present and past of series j and εjt represents independent

noise. We then consider that variable xi does not Granger-cause variable xj , denoted as xi 9 xj ,
if and only if gj(·) is constant in xi≤t. Granger causal relations are equivalent to causal relations
in the underlying directed acyclic graph if all relevant variables are observed and no instantaneous
(i.e., connections between two variables at the same timestep) connections exist [59]. Many methods
for Granger causal discovery, including vector autoregressive [27] and recent deep learning-based
approaches [73, 31, 81], can be encapsulated by the following framework. First, we define a function
fθ (e.g., an multilayer perceptrons (MLP) in [73], a linear model in [27]), which learns to predict
the next time-step of the test sequence x. Then, we fit fθ to x by minimizing some loss (e.g., mean
squared error) L: θ? = argminθ L(x, fθ). Finally, we apply some fixed function h (e.g., thresholding)
(e.g., [45]) to the learned parameters to produce a Granger causal graph estimate for x: Ĝx = h(θ?).
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Furthermore, we need to differentiate between positive and negative Granger-causal effects (e.g,
approaching and separating). Based on the definition of [45], we define the effect sign as follows:
if gj(·) is increasing in all xi≤t, then we say that variable xi has a positive effect on xj , if gj(·) is
decreasing in xi≤t, then xi has a negative effect on xj . Note that xi can contribute both positively
and negatively to the future of xj at different delays.

Overall, the causality measures, however elaborate in construction, are simply statistics estimated
from a model [71]. If the model inadequately represents the system properties of interest, subsequent
analyses based on the model will fail to address the question of interest. The inability of the model
to represent key features of interest can cause interpretational problems and sometimes erroneous
assessments of causality. Therefore, in our case, incorporating the structures of the generative process
for animal behaviors (i.e., Eq.(2)) in a numerically computable form will be required. We thus
propose the ABM based on a well-known conceptual model [54] in biological sciences in the next
section.

3 Augmented behavioral model

Our motivation for developing interpretable behavior models is to obtain new insights from the
results of Granger causality. In this section, we firstly formulate a well-known conceptual behavioral
model [54] so that it can be computable. Second, we propose (multi-animal) ABMs with theory-
based architectures based on scientific knowledge. Further, we discuss the relation to the existing
explainable neural models [2]. The diagram of our method is described in Appendix C.

3.1 Formulation of a conceptual behavioral model
In movement ecology, which is a branch of biology concerning the spatial and temporal patterns of
behaviors of organisms, a coherent framework [54] has been conceptualized to explore the causes,
mechanisms, and patterns of movement. For example, two alternative structural representations
[54] were proposed to model a new position pt+1 from its current location pt (for details, see
Appendix A): the motion-driven case pt+1 = fU (fM (Ω, fN (Φ, rt,wt,pt), rt,wt,pt)) + εt, and
the navigation-driven case pt+1 = fU (fN (Φ, fM (Ω, rt,wt,pt), rt,wt,pt)) + εt, where wt is the
internal state, Ω is the motion capacity, Φ is the navigation capacity, and rt is the environmental
factors (these are conceptual parameters). fM , fN , and fU are conceptual functions to represent
actions of the motion (or planning), navigation, and movement progression processes, respectively.

For efficient learning of the weights in the model (i.e., coefficient of Granger causality) in this paper,
we consider a simple case with homogeneous navigation and motion capacities, and internal states.
Moreover, to make the contribution of fM , fN , and fU interpretable after training from the data for
extracting unknown interaction rules (and for obtaining scientific new insights), one of the simplified
processes for agent i is represented by

xit+1 = f iU (f
i
N (rit,x

i
t), f

i
M (rit,x

i
t), r

i
t,x

i
t) + ε

i
t, (2)

where xi ∈ Rd includes location pi and velocity for the agent i. We here consider ri ∈ R(p−1)dr

including p− 1 other agents’ dr-dimensional information. This formulation does not assume either
motion-driven or navigation-driven case. Such behaviors have been conventionally modeled by
mathematical equations such as force- and rule-based models (e.g., reviewed by [77, 47]). Recently,
these models have become more sophisticated by incorporating the models into hand-crafted functions
representing anticipation (e.g., [29, 51]) and navigation (e.g., [8, 76]).

However, these conventional and recent models are sometimes too simplistic and customized for
the specific animals, respectively; thus it is sometimes difficult to define the dynamics of general
biological multi-agent systems (i.e., multiple species of animals). Therefore, methods for learning
parameters and interaction rules of behavioral models are needed. There have been some researches
to estimate specific parameters (and their distributions) of the interpretable behavior models (e.g.,
[84, 85, 15]), and others to model the parameters and rules in purely data-driven manners (i.e.,
sometimes uninterpretable) only for accurate prediction (e.g., [16, 28]). In the proposed framework,
we consider flexible data-driven interpretable models to focus on inferring GC for exploratory analysis
from the observed data without specific knowledge of the species and obtaining additional data.

Recently, some attempts have been made to explore flexible and interpretable models bridging theory-
based and data-driven approaches. For example, a paradigm called theory-guided data science has
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been proposed [30], which leverages the wealth of scientific knowledge for improving the effective-
ness of data-driven models in enabling scientific discovery. For example, scientific knowledge can be
used as architectures or regularization terms in learning algorithms in physical and biological sciences
(e.g., [61, 21]). In biological multi-agent systems, an approach extract interpretable dynamical
information based on physics-based knowledge [18] from multi-agent interaction data, and another
approach made a particular module such as observation (e.g., [19]) interpretable in mostly black-box
neural models. However, these data-driven models did not sufficiently utilize the above scientific
knowledge of multi-animal interactions. In the next subsection, to make the model (e.g., of GC)
flexible and interpretable, we propose an ABM with theory-based architectures.

3.2 Augmented behavioral model with theory-based architectures
In this subsection, we propose a ABM using interpretable neural models with theory-based archi-
tectures for learning GC from multi-animal trajectories. In general, it is scientifically beneficial if
a model mimics the data-generating process well, e.g., because existing scientific insights can be
leveraged or revalidated. In our case of GC, additionally, it is expected to eliminate obvious erroneous
causality by utilizing existing knowledge, we thus propose a theory-based ABM for learning GC.

Generally, scientific knowledge can be used to influence the architecture of data-driven scientific
models. Most design considerations are mainly motivated to simplify the learning procedure, mini-
mize the training loss, and ensure robust generalization performance [30]. In some cases, domain
knowledge can be used designing neural models by decomposing the overall problem into modular
sub-problems. For example, in our problem, to describe the overall process of multi-animal behaviors,
modular neural models can be learned for different sub-processes, such as the navigation, planning,
and movement processes (f iN , f

i
M , and f iU , respectively) described in Section 3.1. This will help in

using the power of learning frameworks while following a high-level organization in the architecture
that is motivated by domain knowledge [30]. Specifically, to accurately model the relationships
between agents (finally interpreted as causal relationships) with limited information in usual GC
settings, we explicitly formulate the f iN , f

i
M , and f iU and estimate f iN and f iM from data.

