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ReToMe-VA: Recursive Token Merging for Video Diffusion-based
Unrestricted Adversarial Attack

Anonymous Author(s)

ABSTRACT
Recent diffusion-based unrestricted attacks generate imperceptible
adversarial examples with high transferability compared to previ-
ous unrestricted attacks and restricted attacks. However, existing
works on diffusion-based unrestricted attacks are mostly focused
on images yet are seldom explored in videos. In this paper, we
propose the Recursive Token Merging for Video Diffusion-based
Unrestricted Adversarial Attack (ReToMe-VA), which is the first
framework to generate imperceptible adversarial video clips with
higher transferability. Specifically, to achieve spatial imperceptibil-
ity, ReToMe-VA adopts a Timestep-wise Adversarial Latent Opti-
mization (TALO) strategy that optimizes perturbations in diffusion
models’ latent space at each denoising step. TALO offers itera-
tive and accurate updates to generate more powerful adversarial
frames. TALO can further reduce memory consumption in gradi-
ent computation. Moreover, to achieve temporal imperceptibility,
ReToMe-VA introduces a Recursive Token Merging (ReToMe) mech-
anism by matching and merging tokens across video frames in the
self-attention module, resulting in temporally consistent adversar-
ial videos. ReToMe concurrently facilitates inter-frame interactions
into the attack process, inducing more diverse and robust gradi-
ents, thus leading to better adversarial transferability. Extensive
experiments demonstrate the efficacy of ReToMe-VA, particularly
in surpassing state-of-the-art attacks in adversarial transferability
by more than 14.16% on average.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
action recognition, unrestricted adversarial attacks, diffusion mod-
els

1 INTRODUCTION
Recent years have witnessed remarkable performance exhibited by
Deep Neural Networks (DNNs) across various computer vision and
multimedia tasks [8, 13]. However, the emergence of adversarial
examples has posed a challenge to the robustness of DNNs [11].
These adversarial examples, created by making imperceptible mod-
ifications to benign samples, can easily deceive state-of-the-art
DNNs. Importantly, adversarial examples generated against one
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Figure 1: Difference between restricted attacks, unrestricted
attacks, and diffusion-based unrestricted attacks.

model can also mislead other models even with different architec-
tures [6, 36]. The transferability of adversarial examples makes it
feasible to carry out black-box attacks, which highlight security
flaws in safety-critical scenarios, such as face verification [30] and
surveillance video analysis [6], etc. To avoid potential risks, it is cru-
cial to expose as many "blind spots" of DNNs by deeply exploring
the transferability of adversarial examples.

Nowadays, the majority of transfer-based adversarial attacks [21,
38, 39] try to guarantee "subtle perturbation" by limiting the 𝐿𝑝 -
norm of the perturbation (a.k.a. restricted attacks). However, adver-
sarial examples generated under 𝐿𝑝 -norm constraint have human-
perceptible perturbations, thereby rendering them more easily de-
tectable [1, 46]. Therefore, unrestricted adversarial attacks [43, 45],
which optimize unrestricted but natural changes (such as texture,
style, color modifications, etc.) for given benign samples, are begin-
ning to emerge. These unrestricted attacks yield more imperceptible
perturbations but fall short in transferability compared to restricted
attacks. With diffusion models drawing significant attention, re-
cent works [5, 7] have employed diffusion models for unrestricted
attacks to generate imperceptible adversarial examples with high
transferability. The difference between previous unrestricted at-
tacks, restricted attacks, and diffusion-based unrestricted attacks
is displayed in Figure 1. Nevertheless, existing works on diffusion-
based unrestricted attacks are mostly focused on images yet are
seldom explored in videos.

This paper investigates transferable diffusion-based unrestricted
attacks across different video recognition models. Specifically, we
map each frame into the latent space and optimize the latents along
the adversarial direction. The challenge of video diffusion-based
unrestricted attacks comes from three aspects. Firstly, given the
fact that diffusion models tend to add coarse semantic information
in the early denoising steps [22], premature manipulation of the
latents from previous work [7] yields significant alternations to
the crafted frames compared to the corresponding benign frames.
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Concurrently, these spatial perceptible changes further result in
temporal inconsistency in crafted adversarial videos when directly
applying such generation to each frame. Consequently, further
effort is needed to generate adversarial videos with temporal im-
perceptibility. Secondly, separately perturbing each benign frame
induces monotonous gradients because the interactions among the
video frames have not been fully exploited. Therefore, inter-frame
interaction is necessary for boosting adversarial transferability.
Lastly, the previous generation involves the gradient calculation
throughout the entire denoising process, leading to a heavymemory
overhead, especially when updating all the frames simultaneously.

To this end, we propose ReToMe-VA, which is the first video
diffusion-based unrestricted adversarial attack framework, aim-
ing at producing imperceptible adversarial video clips with higher
transferability, as shown in Figure 2. Specifically, to achieve spatial
imperceptibility, we introduce a Timestep-wise Adversarial Latent
Optimization (TALO) that gradually updates perturbations in the
latent space at each denoising timestep. Instead of calculating gra-
dients of the entire denoising process, TALO only involves one
timestep gradient calculation thereby reducing memory consump-
tion in gradient computation. Furthermore, to reduce the spatial
structure differences between benign and adversarial frames, TALO
establishes constraints on the self-attention maps, which have been
demonstrated to regulate structure effectively [5]. To effectively
trade-off between spatial imperceptibility and adversarial transfer-
ability, TALO introduces the incremental iteration strategy, which
prioritizes fewer iterations during the early timesteps to preserve
the structure and increases the number of iterations during later
timesteps to add more adversarial content. Therefore, TALO offers
iterative and accurate updates to generate more powerful adver-
sarial frames. To achieve temporal imperceptibility of adversarial
video, we propose a novel Recursive Token Merging (ReToMe)
mechanism, which recursively aligns tokens across frames accord-
ing to the correlation and compresses the temporally redundant
tokens to facilitate joint self-attention. With shared tokens in the
self-attention module, ReToMe fixes the misalignment of details
in per-frame optimization, resulting in temporally consistent ad-
versarial videos. Additionally, inter-frame interaction can make
the gradient of the current frame fuse information from associated
frames, which has the potential to generate robust and diverse
update directions to fool various target video models [34]. The Re-
ToMe facilitates inter-frame interactions into the attack process,
thus boosting the adversarial transferability.

Our contributions can be summarized as follows:

• We introduce the first framework for video diffusion-based
unrestricted adversarial attacks, leveraging the Stable Dif-
fusion model to generate imperceptible adversarial video
clips with higher transferability.

• We propose a Timestep-wise Adversarial Latent Optimiza-
tion strategy to achieve spatial imperceptibility. Besides,
our novel recursive token merging mechanism maximally
merges self-attention tokens across frames, thereby boost-
ing adversarial transferability while achieving temporal
imperceptibility.

• We conduct extensive experiments on video recognition
models trained on both CNNs and Vits, as well as various

defense methods. Our results demonstrate that ReToMe-VA
surpasses the best baseline by an average of 14.16% and
17.32%, respectively.

2 RELATEDWORK
As there are no previous works focusing on transferable video
unrestricted attacks, this section reviews recent works on trans-
ferable unrestricted attacks against image models and transferable
restricted attacks against video models.

2.1 Transferable Image Unrestricted Attacks
In the transferable image unrestricted attacks, color manipulation-
based approaches play a significant role. Semantic Adversarial Ex-
amples (SAE) [15] converts the image from the RGB color space to
the HSV color space, followed by random perturbation of both the
H (Hue) and S (Saturation) channels. ReColorAdv [17] optimizes
color transformation within the CIELUV color space, employing a
flexibly parameterized function ’f’ to recolor every pixel color ’c’
to a new one. Colorization Attack (cAdv) [3] utilizes a pre-trained
colorization network for color transformation, simultaneously ad-
justing input hints and masks to generate more natural adversarial
examples. Unlike the previous one, Adversarial Color Enhancement
(ACE) [45] generates adversarial images by using and optimizing
a simple piece-wise linear differentiable color filter, with fewer
parameters and better performance. To prevent human detection
of unrestricted disturbances, ColorFool [29] manually selects four
human-sensitive semantic classes and modifies colors within these
sensitive regions constrainedly in the Lab color space. To make
adversarial images more natural, Natural Color Fool (NCF) [43] con-
structs a “distribution of color distributions” for different semantic
classes based on an existing dataset, using fused color distribution
and optimizable transfer matrix to generate adversarial images.

Except for color manipulation-based methods, Texture Attack
(tAdv) [3] fuses the texture of images from another class to gen-
erate adversarial examples, with an additional constraint on the
victim image to prevent producing artistic images. Different from
Texture Attack, Adversarial Content Attack (ACA) [7] introduces a
diffusion model to perform unrestricted attacks on image models.
By leveraging the diffusion model as a low-dimensional manifold,
ACA maps the victim image into the latent space, where adversar-
ial attacks and optimizations are conducted. When compared to
both color manipulation-based methods and texture attacks, ACA
demonstrates superior capability in generating natural adversarial
image examples by harnessing the powerful generative capacity of
diffusion models. Therefore, this paper investigates the potential
of leveraging the diffusion model to perform transferable video
unrestricted attacks.

2.2 Transferable Video Restricted Attacks
In the transferable video restricted attacks, Temporal Translation
(TT) [37] is a representative method, which prevents overfitting
the surrogate model by optimizing adversarial perturbations over a
set of temporal translated video clips, to enhance the transferability
of video adversarial examples across different video models. Most
recently, based on the observation that the intermediate features
between image models and video models are somewhat similar [38],
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Figure 2: Framework overview of the proposed ReToMe-VA. For a video clip, DDIM inversion is applied to map the benign
frames into the latent space. Timestep-wise Adversarial Latent Optimization is employed during the DDIM sampling process to
optimize the latents. Throughout the whole pipeline, Recursive Token Merging and Recursive Token Unmerging Modules
are integrated into the diffusion model to enhance its effectiveness. Additionally, structure loss is utilized to maintain the
structural consistency of video frames. Ultimately, the resulting adversarial video clip is capable of deceiving the target model.

some transferable cross-modal attacks from images to videos have
emerged. For instance, Image To Video (I2V) [38] generates adver-
sarial video clips on the ImageNet pre-trained model by minimizing
the cosine similarity between intermediate features of each benign
frame and its adversarial frame. However, I2V treats a video clip as
an orderless image set and ignores the inherent temporal informa-
tion in video clips. In contrast, Global-Local Characteristic Excited
Cross-Modal Attack [34] fully considers video characteristics from
both global and local perspectives, which performs global inter-
frame interactions in the attack process to induce more diverse and
stronger gradients and proposes local correlation disturbance to
prevent the target video model from capturing valid temporal clues.
Furthermore, Generative Cross-Modal Attack (GCMA) [6] trains
perturbation generators against the ImageNet domain but can fool
target models from video domains, which proposes a random mo-
tion module and a temporal consistency loss based on intermediate
features to narrow the gap between the image and video domains.
Different from all of the prevision works that focus on restricted
attacks, this work studies unrestricted attacks on video models.