In summary, our base ABM can be expressed as

xit =

K∑
k=1

(
F i,t,kN (hit−k)� F

i,t,k
M (hit−k)

)
hit−k + ε

i
t, (3)

where hit−k ∈ Rdh is a vector concatenating the self state xit−k ∈ Rd and all others’ state rit−k ∈
R(p−1)dr , and � denotes a element-wise multiplication. K is the order of the autoregressive model.
F i,t,kN , F i,t,kM : Rdh → Rd×dh are matrix-valued functions that represent navigation and motion
functions, which are implemented by MLPs. For brevity, we omit the intercept term here and in the
following equations. The value of the element of F i,kN is [−1, 1] is like a switching function value,
i.e., a positive or negative sign to represent the approach and separation from others. The value of the
element of F i,kM is a positive value or zero, which changes continuously and represents coefficients
of time-varying dynamics. Relationships between agents x1, ...,xp and their variability throughout
time can be examined by inspecting coefficient matrices Ψi

θt,k
=
(
F i,t,kN (hit−k)� F

i,t,k
M (hit−k)

)
.

We separate Ψi
θt,k

into F i,t,kN (hit−k) and F i,t,kM (hit−k) for two reasons: interpretability and efficient

use of scientific knowledge. The interpretability of two coefficients F i,kN and F i,kM contributes to the
understanding of navigation and motion planning processes of animals (i.e., signs and amplitudes in
the GC effects), respectively. The efficient use of scientific knowledge in the learning of a model
enables us to incorporate the knowledge into the model. The effectiveness was shown in the ablation
studies in the experiments. Specific forms of Eq. (3) are described in Appendices E.2 and G.2. The
formulation of the model via linear combinations of the interpretable feature hit−k for an explainable
neural model is related to the self-explanatory neural network (SENN) [2].

3.3 Relation to self-explanatory neural network

SENN [2] was introduced as a class of intrinsically interpretable models motivated by explicitness,
faithfulness, and stability properties. A SENN with a link function g(·) and interpretable basis
concepts h(x) : Rp → Ru follows the form

f(x) = g(θ(x)1h(x)1, ..., θ(x)uh(x)u), (4)
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where x ∈ Rp are predictors; and θ(·) is a neural network with u outputs (here, we consider the
simple case of d = 1 and dr = 1). We refer to θ(x) as generalized coefficients for data point x
and use them to explain contributions of individual basis concepts to predictions. In the case of
g(·) being sum and concepts being raw inputs, Eq. (4) simplifies to f(x) =

∑p
i=1 θ(x)ixi. In this

paper, we regard the movement function f iU as g(·) and the function of f iN and f iM as θ for the
following interpretable modeling of f iU , f iN , and f iM . Appendix B presents additional properties
SENNs need to satisfy and the learning algorithm, as defined by [2]. Note that our model does not
always satisfy the requirements of SENN [2, 45] due to the modeling of time-varying dynamics (see
Appendix B). SENN was first applied to GC [45] via generalized vector autoregression model (GVAR):
xt =

∑K
k=1 Ψθk(xt−k)xt−k + εt, where Ψθk : Rp → Rp×p is a neural network parameterized by

θk. Ψθk(xt−k) is a matrix whose components correspond to the generalized coefficients for lag
k at timestep t. The component (i, j) of Ψθk(xt−k) corresponds to the influence of xjt−k on xit.
However, the SENN model did not use scientific knowledge of multi-element interactions and may
cause interpretational problems and sometimes erroneous assessments of causality.

4 Learning with theory-guided regularization and inference
Here, we describe the learning method of the ABM including theory-guided regularization. We first
overview the learning method and define the objective function. We then explain the theory-guided
regularization for incorporating scientific knowledge into the learning of the model. Finally, we
describe the inference of GC by our method. Again, the overview of our method is described in
Appendix C.

4.1 Overview
To mitigate the inference in multivariate time series, Eq. (3) for each agent is summarized as the
following expression:

xt =

K∑
k=1

[(
F 1,t,k
N (h1

t−k)� F 1,t,k
M (h1

t−k)
)
h1

t−k, . . . ,
(
F p,t,k
N (hp

t−k)� F
p,t,k
M (hp

t−k)
)
hp

t−k

]
+ εt, (5)

where xt and εt concatenate the original variables for all p agents (various F s and Psis are learned
parameters). We train our model by minimizing the following penalized loss function with the
mini-batch gradient descent

T∑
t=K+1

(
Lpred(x̂t,xt) + λLsparsity(Ψt) + γLTG(Ψt,Ψ

TG
t )

)
+

T−1∑
t=K+1

βLsmooth(Ψt+1,Ψt), (6)

where {xt}Tt=1 is a single observed time series of length T with d-dimensions and p-agents; x̂t is the
one-step forecast for the t-th time point based on Eq. (5); Ψt ∈ Rpd×Kdh is defined as a concatenated
matrix of [Ψ1

θt,K
, . . . ,Ψ1

θt,1
], . . . , [Ψp

θt,K
, . . . ,Ψp

θt,1
] in a row; ΨTG

t is a coefficient determined by
the following theory-guided regularization; and λ, β, γ ≥ 0 are regularization parameters. The loss
function in Eq. (6) consists of four terms: (i) the mean squared error (MSE) prediction loss, (ii) a
sparsity-inducing penalty term, (iii) theory-guided regularization, and (iv) the smoothing penalty
term. The sparsity-inducing term Lsparsity is an appropriate penalty on the norm of Ψt. Among
possible various regularization terms, in our implementation, we employ the elastic-net-style penalty
term [86, 56] Lsparsity(Ψt) =

1
T−K

(
α ‖Ψt‖1 + (1− α) ‖Ψt‖2F

)
, with α = 0.5, based on [45].

Note that other penalties can be also easily adapted to our model. The smoothing penalty term, given
by Lsmooth(Ψt+1,Ψt) =

1
T−K−1 ‖Ψt+1 −Ψt‖2F , is the average norm of the difference between

generalized coefficient matrices for two consecutive time points. This penalty term encourages
smoothness in the evolution of coefficients with respect to time [45]. To avoid overfitting and
model selection problems, we eliminate unused factors based on prior knowledge (for details, see
Appendices E.2 and G.2).

4.2 Theory-guided regularization
The third term in Eq. (6) is the theory-guided regularization for reliable Granger causal discovery by
leveraging regularization with scientific knowledge. Here we utilize theory-based and data-driven
prediction results and impose penalties in the appropriate situations as described below. Again,
let x̂t be the prediction from the data. In addition to the data, we prepare some input-output
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pairs (x̃t−k≤t, x̃t) based on scientific knowledge. We call them pairs of theory-guided feature and
prediction, respectively. In this case, we assume that the theory-guided cause or weight of the ABM
ΨTG
t is uniquely determined. When the difference between x̂t and x̃t is below a certain threshold,

we assume that the cause (weight) of x̂t is equivalent to the cause of x̃t.

In animal behaviors, the theory-guided prediction utilizes the intuitive prior knowledge such that
the agents go straight from the current state if there is no interaction. In this case, x̃t includes the
same velocity as the previous step and the corresponding positions after going straight. The penalty is
expressed as LTG(Ψt,Ψ

TG
t ) = 1

T−K exp(‖xt−x̃t‖22/σ)‖Ψ′t‖2F , where Ψ′t ∈ Rpd×K(p−1)dr is the
weight matrix regarding others’ information (i.e., eliminating the information of the agents themselves
from Ψt) and σ is a parameter regarding the threshold. Note that here the matrix Ψ

′TG
t corresponding

to ΨTG
t is a zero matrix representing no interaction with others (i.e., ‖Ψ′t −Ψ

′TG
t ‖2F = ‖Ψ′t‖2F ).