3 METHODOLOGY
3.1 Diffusion-based Unrestricted Attack

Framework
Given a benign video clip 𝑥 ∈ X ⊂ R𝑁×𝐻×𝑊 ×𝐶 with 𝑁 frames
{𝑥1, 𝑥2, ..., 𝑥𝑁 } and its corresponding ground-truth label 𝑦 ∈ Y =

{1, 2, ...𝐾}, where 𝑁,𝐻,𝑊 ,𝐶 denote the number of frames, height,
width and the number of channels respectively, 𝐾 denotes the num-
ber of classes. Let 𝐹𝜃 denote the video recognition model trained
on the video dataset X. We use 𝐹𝜃 (𝑥) : X → Y to denote the
prediction of the video recognition model 𝐹𝜃 (𝑥) for 𝑥 . Our goal is
to craft unrestricted adversarial video clip 𝑥 against a surrogate
video recognition model 𝐺𝜙 leveraging the Stable Diffusion [28] to
deceive the target video recognition model 𝐹𝜃 .

Prior works on image diffusion-based unrestricted attacks [5, 7]
use the DDIM inversion [23] technology to map the benign image
back into the diffusion latent space by reversing the deterministic

sampling process, then optimize the latent of the image along the
adversarial direction. Finally, the adversarial image is generated
from the optimized adversarial latent through the entire denoising
process. For simplicity, the encoding and decoding of the VAE is
ignored, as it is differentiable. However, such generation has ob-
vious limitations for video attacks when applied directly to each
frame. Firstly, given the fact that diffusionmodels tend to add coarse
semantic information during the early denoising steps [22], prema-
ture manipulation tends to change the layouts or semantic structure
of frames, which leads to semantic inconsistency and changes. This
spatial inconsistency further leads to temporal inconsistency in
adversarial videos. Furthermore, because this framework applied
in video attacks involves updating all the frames simultaneously,
the gradient calculation throughout the entire denoising process
leads to a heavy memory overhead and large time consumption.

Therefore, we propose our ReToMe-VA to address these chal-
lenges, as shown in Figure 2. Specifically, we utilize the Timestep-
wise Adversarial Latent Optimization (Sec.3.2) in the denoising
process and introduce a Recursive Token Merging (Sec.3.3) tech-
nique to maintain the temporal consistency and boost adversarial
transferability. The algorithm of ReToMe-VA is presented in Algo-
rithm 1.

3.2 Timestep-wise Adversarial Latent
Optimization

Existing latent optimization approaches which update latent at
a fixed timestep are usually insufficiently flexible and stable in
controlling the generation of adversarial video clips, therefore we
propose Timestep-wise Adversarial Latent Optimization (TALO) to
gradually update perturbations in the latent space at each denoising
timestep. After the inversion of the DDIM, we obtain the reversed
latents {𝑥0, 𝑥1, ..., 𝑥𝑇 } from timestep 0 to 𝑇 , where 𝑥0 is 𝑥 . For the
trade-off between imperceptibility and adversarial transferability,
we start adversarial optimization from the latent 𝑥𝑡𝑠 at 𝑡𝑠 timestep
rather than from Gaussian noise at 𝑇 timestep. We denote 𝑥𝑡 as
the adversarial latents at 𝑡 timestep, we initialize 𝑥𝑡𝑠 = 𝑥𝑡𝑠 . At each
timestep 𝑡 of denoising, we predict the final output 𝑥𝑡0 for each

3
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frame to substitute the adversarial output 𝑥0 for the prediction of
the surrogate model 𝐺𝜙 . The calculation of 𝑥𝑡0 and our adversarial
objective function is expressed as follows:

𝑥𝑡0 =
𝑥𝑡 −
√
1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑡)√

𝛼𝑡
(1)

argmin
𝑥𝑡

L𝑎𝑡𝑡𝑎𝑐𝑘 = −𝐽 (𝑥𝑡0, 𝑦,𝐺𝜙) (2)

where 𝛼𝑡 represents the parameters of the scheduler, 𝜖𝜃 denotes
the noise predicted by the UNet, and 𝐽 (·) is the cross-entropy loss.
After optimizing latents 𝑥𝑡 , we generate a sample 𝑥𝑡−1 from 𝑥𝑡 for
the preparation of next timestep-wise optimization via:

𝑥𝑡−1 =
√
𝛼𝑡−1

(
𝑥𝑡 −
√
1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑡)√

𝛼𝑡

)
+
√︃
1 − 𝛼𝑡−1 − 𝜎2𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡)

(3)

Finally, 𝑥0 is used as the final adversarial video clip 𝑥 to fool the
target video recognition model 𝐹𝜃 .
Preservation of Structural Similarity. Adversarial optimization
at each denoising step leads to a deviation of the latent from the
original frame distribution. Despite the inevitable alterations to the
benign frames for adding adversarial content, the challenge lies in
preserving the structural similarity of the adversarial frames from
the benign frames. Leveraging the fact that the spatial features
of the self-attention layers are influential in determining both the
structure and the appearance of the generated images, TALO min-
imizes the average difference of the self-attention maps between
the benign and the adversarial latent at each timestep 𝑡 :

argmin
𝑥𝑡

L𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 =
∑︁
𝑗∈𝑛𝑠
| |𝑠 𝑗𝑡 − 𝑠

𝑗
𝑡 | |

2
2 (4)

where 𝑠 𝑗𝑡 , 𝑠
𝑗
𝑡 are respectively the 𝑗-th self-attention map of benign

latents 𝑥𝑡 and adversarial latents 𝑥𝑡 , 𝑛𝑠 denotes the total number
of self-attention maps in the diffusion model.