Next, we can consider the general cases. All possible combinations of the pairs are denoted
as the direct product H0 := L × M × · · · × M = {(l,m1, . . . ,mp) | l ∈ L ∧ m1 ∈
M ∧ · · · ∧ mp ∈ M}, where L = {1, . . . , p} and M = {−1, 0, 1} if we consider
the sign of Granger causal effects (otherwise, M = {0, 1}). However, if we consider the
pairs (x̃t−k≤t, x̃t) uniquely determined, it will be a considerably fewer number of combina-
tions by avoiding underdetermined problems. We denote the set of the uniquely-determined
combinations as H1 ⊂ H0. We can then impose penalties on the weights: LTG(Ψt,Ψ

TG
t ) =

1
|H1|(T−K)

∑
l,m1,...,mp∈H1

(
exp(‖xt − x̃t‖2F /σ)‖Ψ′t −Ψ

′TG
t,l,m1,...,mp

‖2F
)

, where Ψ
′TG
t,l,m1,...,mp

∈
Rpd×K(p−1)dr is the weight matrix regarding others’ information in Ψt. In animal behaviors, due to
unknown terms, such as inertia and other biological factors, the theory-guided prediction utilizes the
only intuitive prior knowledge such that the agents go straight from the current state if there are no
interactions (i.e., |H1| = 1).

4.3 Inference of Granger causality

Once Ψt is trained, we quantify strengths of Granger-causal relationships between variables by
aggregating matrices Ψt across all K, d, dr, t into summary statistics. Although most neural GC
methods [73, 55, 31, 81, 45] did not provide an obvious way for handling multi-dimensional time
series (i.e., d > 1), our main problems include two- or three-dimensional positional and velocity data
for each animal. Therefore, we compute the norm with respect to spatial dimensions d, dr, and the
sign of the GC separately. That is, we aggregate the obtained generalized coefficients into matrix
S ∈ Rp×p as follows:

Si,j = signmax
K+1≤t≤T

signmax
1≤k≤K

median
q=1,...,dr
u=1,...,d

(Ψi,j)

 max
K+1≤t≤T

(
max

1≤k≤K

(
‖ (Ψi,j)t,k ‖F

))
, (7)

where Ψi,j ∈ R(T−K)×K×d×dr is computed by reshaping and concatenating Ψt over K + 1 ≤ t ≤
T . ‖ (Ψi,j)t,k ‖F is the Frobenius norm of the matrix (Ψi,j)t,k ∈ Rd×dr for each t, k. The signmax
is an original function to output the sign of the larger value of the absolute value of the maximum and
minimum values (e.g., signmax({1, 2,−3}) = −1). If we do not consider the sign of Granger causal
effects, we ignore the coefficient of the signed function. If we investigate the GC effects over time,
we eliminate max function among t. Note that we only consider off-diagonal elements of adjacency
matrices and ignore self-causal relationships. Intuitively, Si,j are statistics that quantify the strength
of the Granger-causal effect of xi on xj using magnitudes of generalized coefficients. We expect
Si,j to be close to 0 for non-causal relationships and Si,j � 0 if xi → xj . Note that in practice Si,j
is not binary-valued, as opposed to the ground truth, which we want to infer, because the outputs of
Ψi,j are not shrunk to exact zeros. Therefore, we need a procedure deciding for which variable pairs
Si,j are significantly different from 0. To infer a binary matrix of GC relationships, we use a heuristic
threshold. For the detail, see Appendix D.1.

5 Related work

Methods for nonlinear GC. Initial work for nonlinear GC methods focused on time-varying dynamic
Bayesian networks [70], regularized logistic regression with time-varying coefficients [34], and kernel-
based regression models [46, 69, 39]. Recent approaches to inferring Granger-causal relationships
leverage the expressive power of neural networks [50, 79, 73, 55, 31, 43, 81] and are often based on
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regularized autoregressive models. Methods using sparse-input MLPs and long short-term memory
to model nonlinear autoregressive relationships have been proposed [73], followed by a more sample
efficient economy statistical recurrent unit (eSRU) architecture [31]. Other researchers proposed a
temporal causal discovery framework that leverages attention-based convolutional neural networks
[55] and a framework to interpret signs of GC effects and their variability through time building on
SENN [2]. However, the structure of time-varying dynamical systems in multi-animal trajectories
was not fully utilized in the above models.

Information-theoretic analysis for multi-animal motions. In this topic, most researchers have
adopted transfer entropy (TE) and its variants and have analyzed them in terms of e.g., information
cascades rather than causal discovery among animals. In the pioneering work, [78] analyzed infor-
mation cascades among artificial collective motions using (conditional) TE [40, 41]. [64] applied
variants of conditional mutual information to identify dynamical coupling between the trajectories
of foraging meerkats. TE has been used to study the response of schools of zebrafish to a robotic
replica of the animal [9, 36], to infer leadership in pairs of bats [58] and simulated zebrafish [10], and
to identify interactions in a swarm of insects (Chironomus riparius) [42]. Local TE (or pointwise TE)
[67, 40] has been used to detect local dependencies at specific time points in a swarm of soldier crabs
[75], teams of simulated RoboCup agents [11], and a school of fish [13]. Since biological collective
motions are intrinsically time-varying dynamical systems, we compared our methods and local TE in
our experiments.

Other Biological multi-agent motion analysis. Previous studies have investigated leader-follower
relationships. For example, the existences of the leadership have been investigated via the correlation
in movement with time delay (e.g., [53, 66]) and via global physical (e.g., [4]) and statistical
properties [57]. Meanwhile, methods for data-driven biological multi-agent motion modeling have
been intensively investigated for pedestrian (e.g., [1, 25]), vehicles (e.g., [5, 63, 72]), animals [16, 28],
and athletes (e.g., [83, 37]). In most of these methods, the agents are assumed to have the full
observation of other agents to achieve accurate prediction. In contrast, some researches have modeled
partial observation in real-world multi-agent systems [26, 38, 24, 17, 18, 19, 22]. However, the above
approaches required a large amount of training data and would not be suitable for application to the
multi-animal trajectory datasets that are measured in small quantities.

6 Experiments
The purpose of our experiments is to validate the proposed methods for application to real-world multi-
animal movement trajectories, which have usually a smaller amount of sequences and no ground truth
of the interaction rules. Thus, for verification of our methods, we first compared their performances to
infer the Granger causality to those in various baselines using two synthetic datasets with ground truth:
nonlinear oscillator (Kuramoto model) and boid model simulation datasets. We used the same ABM
as applied to real-world multi-animal trajectory datasets: mice, birds, bats, and flies. To demonstrate
the applicability to the multi-element dynamics other than multi-animal trajectories, we validated our
method using the Kuramoto dataset (the results are shown in Appendix F). Each method was trained
only on one sequence according to most neural GC frameworks [73, 31, 45]. The hyperparameters of
the models were determined by validation datasets in the synthetic data experiments (for the details,
see Appendices E and G). The common training details, (binary) inference methods, computational
resources, and the amount of computation are described in Appendix D. Our code is available at
https://github.com/keisuke198619/ABM.