In general, the final objective function of ReToMe-VA is as fol-
lows, where 𝛾 and 𝛽 represent the weight factors of each loss:

argmin
𝑥𝑡

L𝑡𝑜𝑡𝑎𝑙 = 𝛾L𝑎𝑡𝑡𝑎𝑐𝑘 + 𝛽L𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (5)

Incremental Iteration Strategy. TALO iteratively optimizes 𝑥𝑡
to seek optimal adversarial latents at timestep 𝑡 and the iteration
number represents a trade-off between spatial imperceptibility and
adversarial transferability. Recent work [22] has indicated that the
diffusion models tend to add coarse semantic information (e.g., lay-
out) during the early timesteps while more fine details during the
later timesteps. As depicted in Table 6, a smaller number of itera-
tions fail to find better perturbations, reducing the low adversarial
transferability. Conversely, a larger number of iterations render ad-
versarial frames deviating more from the benign frames, adversely
affecting the spatial imperceptibility of the adversarial video clip.
Therefore, we adopt an Incremental Iteration (II) strategy, starting
with fewer attack iterations during the early timesteps to preserve
structure and gradually increasing the number of iterations during
the later timesteps to add adversarial details.

Our TALO strategy has two advantages. First, timestep-wise
optimization with II strategy provides a more controllable and
stable process during adversarial generation making more powerful

Algorithm 1: Framework of ReToMe-VA
Input: a benign video clip 𝑥 with label 𝑦, a surrogate

classifier 𝐺𝜙 , DDIM steps 𝑇 , start attack DDIM
timestep 𝑡𝑠 , initial attack iteration 𝑁𝑎 , recursive
token merging ratio 𝑝 , weight factors 𝛾 , 𝛽 .

Output: Unrestricted adversarial video clip 𝑥 .
1 Add Recursive Token Merging and Recursive Token

Unmerging Module to Stable Diffusion;
2 Calculate latents {𝑥1, ..., 𝑥𝑡𝑠 } using DDIM inversion;
3 𝑥𝑡𝑠 ← 𝑥𝑡𝑠 ;
4 for 𝑡 ← 𝑡𝑠 to 1 do
5 for 𝑗 ← 1 to 𝑁𝑎 + 2(𝑡𝑠 − 𝑡) do
6 𝑥𝑡0 =

𝑥𝑡−
√
1−𝛼𝑡𝜖𝜃 (𝑥𝑡 ,𝑡 )√

𝛼𝑡
;

7 Calculate the attack loss L𝑎𝑡𝑡𝑎𝑐𝑘 as Eq. 2;
8 Calculate the structure loss L𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 as Eq. 4;
9 Update 𝑥𝑡 over total loss L𝑡𝑜𝑡𝑎𝑙 Eq. 5 with AdamW

optimizer;
10 𝑥𝑡−1 ← 𝐸𝑞. 3 ;

11 𝑥 ← 𝑥0;
12 return 𝑥

adversarial video clips with spatial imperceptibility. Second, TALO
only involves one timestep gradient computation thereby reducing
memory consumption in gradient computation.

3.3 Recursive Token Merging
TALO strategy perturbs each benign frame of video separately. This
per-frame optimization makes the frames likely optimized along
different adversarial directions resulting in motion discontinuity
and temporal inconsistency. Furthermore, separately perturbing
each benign frame reduces the monotonous gradients because the
interactions among the frames are not exploited. To this end, we
introduce a recursive token merging (ReToMe) strategy that recur-
sively matches and merges similar tokens across frames together
enabling the self-attention module to extract consistent features. In
the following, we first provide the basic operation of token merg-
ing and token unmerging and then our recursive token merging
algorithm.

Generally, tokens 𝑇 are partitioned into a source (𝑠𝑟𝑐) and des-
tination (𝑑𝑠𝑡 ) set. Then, tokens in 𝑠𝑟𝑐 are matched to their most
similar token in 𝑑𝑠𝑡 , and 𝑟 most similar edges are selected subse-
quently. Next, we merge the connected 𝑟 most similar tokens in 𝑠𝑟𝑐
to 𝑑𝑠𝑡 by replacing them as the linked 𝑑𝑠𝑡 tokens. To keep the token
number unchanged, we divide merged tokens after self-attention
by assigning their values to merged tokens in 𝑠𝑟𝑐 . Token matching,
merging, and unmerging operations are expressed as:

𝑒 =𝑚𝑎𝑡𝑐ℎ(𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑟 ),
𝑇𝑚 = 𝑀 (𝑇, 𝑒),𝑇𝑢𝑚 = 𝑈𝑀 (𝑇𝑚, 𝑒) .