6.1 Synthetic datasets
For verification of our method, we compared the performances to infer the GC to those in various
baselines using two synthetic datasets with ground truth. To compare with various baselines of
GC methods, we tackled problems where the true causality is not changed over time. Here, we
compared our methods (ABM) to 5 baseline methods: economic statistical recurrent unit (eSRU)
[31]; amortized causal discovery (ACD) [43]; GVAR [45] (this is the most appropriate baseline);
and simple baselines such as linear GC and local TE modified from [81, 43]. Except for ACD [43],
most baselines did not provide an obvious way for handling multi-dimensional time series, whereas
our main problems include two- or three-dimensional trajectories for each animal. Therefore, we
modified the baselines except for ACD to compute norms with respect to spatial dimensions (2 or
3) for comparability with the proposed method. Note that the interpretations of the relationships
estimated by ACD and Local TE are different from other methods, thus the sign of the relationship
could not be investigated (we denote such by N/A in Table 1).
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We investigated the continuously-valued inference results: the norms of relevant weights, scores, and
strengths of GC relationships. We compared these scores against the true structures using areas under
receiver operating characteristic (AUROC) and precision-recall (AUPRC) curves. We also evaluated
thresholded inference results: accuracy (Acc) and balanced accuracy (BA) scores. For the inference
methods of a binary matrix of GC relationships, see Appendix D.1. For all evaluation metrics, we
only considered off-diagonal elements of adjacency matrices, ignoring self-causal relationships.

Boid model. Here, we evaluated the interpretability and validity of our method on the sim-
ulation data using the boid model, which contains five agents movement trajectories (for
details, see Appendix G). In this experiment, we set the boids (agents) directed prefer-
ences: we randomly set the ground truth relationships 1, 0, and −1 as the rules of attrac-
tion, no interaction, and repulsion, respectively. Figure 1 illustrates that e.g., boid #5 was

Figure 1: Example results of the boid model. Left: five boids
(agents) movements. Trajectories are histories of the move-
ment. Right: the results of our method (blue) and GVAR [45]
(black dash) for the relationship between the cause (boid #1)
and effects (other boids; i.e., Si,j for i = 1 and j = 2, . . . , 5).
The binary relationships are described in the upper of the plot.
1, 0, and −1 indicate attraction, no interaction, and repulsion,
respectively. Note that the magnitudes of our method and
GVAR [45] were normalized with their maximal values (thus,
the values were not be comparable among methods and red
ground truth). For the detail, see the main text.

attracted to boid #1 (i.e., true relationship:
1) and boid #3 avoided boid #1 (true rela-
tionship: −1). In this figure, our method
detected the changes in the signed relation-
ships whereas the GVAR [45] did not.

The performances were evaluated using
Si,j in Eq. (7) throughout time because our
method and ground truth were sensitive the
sign as shown in Figure 1. Table 1 (up-
per) shows that our method achieved better
performance than various baselines. The
ablation studies shown in Table 1 (lower)
reveal that the main two contributions of
this work, the theory-guided regularization
LTG and learning navigation function F kN
and motion function F kM separately, im-
proved the performance greatly. These sug-
gest that the utilization of scientific knowl-
edge via the regularization and architec-
tures efficiently worked in the limited data
situations. Similarly, the results of the Ku-
ramoto dataset are shown in Appendix F,
indicating that our method achieved much
better performance than these baselines.
Therefore, our method can effectively infer
the GC in multi-agent (or multi-element)
systems with partially known structures.

Boid model
Bal. Acc. AUPRC BApos BAneg

Linear GC 0.487 ± 0.028 0.591 ± 0.169 0.55 ± 0.150 0.530 ± 0.165
Local TE 0.634 ± 0.130 0.580 ± 0.141 N/A N/A
eSRU [31] 0.500 ± 0.000 0.452 ± 0.166 0.495 ± 0.102 0.508 ± 0.153
ACD [43] 0.411 ± 0.099 0.497 ± 0.199 N/A N/A
GVAR [45] 0.441 ± 0.090 0.327 ± 0.119 0.524 ± 0.199 0.579 ± 0.126
ABM - FN - LTG 0.500 ± 0.021 0.417 ± 0.115 0.513 ± 0.096 0.619 ± 0.157
ABM - FN 0.542 ± 0.063 0.385 ± 0.122 0.544 ± 0.160 0.508 ± 0.147
ABM - LTG 0.683 ± 0.124 0.638 ± 0.096 0.716 ± 0.172 0.700 ± 0.143
ABM (ours) 0.767 ± 0.146 0.819 ± 0.126 0.724 ± 0.189 0.760 ± 0.160

Table 1: Performance comparison on the boid model.

6.2 Multi-animal trajectory datasets
We here analyzed biological multi-agent trajectory datasets of bats, birds, mice, and flies and obtained
new biological insights using our framework (for the results of flies, see Appendix H). We used the
same ABM as used in the boid dataset. In real-world data, since there was no ground truth, we used
the hyperparameters of the boid simulation dataset. As a possible verification method, our method
can be verified by investigating whether the GC result follows the hypothesis using mice and flies
(Appendix H) datasets, which were controlled based on scientific knowledge. Next, we show that
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Figure 2: Analyzed results for multiple species of multi-animal trajectories. The results and details are given in
the main text and Appendix H. Asterisks mean the statistically significant difference between groups (p < 0.05).
(A) Results of three mice data grown in the different (red) and same (blue) cages. The vertical axis indicates
the duration [sec] of their attraction and repulsion during 10-second bins of three interactions. Our method
significantly extracted distinctive differences between cages in both movements. (B) Results of the longitudinal
two or three birds data. The horizontal axis indicates the measurement date. The GPS trajectories of identified
three young brown boobies (red, green, and blue) were analyzed (missing values indicates no measurement).
The vertical axis indicates the normalized duration of positive (attraction: solid line) and negative (repulsion:
negative) GCs for each bird (i.e., worked as the cause of another one or two birds). Error bar is the standard
error among the segment during the movement. (C) Results of the observational 27 bats. The horizontal and
vertical axes are the agents of the cause and effect in GC inferred by our method, respectively. The agents were
sorted in the order they framed out by leaving and returning to the cave (the groups of leaving and returning were
separated). The colors are the signed maximal values of the absolute GC coefficients inferred by our method,
i..e, red, green, and blue indicate attraction (1), no interaction (0), and repulsion (-1), respectively.

our methods as analytical tools can obtain new insights from birds and bats datasets based on the
quantitative results. Compared with the methodologies mentioned in Section 5 (i.e., uninterpretable
information-theoretic approaches or using non-causal features), our method has advantages for
providing local interactions: interpretable signs of Granger-causal effects over time (i.e., our findings
are all new).

Mice for verification. As an application to a hypothesis-driven study, for example, we show the
effectiveness of our method using three mice raised in different environments. The hypothesis is
that, as is well known (e.g., [52]), when grown in different cages, they are more socially novel to
others, thus more frequently attractive and repulsive movements will be observed. In this experiment,
we regarded the same/different cage as a group pseudo-label, and confirmed that our method could
extract its features in an unsupervised manner. We analyzed the trajectories of three mice in the
same and different cages measured at 30 Hz for 5 min each (see also Appendix H). As shown in
Figure 2A, our method extracted a significantly larger duration in the different cage than that in the
same cages for both movements (p < 0.05; p is a statistical p-value), whereas GVAR [45] did not
in repulsive movements (p > 0.05) but did in attractive movements (p < 0.05) and extracted too
much interaction. The main reason for the too much interaction in GVAR was the overdetection of
the attraction and repulsion as shown in Figure 1 right (black break line). The statistical analysis and
videos are presented in Appendix H and the supplementary materials. Our methods characterized
the movement behaviors before the contacts with others, which have been previously evaluated (e.g.,
[74]).