(6)

where𝑚𝑎𝑡𝑐ℎ(·) outputs the matching map 𝑒 with 𝑟 edges from 𝑠𝑟𝑐

to 𝑑𝑠𝑡 , 𝑀 (·) and 𝑈𝑀 (·) merge and unmerge tokens according to
matching 𝑒 . After token merging operation,𝑇𝑚 = {(𝑇 𝑠𝑟𝑐 )𝑢𝑚,𝑇𝑑𝑠𝑡 }
consists the unmerged tokens (𝑇 𝑠𝑟𝑐 )𝑢𝑚 in 𝑠𝑟𝑐 and tokens 𝑇𝑑𝑠𝑡 in
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Figure 3: Recursive token merging process.

𝑑𝑠𝑡 , while merged tokens (𝑇 𝑠𝑟𝑐 )𝑚 in 𝑠𝑟𝑐 is replaced by tokens in
𝑑𝑠𝑡 .

A self-attention module takes a sequence of input and output
tokens across all frames. The input and output tokens are denoted
as𝑇𝑖𝑛 ,𝑇𝑜𝑢𝑡 ⊂ R𝑁×𝐿×𝐸 , where 𝐿 is the number of tokens per frame,
and 𝐸 is the embedding dimension. To partition tokens across
frames into 𝑠𝑟𝑐 and 𝑑𝑠𝑡 , we define stride as 𝐵, we randomly choose
one out of the first 𝐵 frames (e.g. the 𝑔𝑡ℎ frame), and select the
subsequent frames every B interval into the 𝑑𝑠𝑡 set (named as𝑇𝑑𝑠𝑡

𝑖𝑛
).

Tokens of other frames are in 𝑠𝑟𝑐 set (𝑇 𝑠𝑟𝑐
𝑖𝑛

). Thenmerging operation
mentioned above in Eq. 6 is used to merge source frames:

𝑒1 =𝑚𝑎𝑡𝑐ℎ(𝑇 𝑠𝑟𝑐𝑖𝑛 ,𝑇𝑑𝑠𝑡𝑖𝑛 , 𝑟1),
𝑇𝑟𝑚 = 𝑀 (𝑇𝑖𝑛, 𝑒1) .

(7)

where 𝑇𝑟𝑚 = {𝑇𝑑𝑠𝑡
𝑖𝑛

, (𝑇 𝑠𝑟𝑐
𝑖𝑛
)𝑢𝑚}. We set 𝑟1 = 𝑝 (𝑁 − 𝑁𝑑1 )𝐿 where 𝑝

is the merging ratio, (𝑁 −𝑁𝑑1 )𝐿 is the 𝑠𝑟𝑐 token number in the first
merging process and 𝑁𝑑1 is the 𝑇

𝑑𝑠𝑡
𝑖𝑛

frame number.
Nevertheless, during the merging process expressed above, to-

kens in 𝑑𝑠𝑡 are not merged and compressed. To maximally fuse the
inter-frame information, we recursively apply the above merging
process to tokens in 𝑑𝑠𝑡 until they contain only one frame. For
instance, in the next merging process of 𝑇𝑑𝑠𝑡

𝑖𝑛
, after partition of

𝑠𝑟𝑐 and 𝑑𝑠𝑡 of 𝑇𝑑𝑠𝑡
𝑖𝑛

(named as (𝑇𝑑𝑠𝑡
𝑖𝑛
)𝑠𝑟𝑐 and (𝑇𝑑𝑠𝑡

𝑖𝑛
)𝑑𝑠𝑡 ), we merge

tokens in 𝑠𝑟𝑐 to 𝑑𝑠𝑡 by:

𝑒2 =𝑚𝑎𝑡𝑐ℎ((𝑇𝑑𝑠𝑡𝑖𝑛 )
𝑠𝑟𝑐 , (𝑇𝑑𝑠𝑡𝑖𝑛 )

𝑑𝑠𝑡 + (𝑇 𝑠𝑟𝑐𝑖𝑛 )
𝑢𝑚, 𝑟2),

(𝑇𝑑𝑠𝑡𝑖𝑛 )𝑟𝑚 = 𝑀 (𝑇𝑑𝑠𝑡𝑖𝑛 , 𝑒2) .
(8)

We set 𝑟2 = 𝑝 (𝑁𝑑1 − 𝑁𝑑2 )𝐿 where (𝑁𝑑1 − 𝑁𝑑2 )𝐿 is the 𝑠𝑟𝑐 token
number and 𝑁𝑑2 is 𝑑𝑠𝑡 frame number in this process. The difference
is that we add the previous unmerged tokens (𝑇 𝑠𝑟𝑐

𝑖𝑛
)𝑢𝑚 into 𝑑𝑠𝑡 for

token matching. Then we replace 𝑇𝑑𝑠𝑡
𝑖𝑛

with (𝑇𝑑𝑠𝑡
𝑖𝑛
)𝑟𝑚 in 𝑇𝑟𝑚 . The

token merging process of ReToMe is shown in Figure 3. Next, we
input the tokens 𝑇𝑟𝑚 into the self-attention module to calculate
(𝑇𝑜𝑢𝑡 )𝑟𝑚 .