Growing birds. Animals grow while interacting with other individuals, but the directed interaction
between young individuals has not been fully investigated as longitudinal (i.e., long period) studies.
Here, as an example, we analyzed the flight GPS (two-dimensional) trajectories of three juvenile
brown boobies Sula leucogaster over six times for 34 days (11.91± 0.09 [h] for each day), which
were recorded at 1 Hz. We segmented two or three bird trajectories within 1 km and during moving
(over 1 km/s) each other, in which interactions were considered to exist, and obtained 25 sequences
of length 367 ± 278 [s] (for details, see Appendix H). Results of inferring GC in Figure 2B show
that on the first measurement day, the most frequent directed interactions were observed between ID
1 and 2 (particularly two individuals had more repulsions and ID 1 had fewer attractions). On the
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other hand, in the second and subsequent measurements, it was observed that the most interacting
individuals changed every measurement day. One possible factor of the decrease in the duration of
interactions (especially repulsion) may be the habituation with the same individuals. Measurements
and analyses over longer periods will reveal the acquisition of social behavior in young individuals.

Wild bats. As an example of an exploratory analysis, we applied our method to three-dimensional
trajectories of eastern bent-wing bats Miniopterus fuliginosus that left a cave (some bats returned to
the cave). Although some multi-animal studies have investigated leader-follower relationships (see
also Section 5), those in wild bats are unknown. We used two sequences with 7 and 27 bats of length
237 and 296 frames, respectively, which were obtained via digitizing the videos at 30 Hz. Details
of the dataset are given in Appendix H. As a result, among 138 interactions of all 34 individuals
within the leaving and returning groups, there were 46 interactions where the locationally-leading
(i.e., flying forward) bats repelled the following bats in the same direction, 27 interactions where
the leading bats were attracted from the following bats, 65 ones with no interactions (the results of
the following bats were not discussed because it was obvious; see also example results of 27 bats in
Figure 2C). Since bats can echo-locate other bats in all directions up to a range of approximately 20
m [44, 6], the locationally-leading bats can be influenced by the locationally-following bats in the
same direction (if no perception, they cannot be influenced). The results suggest that the groups of
flying bats would not show simple leader-follower relationships.

7 Conclusions
We proposed a framework for learning GC from multi-animal trajectories via a theory-based ABM
with interpretable neural models. In our framework, as shown in Figure 1, the duration of interaction
and non-interaction, attraction and repulsion, their amplitudes (or strength), and their timings can be
interpretable. In the experiments, our method can analyze the biological movement sequence of mice,
birds, and bats, and obtained novel biological insights. One possible future research direction is to
incorporate other scientific knowledge into the models such as body inertia (or visuo-motor delay).
Real-world animals have certain visuo-motor delays, but they also predict the others’ movements
(i.e., the visuo-motor delays may be smaller). This is an inherently ill-posed and challenging problem,
which will be our future work.

For societal impact, our method can be utilized as real-world multi-agent analyses to estimate
interaction rules such as in animals, pedestrians, vehicles, and athletes in sports. On the other hand,
there are some concerns in our method from the perspectives of negative impact when applied to
human data. One is a privacy problem by the tracking of groups of individuals to detect their activities
and potential interactions over time. This topic has been discussed such as in [60]. Although we did
not apply our method to human data, solutions for such a problem will improve the applicability of
the proposed method in our society.
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A Nathan’s conceptual framework for movement ecology

Based on [54], we can model the movement of an organism from its current location pt to a potentially
new position pt+1, as a function of its current location pt, internal state wt, motion capacity Ω,
navigation capacity Φ, and their interactions with the current environmental factors rt. This implies
a general relationship

pt+1 = F (Ω,Φ, rt,wt,pt). (8)

The insight comes from being as specific as possible about the structure of F , without sacrificing
framework generality. Using the notation fM , fN , and fU to represent actions of the motion,
navigation, and movement progression processes, respectively, [54] posited two alternative structural
representations, the motion-driven case

pt+1 = fU (fM (Ω, fN (Φ, rt,wt,pt), rt,wt,pt)) + εt, (9)

and the navigation-driven case

pt+1 = fU (fN (Φ, fM (Ω, rt,wt,pt), rt,wt,pt)) + εt. (10)

In the motion-driven case, the navigation process can be viewed as creating a map of probabilities for
the locations to which the individual can potentially move at time t+ 1. The motion process weights
these probabilities, thereby altering their relative values. In the navigation-driven case, the navigation
process depends on how wt, rt, and ut interact with the motion process and Φ to enable navigation.
Indeed, some organisms may alternate between the two types of movement; however, in both cases,
the movement progression process fU evaluates the weighted probabilities presented by the potential
movement map, thereby determining the next position.

For efficient learning to use only one time series in most (neural) GC frameworks [73, 31, 45], in
this paper, we consider the simple case with homogeneous navigation and motion capacities, and
internal states. Moreover, to make the contribution of fM , fN , and fU interpretable after training
from the data without assuming either motion-driven or navigation-driven case, one of the simplified
processes for agent i is represented by

xit+1 = f iU (f
i
N (rit,x

i
t)f

i
M (rit,x

i
t), r

i
t,x

i
t) + ε

i
t, (11)

where xi includes location ui and velocity for agent i. This equation is same as Eq. (2).

B Self-explaining neural networks

Self-explaining neural networks (SENNs) were introduced [2] as a class of intrinsically interpretable
models motivated by explicitness, faithfulness, and stability properties. A SENN with a link function
g(·) and interpretable basis concepts h(x) : Rp → Rk is expressed as follows:

f(x) = g(θ(x)1h(x)1, ..., θ(x)kh(x)k), (12)

where x ∈ Rp are predictors; and θ(·) is a neural network with k outputs. We refer to θ(x) as
generalized coefficients for data point x and use them to explain contributions of individual basis
concepts to predictions. In the case of g(·) being sum and concepts being raw inputs, Eq. (4)
simplifies to f(x) =

∑p
j=1 θ(x)jxj . Appendix B presents additional properties SENNs need to

satisfy and the learning algorithm, as defined by [2]. The SENN was first applied to GC [45] via
GVAR such that

xt =

K∑
k=1

Ψθk(xt−k)xt−k + εt, (13)

where Ψθk : Rp → Rp×p is a neural network parameterized by θk. For brevity, we omit the intercept
term here and in the following equations. No specific distributional assumptions are made on the
noise terms εt. Ψθk(xt−k) is a matrix whose components correspond to the generalized coefficients
for lag k at timestep t. In particular, the component (i, j) of Ψθk(xt−k) corresponds to the influence
of xjt−k on xit.

As defined by [2], g(·), θ(·), and h(·) in Equation 2 need to satisfy:
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1) g is monotone and completely additively separable

2) For every zi := θi(x)hi(x), g satisfies ∂g
∂zi
≥ 0

3) θ is locally difference bounded by h
4) hi(x) is an interpretable representation of x
5) k is small.

A SENN is trained by minimizing the following gradient-regularized loss function, which balances
performance with interpretability: Ly(f(x), y) + λLθ(f(x)), where Ly(f(x), y) is a loss term for
the ground classification or regression task; λ > 0 is a regularization parameter; and Lθ(f(x)) =
‖∇xf(x)− θ(x)>Jhx(x)‖2 is the gradient penalty, where Jhx is the Jacobian of h(·) w.r.t. x. This
penalty encourages f(·) to be locally linear.
In this paper, we utilized a SENN approach as augmented theory-based models for flexible and
interpretable modeling with the following regularization utilizing scientific knowledge. Note that we
actually used a quasi-SENN which does not always satisfy 3) (θ is locally difference bounded by h)
in Appendix B because biological movement sequences are inherently time-varying dynamics and do
not need the temporal stability required in [45].

C Overview of our method

The overview of our algorithm is simple as shown in Figure C.1. In Section 3.2, we formulate ABM.
ABM is learnt in Section 4.1 with the theory-guided regularization described in Section 4.2. The
model is described in Eq. (5) and the objective function is Eq. (6). Finally, using the obtained
coefficient Psit, the Granger causality is inferred in Section 4.3.

Figure C.1: Block diagram of our method.

D Common training setup

D.1 Model training and the amount of computation

This experiment was performed on an Intel(R) Xeon(R) CPU E5-2699 v4 (2.20 GHz × 16) with
GeForce TITAN X pascal GPU. For the training of the proposed and baseline models [45], we used
the Adam optimizer [32] with an initial learning rate of 0.0001 and 500 training epochs. The learning
rate was decayed by a factor of 0.995 for each epoch. We set the batchsize to the time length of
sequences T −K − 1. The hidden layer is a two-layer MLPs of size 50.

In addition, to compare the methods in terms of their amount of computation, we measured training
and inference time across two datasets. We eliminated ACD [43] due to the completely different
framework, and linear GC and local TE had obviously shorter computation time due to their simple
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architectures. The results in Table D.3 show that the computation time of our method was between
eSRU [31] and GVAR [45] for both datasets. That is, since our method requires a larger input
dimension than GVAR [45], our method took a higher computational cost than GVAR [45], but it
was more efficient than eSRU [31].

Although we performed experiments on relatively small datasets, we can estimate the computation
time for larger datasets. Similarly to most of the Granger causality methods, we computed the
Granger causality for each sequence, thus the computation time is linear with respect to the number
of sequences.

Kuramoto model Boid model
(p = 5, T = 200,K = 5) (p = 5, T = 200,K = 3)

eSRU [31] 162 ± 5 143 ± 9
GVAR [45] 27 ± 3 19 ± 1
ABM (full) 116 ± 4 129 ± 4

Table D.3: The averaged computation time [s] among 10 sequences in two datasets.

D.2 Inference of GC in our model with the binary threshold

To infer a binary matrix of GC relationships in our method, we use a heuristic threshold. GVAR [45]
proposed a stability-based procedure that relies on time-reversed GC (TRGC) [80], which proved the
validity of time reversal for linear finite-order autoregressive processes. However, since our problem
includes time-varying nonlinear dynamics, our method cannot leverage the TRGC framework. In our
work, we use a heuristic threshold maxK+1≤t≤T

(
max1≤k≤K

∣∣Ψ′i,j∣∣F) /2, because the values of
the GC matrix Si,j vary for each sequence due to the learning framework. We assume approximately
1 : 1 with and without GC in all experiments, but in other cases, if more or less case, we need to
modify the threshold. If possible, we can examine it using a validation dataset.

D.3 Baseline models implementation

We compared the performances of our method to infer GC with those in the following baselines using
two synthetic datasets. Except for ACD [43], most baselines did not provide an obvious way for
handling multi-dimensional time series, whereas our main problems include two- or three-dimensional
trajectories for each animal. Therefore, we modified the baselines except for ACD to compute norms
with respect to spatial dimensions (2 or 3) for comparability with the proposed method. For Kuramoto
datasets, the input of ACD and eSRU was a two-dimensional vector concatenating dφi

dt and the
intrinsic frequencies ωi), and that of linear GC and local TE was dφi

dt (one-dimension).

eSRU [31]. This approach based on economic statistical recurrent units is an extension of an
original neural GC method [73] using MLPs and LSTMs. We performed grid search in sparsity
hyperparameters λ1 ∈ [0.01, 0.05], λ2 ∈ [0.01, 0.05], λ3 ∈ [0.01, 0.1] according to [45]. Based on
the performances in various experiments in [31], the number of layers in the second stage of the
feedback network was set to 2 and the Adam optimizer was used with an initial learning rate of 0.001
and 2, 000 training epochs (for other hyperparameters we used default values). The same threshold
for a binary matrix of GC relationships was used in our method. We used the implementation in
https://github.com/sakhanna/SRU_for_GCI.

ACD [43]. This approach is based on the neural relational inference (NRI) [33] for the Granger-causal
discovery using graph neural networks and variational autoencoders. This approach requires no
hyperparameter optimization for model training, but used training sequences for pre-training of the
model. For fair comparisons, we used 10 training sequences for the pre-training and then performed
test-time adaptation for the test dataset. For both synthetic experiments, the latent dimension
throughout the model was set to size 64 due to the small dataset size. The remaining hyperparameters
were the same as the default values of the previous work [33]. For example, we optimized the model
using the Adam optimizer with a learning rate of 0.0005. We trained the model for 500 epochs. We
used the implementation in https://github.com/loeweX/AmortizedCausalDiscovery.

GVAR [45]. This is our base model without scientific knowledge, and the implementation details
are given in Appendix D.1. We used a stability-based procedure that relies on the TRGC described
above. We used the implementation in https://openreview.net/forum?id=DEa4JdMWRHp.
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Linear GC and Local TE. First, we computed a linear version of GC, where non-zero linear
weights are taken as greater causal importance. Second, we computed TE at each timestep as the
local TE, which has been used in many biological researches. The same threshold for a binary
matrix of linear GC relationships was used as our method. We used the implementation of [81] in
https://github.com/tailintalent/causal.

E Kuramoto model and the augmented model

E.1 Simulation model

The Kuramoto model is a nonlinear system of phase-coupled oscillators that can exhibit a range
of complicated dynamics based on the distribution of the oscillators’ internal frequencies and their
coupling strengths. We use the common form for the Kuramoto model given by the following
differential equation:

dφi
dt

= ωi +
∑
j 6=i

kij sin(φi − φj) (14)

with phases φi, coupling constants kij , and intrinsic frequencies ωi. We simulate one-dimensional
trajectories by solving Eq. (14) with a fourth-order Runge-Kutta integrator with a step size of 0.01.

We simulate 5 phase-coupled one-dimensional oscillators with intrinsic frequencies ωi and initial
phases φt=1

i sampled uniformly from [1, 10) and [0, 2π), respectively. We randomly, with a probabil-
ity of 0.5, connect pairs of oscillators vi and vj (undirected) with a coupling constant kij = 1. All
other coupling constants were set to 0.

E.2 Augmented model

Here, we describe the specific form of Eq. (3) for the Kuramoto model. We did not use the navigation
function, i.e., we regard the perception process fN as an identity map.

To avoid overfitting and model selection problem, we simply design the function F iM and the input
features hi,jM based on Eq. (14). The output of Eq. (3) is the differential value of the one-dimensional
phase. The function value F iM (hi,jM ) ∈ Rd representing coefficients of the self and other elements
information is computed by the following procedure. Based on Eq. (14), we design the interpretable
feature hi,jM by concatenating dφi

dt and sin (φi − φj) for all j 6= i, and the intrinsic frequencies ωi
(copied for every timestep as ωi are static). The function F iM (·) is implemented by the two-layer
MLPs for each k and element i with (p+ 1)-dimensional input and 1-dimensional output.