The output tokens (𝑇𝑜𝑢𝑡 )𝑟𝑚 need to be restored to their original
shape 𝑇𝑜𝑢𝑡 to perform the following operations. Therefore, in the
unmerge process, the unmerging operation in Eq. 6 is applied in
the reverse order of the merging process to get 𝑇𝑜𝑢𝑡 .

Our ReToMe has three advantages. Firstly, ReToMe ensures that
the most similar tokens share identical outputs, maximizing the
compression of tokens. This approach fosters internal uniformity of
features across frames and preserves temporal consistency, thereby
effectively achieving temporal imperceptibility. Secondly, given
the fact that there is a negative correlation between the adversar-
ial transferability and the interaction inside adversarial perturba-
tions [35], the merged tokens decrease interaction inside adversarial

perturbations, effectively preventing overfitting on the surrogate
model. Furthermore, the tokens in 𝑑𝑠𝑡 linked to merged tokens
facilitate inter-frame interaction in gradient calculation, which may
induce more robust and diverse gradients [34]. Therefore, ReToMe
can effectively boost adversarial transferability.

4 EXPERIMENT
4.1 Experiment Settings
Dataset. We evaluate the adversarial transferability of our pro-
posed method on Kinetics-400 [4] dataset. The dataset contains
approximately 240,000 videos from 400 human action classes, we
carefully selected one video clip from each class that was correctly
classified by all video recognition models, yielding a total of 400
videos as the validation dataset.
Models. To assess the adversarial robustness of network archi-
tectures, we select CNNs and ViTs as the attacked models, re-
spectively. For CNNs, we choose normally trained I3D SLOW [9],
TPN [42] with two different backbones: ResNet-50 and ResNet-101,
and R(2+1)D [33] with backbone ResNet-50 (R(2+1)D-50). For ViTs,
we consider VTN [24], Motionformer [2], TimeSformer [26], Video
Swin [19].
Implementation Details. Our experiments are run on an NVIDIA
A800 with Pytorch. We set DDIM steps 𝑇 = 20, start attack DDIM
step 𝑡𝑠 = 5, initial attack Iteration 𝑁𝑎 = 4, recursive token merging
ratio 𝑝 = 0.5. Meanwhile, the weight factors 𝛾, 𝛽 in Eq. 5 are set to
10, 100 respectively. We adopt AdamW [20] with the learning rate
set to 1𝑒−2. The version of Stable Diffusion we used is v2.0.
EvaluationMetrics.We use the Attack Success Rate (ASR), i.e., the
percentage of adversarial video clips that are successfully misclas-
sified by the video recognition model, to evaluate the adversarial
transferability. Thus a higher ASR means better adversarial trans-
ferability. If not specifically stated, Avg.ASR is the average ASR over
all target video models. Besides, we quantitatively assess the frame
quality using two reference perceptual image quality measures
including Frechet Inception Distance (FID) [14] and LPIPS [44],
and three non-reference perceptual image quality measures NIMA-
AVA [32], HyperIQA [31], and TReS [10]. For temporal consistency,
we adopt four evaluation metrics in VBench [16], including Sub-
ject Consistency, Background Consistency, Motion Smoothness,
and Temporal Flickering. Each metric is tailored to specific as-
pects of video analysis. Subject Consistency measures whether
an object’s appearance remains consistent throughout the video.
Background Consistency evaluates the temporal uniformity of back-
ground scenes through CLIP [27] feature similarity across frames.
Motion Smoothness assesses the smoothness and realism of motion,
adhering to real-world physics. Temporal Flickering computes the
mean absolute difference across frames to detect abrupt changes.
Moreover, we also select Pixel-MSE to evaluate the naturalness and
continuity of frame-to-frame transitions. Specifically, each frame
in the adversarial video clip is warped to the next frame by the
optical flow between consecutive frames. Then, we compute the
average mean-squared pixel error between each warped frame and
its corresponding next frame.
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Table 1: Performance comparison of adversarial transferability on normally trained CNNs and ViTs. We report attack success
rates (%) of each method ("*" is white-box attack results). The best results are highlighted in bold.

Surrogate Model Attack
Models

Avg. ASR (%)CNNs Transformers

Slow-50 Slow-101 TPN-50 TPN-101 R(2+1)D-50 VTN Motionformer TimeSformer Video Swin

Slow-50

TT 99.00* 74.00 96.50 72.00 66.25 5.50 3.50 6.75 10.75 41.91
SAE 37.75* 9.00 12.75 8.50 60.50 14.00 22.25 37.75 21.25 20.41

ReColorAdv 100.00* 64.50 96.25 56.25 68.00 7.25 4.75 13.25 11.75 40.25
cAdv 98.75* 29.00 43.25 30.00 28.25 25.00 21.50 44.25 24.25 30.69
tAdv 99.50* 7.00 13.25 7.50 36.00 4.50 2.75 9.25 6.25 10.81
ACE 89.25* 3.75 6.50 4.25 24.00 3.25 4.00 9.75 4.75 7.53

ColorFool 31.75* 5.25 9.50 7.50 50.25 11.50 19.25 30.75 17.50 16.62
NCF 37.25* 12.25 21.25 10.50 54.00 12.00 15.50 25.00 13.25 18.38
ACA 67.75* 38.50 47.75 36.00 68.75 25.00 22.50 32.75 28.25 37.44

Ours 96.50* 78.50 89.50 77.00 61.25 30.25 25.25 39.50 35.50 54.59

TPN-50

TT 92.00 52.50 100.00* 53.25 63.50 4.75 2.25 8.25 8.25 35.59
SAE 9.00 7.00 36.25* 6.50 59.00 14.50 21.50 40.25 21.50 19.56

ReColorAdv 67.00 27.25 100.00* 27.75 56.75 3.50 2.25 8.25 5.50 24.78
cAdv 31.50 18.75 98.25* 21.50 28.75 22.00 17.75 39.50 19.25 24.88
tAdv 12.25 7.00 98.00* 6.50 33.50 6.25 3.00 9.00 6.25 10.47
ACE 4.00 3.50 86.75* 2.75 22.00 4.25 3.75 10.50 4.75 6.94

ColorFool 8.75 6.00 35.00* 5.75 45.50 8.75 17.50 28.50 14.50 15.59
NCF 20.25 10.25 32.00* 9.75 53.75 10.75 14.75 26.50 12.25 17.06
ACA 43.75 33.25 63.75* 33.50 67.00 24.00 22.75 32.75 27.50 35.56

Ours 80.50 58.75 97.50* 61.75 52.75 20.75 19.75 33.00 27.25 44.31

VTN

TT 11.25 10.00 10.50 5.50 56.00 100.00* 64.50 83.50 14.25 31.94
SAE 8.75 6.25 9.00 7.25 55.00 48.75* 19.00 39.75 22.50 20.16

ReColorAdv 4.50 4.50 5.75 4.25 42.50 100.00* 43.75 62.00 10.50 22.22
cAdv 16.25 14.50 16.50 17.25 28.00 99.75* 38.50 67.25 27.00 16.28
tAdv 7.25 6.00 7.75 5.25 32.25 94.00* 14.75 28.50 9.75 13.94
ACE 3.00 2.00 3.00 2.00 22.75 71.25* 5.50 18.50 3.50 7.53

ColorFool 5.75 5.25 9.00 5.50 40.00 41.50* 18.50 30.75 15.50 19.08
NCF 16.50 10.75 15.75 9.75 53.75 72.25* 24.75 39.25 14.00 21.66
ACA 28.75 28.00 28.75 25.50 66.75 59.50* 32.00 42.00 28.75 35.06

Ours 27.25 25.25 28.25 23.00 49.00 99.25* 75.50 88.25 43.25 44.97

Motionformer

TT 12.75 12.50 11.00 8.00 57.75 91.75 100.00* 86.50 29.50 38.72
SAE 7.75 4.50 6.75 4.25 49.50 11.50 72.00* 31.75 14.00 16.25

ReColorAdv 2.50 1.50 3.25 2.00 36.00 15.50 100.00* 25.50 2.00 11.03
cAdv 9.00 7.25 9.00 9.00 21.00 25.00 89.25* 48.50 12.25 17.62
tAdv 12.75 12.00 13.00 12.00 38.00 12.25 51.50* 20.75 11.50 16.53
ACE 1.75 1.75 2.25 0.25 6.00 0.75 50.00* 6.50 2.25 2.69

ColorFool 3.50 2.75 5.50 4.50 33.00 5.00 71.50* 26.00 8.00 11.03
NCF 12.50 9.25 15.00 7.50 53.25 12.75 *39.75 30.25 12.50 17.44
ACA 27.00 27.50 25.75 24.50 65.75 31.50 67.75* 37.75 24.50 33.03

Ours 42.50 44.25 44.25 42.75 57.50 91.25 100.00* 91.00 63.75 59.66

TimeSformer

TT 10.75 10.00 10.25 6.25 57.00 85.25 57.25 100.00* 16.00 31.59
SAE 5.00 3.75 4.75 3.50 43.75 8.00 14.75 72.50* 14.75 12.28

ReColorAdv 7.50 6.75 7.00 5.25 49.25 59.00 38.50 100.00* 10.00 22.91
cAdv 10.50 11.25 12.00 10.00 23.25 43.25 31.00 100.00* 24.25 20.69
tAdv 5.50 5.00 5.50 4.50 30.50 17.00 10.25 95.00* 7.00 10.66
ACE 3.00 2.75 3.75 1.00 18.00 4.50 3.25 89.75* 3.50 4.97

ColorFool 5.25 3.00 5.00 2.75 33.25 5.00 8.50 65.75* 8.50 8.91
NCF 16.50 10.00 17.00 9.75 53.00 21.50 27.75 92.75* 17.75 29.56
ACA 30.75 28.25 29.50 27.00 67.00 46.00 36.00 72.25* 30.25 36.84

Ours 28.00 29.50 32.00 28.50 49.75 85.00 76.50 100.00* 47.00 47.03

4.2 Attacks against Normally Trained Models
We first assess the adversarial transferability of normally trained
CNNs and ViTs. For video restricted attacks, we compare the pro-
posed method with state-of-the-art TT [37]. For video unrestricted
attacks, due to the lack of comparable work, we extend the image
unrestricted attacks to generate adversarial video clips frame-by-
frame, including SAE [15], ReColorAdv [17], cAdv [3], tAdv [3],
ACE [45], ColorFool [29], NCF [43], and ACA [7]. Adversarial video
clips are crafted against Slow-50, TPN-50, VTN, Motionformer and
TimeSformer respectively. The transferability of different methods
is displayed in Table 1.