The theory-guided regularization is similar to that of the animal model (i.e., considering only
no interaction case), due to the difficulty in the prediction of integral error of the fourth-order
Runge-Kutta. The hyperparameters in Eq. (6) were determined by the grid search of λ ∈ [0, 0.1],
β ∈ [0, 0.025], and γ ∈ [0.1, 10000]. The order K was set to 5 which was the same as [45] for not
time-varying dynamics.

F Results of the Kuramoto model

Here, we validated our method on the Kuramoto dataset, which contains five time-series of phase-
coupled oscillators [35]. This is because it has been still difficult to detect GC without a large amount
of data [43] rather than other synthetic datasets indicating higher detection performance such as in
[31, 45]. For our base augmented model, see Appendix E.

The results are shown in Table F.3, indicating that our method achieved much better performance
than various baselines.
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Kuramoto model
Acc. Bal. Acc. AUROC AUPRC

Linear GC 0.655 ± 0.099 0.500 ± 0.000 0.546 ± 0.139 0.431 ± 0.143
Local TE 0.335 ± 0.107 0.483 ± 0.050 0.489 ± 0.054 0.351 ± 0.104
eSRU [31] 0.500 ± 0.092 0.500 ± 0.000 0.487 ± 0.123 0.548 ± 0.121
ACD [43] 0.475 ± 0.121 0.528 ± 0.115 0.605 ± 0.135 0.519 ± 0.184
GVAR [45] 0.495 ± 0.154 0.473 ± 0.113 0.467 ± 0.079 0.398 ± 0.115
ABM - LTG 0.930± 0.075 0.914 ± 0.086 0.972 ± 0.036 0.929 ± 0.093
ABM (full) 0.925 ± 0.075 0.902 ± 0.098 0.972 ± 0.036 0.929 ± 0.093

Table F.3: Performance comparison on the Kuramoto model. Standard deviations (SD) are evaluated
across 10 replicates.

G Boid model and the augmented model

G.1 Simulation model

The rule-based models represented by time-varying dynamical systems have been used to generate
generic simulated flocking agents called boids [62]. The schooling model we used in this study was a
unit-vector-based (rule-based) model [12], which accounts for the relative positions and direction
vectors neighboring fish agents, such that each fish tends to align its own direction vector with those
of its neighbors. In this model, 5 agents (length: 0.5 m) are described by a two-dimensional vector
with a constant velocity (1 m/s) in a boundary square (30 × 30 m) as follows: ri = (xi yi)

T and
vit = ‖vi‖2di, where xi and yi are two-dimensional Cartesian coordinates, vi is a velocity vector,
‖ · ‖2 is the Euclidean norm, and di is an unit directional vector for agent i.

At each timestep, a member will change direction according to the positions of all other members.
The space around an individual is divided into three zones with each modifying the unit vector of
the velocity. The first region, called the repulsion zone with radius rr = 1 m, corresponds to the
“personal” space of the particle. Individuals within each other’s repulsion zones will try to avoid
each other by swimming in opposite directions. The second region is called the orientation zone, in
which members try to move in the same direction (radius ro). We set ro = 2 to generate swarming
behaviors. The third is the attractive zone (radius ra = 8 m), in which agents move towards each
other and tend to cluster, while any agents beyond that radius have no influence. Let λr, λo, and λa
be the numbers in the zones of repulsion, orientation and attraction respectively. For λr 6= 0, the unit
vector of an individual at each timestep τ is given by:

di(t+ τ, λr 6= 0) = −

 1

λr − 1

λr∑
j 6=i

rijt

‖rijt ‖2

 , (15)

where rij = rj − ri. The velocity vector points away from neighbors within this zone to prevent
collisions. This zone is given the highest priority; if and only if λr = 0, the remaining zones are
considered. The unit vector in this case is given by:

di(t+ τ, λr = 0) =
1

2

 1

λo

λo∑
j=1

dj(t) +
1

λa − 1

λa∑
j 6=i

rijt

‖rijt ‖2

 . (16)

The first term corresponds to the orientation zone while the second term corresponds to the attraction
zone. The above equation contains a factor of 1/2 which normalizes the unit vector in the case where
both zones have non-zero neighbors. If no agents are found near any zone, the individual maintains a
constant velocity at each timestep.

In addition to the above, we constrain the angle by which a member can change its unit vector at
each timestep to a maximum of β = 30 deg. This condition was imposed to facilitate rigid body
dynamics. Because we assumed point-like members, all information about the physical dimensions
of the actual fish is lost, which leaves the unit vector free to rotate at any angle. In reality, however,
the conservation of angular momentum will limit the ability of the fish to turn angle θ as follows:

di (t+ τ) · di(t) =
{
cos(β) if θ > β

cos (θ) otherwise.
(17)
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If the above condition is not unsatisfied, the angle of the desired direction at the next timestep is
rescaled to θ = β. In this way, any un-physical behavior such as having a 180◦ rotation of the velocity
vector in a single timestep is prevented.

G.1.1 Simulation procedure

The initial conditions were set such that the particles would generate a torus motion, though all three
motions emerge from the same initial conditions. The initial positions of the particles were arranged
using a uniformly random number on a circle with a uniformly random radius between 6 and 16 m
(the original point is the center of the circle). The average values of the control parameter ro were in
general 2, 10, and 13 to generate the swarm, torus, and parallel behavioral shapes, respectively. In
this paper, in average, we set ro = 2 and ra = 8, and rr = 1 in attractive relationship and rr = 10
in repulsive relationship. We simply added noise to the constant velocities and the above three
parameters among the agents (but constant within the agent) with a standard deviation of 0.2. We
finally simulated ten trials in 2 s intervals (200 frames). The timestep in the simulation was set to
10−2 s.

G.2 Augmented model

Here, we describe the specific form of Eq. (3). To avoid overfitting and model selection problems, we
simply design the functions F iN and F iM and the input features hi,jN and hi,jM based on Eqs. (15), (16),
and (17). The output of Eq. (3) is limited to the velocity because the boid model does not depend on
the self-location and involves the equations regarding velocity direction. The boid model assumes
constant velocity for all agents, but our augmented model does not have the assumption because the
model output is the velocity, rather than the velocity direction.

First, the navigation function value F iN (hi,jN ) ∈ Rp−1 representing the signed information for other
agents is computed by the following procedure (for simplicity, here we omitted the time index t
and k). We simply design the interpretable features hi,jN by concatenating vi,j and ‖ri,j‖2 for all
j 6= i, where vi,j is the velocity of agent i in the direction of ri,j (i.e., if agent i approaches j like Eq.
(16), vi,j is positive, and if separating from j, vi,j is negative like Eq. (15)). The specific form of
F iN (hi,jN ) is

F iN (hi,jN ) = ςad

(
1

‖ri,j‖2
− dignore

)(
ςav (v

i,j)− 1

2

)
× 2, (18)

where ςad , ςav are sigmoid functions with gains ad, av, respectively, and dignore is a threshold for
ignoring other agents. (ςav (v

i,j)− 1/2)× 2 represents the signs of effects of j on i, where the value
is positive if agent i is approaching to j like Eq. (16), and it is negative if separating from j like Eq.
(15). we set av = 1e−2. ςad(1/‖ri,j‖2) represents whether the agent i ignores j or not and is zero if
the agents i, j are infinitely far apart. For dignore, if we assume that all agents can see other agents in
the analyzed area, we set dignore = 0 and ad = 1e− 6 (birds and mice datasets in our experiments).
Otherwise, we set ad = 1e− 2 and dignore ∈ R1 can be estimated via the back-propagation using
the loss function in Eq. (6).

Next, the movement function value F iM (hi,jM ) ∈ Rd representing coefficients of the self and other
agents information is computed by the following procedure. Based on Eqs. (15), (16), and (17), we
design the interpretable feature hi,jM by concatenating vi ∈ Rd and ri,j/‖ri,j‖2 ∈ Rd for all j 6= i.
The movement function F iM (·) is implemented by the two-layer MLPs for each k and agent i with
dp-dimensional input and d-dimensional output.

The hyperparameters in Eq. (6) were determined by the grid search of λ ∈ [0.01, 1000], β ∈
[0, 0.025], and γ ∈ [1, 10000]. The order K was set to 3 because it would be difficult to model the
time-varying dynamics by using too large K.

H Multi-animal trajectory data and experiments

In this section, we describe the details of animal datasets and the results. Videos are given in the
supplementary materials. For all statistical calculations, p < 0.05 was considered as significant.
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H.1 Mice.

We analyzed the 5-min trajectories of groups of three mice raised in the same or different cages
(C57BL6J; 1 year old; male or female) voluntarily walking in an open arena (55 cm × 60 cm).
Experiments were conducted in accordance with Doshisha University Institutional Animal Care and
Use Committee. The two-dimensional coordinates of snout, nape, and tail base were obtained from
images captured at 30 frames per second, using a USB digital video camera mounted 1.3 m above the
open arena via an image tracking software, DeepLabCut [48]. We used the averaged values of all
estimated joint coordinates for the subsequent analysis. We evaluated the duration of the interaction
using the threshold described in Appendix D.2 for every 10 sec with no overlap (i.e., we evaluated
N = 30 sequences). To compare the interaction duration between groups, the Kruskal-Wallis test
was used because most of the data did not follow normal distributions using the Lilliefors test. As the
post-hoc comparison, the Wilcoxon rank sum test with Bonferroni correction was used within the
factor where a significant effect in Kruskal-Wallis test was found. We used r values as the effect size
for Wilcoxon rank sum test. Our method extracted significantly distinctive differences between the
cages in both movements (p < 0.033, r > 0.27), whereas GVAR [45] did not in repulsive movements
(p > 0.05) but did in attractive movements (p < 0.001, r = 0.75) and extracted too much interaction
(10 [s] indicates three mice interacted during 1/3 of all duration).

H.2 Birds.

We analyzed the flight GPS trajectories of three juvenile brown boobies Sula leucogaster over six
times for 34 days in 2010 (11.91±0.09 [h] for each day), which were recorded at 1 Hz. Some authors
raised three brown booby chicks of unknown sexes. After fledging, animal-borne GPS loggers were
attached to the backs of juvenile brown boobies. The measurement was conducted under the approval
of the Nature Conservation Division in Okinawa, Japan (see [82], for methodological detail). We
segmented two or three bird trajectories within 1 km and during moving (over 1 km/s) each other,
in which interactions were considered to exist, and obtained 25 sequences of length 367± 278 [s].
Table H.3 indicates a more detailed characteristics of the birds dataset.

Date (in 2010) 8/11 8/15 8/19 8/24 9/4 9/14
Recording [hours] 12.01 11.93 11.92 12.00 11.78 11.87
No. of sequences 2 2 7 0 12 2
Time length [sec] 187 ± 74 487 ± 119 256 ± 136 N/A 452 ± 363 310 ± 103

Table H.3: Characteristics of the birds dataset.

H.3 Bats.

We analyzed three-dimensional trajectories of eastern bent-wing bats Miniopterus fuliginosus. This
species mainly inhabits in caves. In such a cave, females begin to gather just before breeding,
beginning at the end of June, and breeding care was conducted (for details, see [20]). This cave,
utilized as a breeding cave, was reported to shelter approximately 20,000 bats. Each evening
during the breeding period, around sunset, bats emerged from the cave in groups. In this study,
measurements were taken in front of the cave at approximately 19:00 on July 12 and 15, 2019. We
used two sequences obtained via digitizing the videos at 30 Hz (videos were recorded at 60 Hz). The
direct linear transformation method was used to estimate the 3D position coordinates calculated via
camera calibration from known 3D coordinates (calibration points) of images obtained from the two
cameras. One included 7 bats interactions of length 237 frames (a bat left the cave and 6 bats returned
to the cave). Another included 27 bats interactions of length 296 frames (17 bats left the cave and 10
bats returned to the cave). We analyzed GC inferred by our method within each group. The agents
were sorted in the order they framed out by leaving and returning to the cave (the groups of leaving
and returning were separated) as shown in Figure 2. Moreover, we did not quantitatively analyze
the GC results of (locationally) backward bats against the forward bats, because the backward bats
obviously followed the forward bats. Thus, the number of the analyzed interaction was computed
such that 6C2 + 17C2 + 10C2 = 196. However, the behaviors of each bat frame-in and frame-out in
the digitized area, thus we finally obtained 138 interactions of all 34 bats.
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Figure H.4: Example trajectories in each animal dataset. The units of all axes are meters. (A) Three
mice in 5 minutes. (B) Three birds (right is the starting point) in 302 seconds. (C) 27 bats (lower left
is the starting point) in 9.87 seconds. (D) Eight male files in 4 minutes.

H.4 Flies.

Similarly to the mice dataset, as an application to a hypothesis-driven study, we show the effectiveness
of our method using eight flies in different female-male ratios. Male flies actively pursue females, but
do not pursue other males, as is well known (e.g., [14]). Based on this knowledge, we hypothesized
that males are more socially novel to others including female flies (called mixed group) than the
male-only group, thus more frequently attractive and repulsive movements will be observed in the
mixed group. In this experiment, we regarded the mixed/male-only group as a group pseudo-label,
and confirmed that our method can extract its features in an unsupervised manner. Canton-S strain
was used as a wild-type of Drosophila melanogaster. Flies were raised on standard cornmeal
yeast medium at 25 ± 1 ◦C and 40%–60% relative humidity in 12 h/12 h light/dark cycle. Males
and females were collected during 24 h after eclosion. Males were maintained in isolation until
experiments. Females were maintained in a group with males until experiments. Eight flies (6-8 days
old) were applied into a chamber with modified size (11.4cm diameter) from [68] for video recording.
We analyzed the trajectories of 8 flies in the mixed (4 males and females) and male-only (8 males)
groups measured at 30 Hz for 4 min each. The two-dimensional coordinates were obtained via Ctrax
[7]. We evaluated the duration of the interaction fly using the threshold described in Appendix D.2
for every 10 seconds with no overlap (i.e., we evaluated N = 24 sequences). Since the numbers of
male flies were different in both groups, we computed the interaction duration for each male.

To compare the interaction duration between groups, we used the same statistical test (the Mann-
Whitney U-test) as the mice dataset. As shown in Figure H.4, our method and GVAR [45] extracted
significantly larger duration in the mixed group than that in the male-only group for both movements
(p < 0.039, r > 0.28), whereas GVAR extracted too much interaction (10[sec] indicates flies
interacted during 1/7 of all duration). See also the videos given in the supplementary materials to
confirm the fewer interactions than those estimated by GVAR. In summary, our method characterized
the male flies’ social behaviors as attractive and repulsive movements.
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Figure H.4: Results of eight flies data in the mixed (red) and only-male (blue) groups. The vertical
axis indicates the duration [sec/fly] of their attraction and repulsion during 10-second bins of seven
interactions for each fly (i.e., the maximum duration was 70 seconds).
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