It can be observed that adversarial video clips generated by
ReToMe-VA generally exhibit superior transferability compared
to those generated by state-of-the-art competitors. Our proposed
ReToMe-VA achieved a white-box attack success rate of 100% on the
Motionformer and TimeSformer models. The results from Table 1

indicate that our method surpasses the restricted attack method TT
in the black-box setting. When Slow-50, Motionformer, and TimeS-
former are used as surrogate models, we significantly outperform
state-of-the-art ACA by 17.10%, 26.62%, and 10.19%, respectively,
indicating that our ReToMe-VA has higher transferability under the
more challenging cross-architecture setting. Specifically, when the
surrogate model is Slow-50, we surpass ACA by significant margins
of 40%, 41.75%,41%, and 6.75% in Slow-101, TPN-50, TPN-101, and
TimeSformer, respectively.

4.3 Attacks against Adversarial Defense
Mechanisms

We also assess its performance against five representative defense
mechanisms, including the top-2 defense methods in the NIPS 2017
competition (high-level representation guided denoiser (HGD) [18]
and random resizing and padding (R&P) [40]), three popular input
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(a) Visualization of state-of-the-art attacks

(b) Adversarial frames of ReToMe-VA

Figure 4: Qualitative results of frame quality. (a) Visual quality comparisons among different attack methods. (b) More
adversarial frames generated from ReToMe-VA. The Left is the benign frame and the right is the adversarial frame.

Table 2: Robustness on adversarial defense methods. We re-
port Avg.ASR(%) of each method. The best results are in bold.

Attack Method HGD R&P JPEG Bit-Red DiffPure

TT 37.69 29.47 31.69 38.56 12.59
SAE 24.03 25.00 26.34 27.81 37.31
ReColorAdv 35.81 29.13 29.84 35.53 15.69
cAdv 31.31 30.19 32.00 34.03 38.09
tAdv 10.00 10.63 11.28 15.34 15.72
ACE 8.09 9.31 10.40 12.84 20.71
ColorFool 18.88 20.50 21.25 22.94 33.56
NCF 20.69 22.25 21.69 24.75 32.16
ACA 35.90 28.22 29.84 35.53 36.56

Ours 53.41 50.97 52.72 54.56 40.97

pre-process defenses, namely jpeg compression (JPEG) [12], bit
depth reduction (Bit-Red) [41], and DiffPure [25]. We take Slow-50
as a surrogate model and all of the adversarial video clips are crafted
on it.

From the results demonstrated in Table 2, we can see our method
displays superiority over other advanced attacks by a significant
margin. For example, against HGD and DiffPure defenses, our
method outperforms the next best attack ACA by over 17.5% and
4.41% respectively, indicating its robustness and efficiency in pene-
trating these defenses. This evidences the advanced capability of
our method in maintaining high attack success rates under diverse
adversarial defense methods.

4.4 Visualization
In this section, we will demonstrate the superiority of our approach
through qualitative and quantitative comparisons of frame quality
and temporal consistency in videos.
Frame Quality. In Figure 4(a), we visualize the adversarial frames
crafted by different attack approaches. We can see that our attack

Adversarial Frames

Benign Frames

Figure 5: A Sample of generated video from our method.

is much more natural than the restricted attack TT and more im-
perceptible compared with other unrestricted attacks. In detail, the
color and texture changes of adversarial frames generated by SAE,
ACE, ColorFool, NCF, and ACA are easily perceptible. Next, we give
more adversarial frames generated by ReToMe-VA in Figure 4(b). It
is observed that our method adaptively modifies inconspicuous de-
tails to generate adversarial frames. For example, minor alteration
is made to the texture of the knitted yarn in the frame in the fourth
column of Figure 4(b). Moreover, we quantitatively assess the frame
quality using the reference and non-reference perceptual image
quality measures. As illustrated in Table 4, our method achieves
top-2 performance across all metrics. And ReToMe-VA achieves the
best result in HyperIQA and TReS.
Temporal Consistency. To provide a qualitative comparison, Fig-
ure 5 shows an adversarial video clip crafted by our ReToMe-VA.
From the visualization of the video, we can observe that our pro-
posed method produces high-quality frames. The crafted frames by
ReToMe-Va highly align with the benign frames in both appearance
and structure and also maintain a high level of motion consistency
with the benign frames. Quantitative evaluation results are shown
in Table 3, we evaluate the temporal quality of the videos using
five metrics, all of which achieve top-2 results. Specifically, Motion
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Table 3: Quantitative comparison of temporal consistency. The best results are in bold and the second-best results are underlined.

Attack Method Subject Consistency↑ Background Consistency↑ Motion Smoothness↑ Temporal Flickering↑ Pixel-MSE↓
SAE 79.23% 87.08% 82.61% 80.61% 94.17
ReColorAdv 87.69% 91.72% 95.07% 93.00% 69.99
cAdv 86.43% 90.62% 94.28% 92.31% 67.56
tAdv 88.81% 93.29% 95.50% 93.44% 57.50
ACE 85.03% 91.83% 92.27% 90.19% 85.01
ColorFool 78.94% 88.29% 79.44% 76.88% 83.81
NCF 79.82% 89.37% 87.65% 85.02% 95.58
ACA 75.67% 85.89% 94.10% 91.96% 68.98

Ours 88.03% 92.21% 95.62% 93.76% 58.66

Smoothness and Temporal Flickering yield the best results. There-
fore, our method demonstrates superior performance in terms of
video temporal consistency.

Table 4: Quantitative evaluation of image quality. The best
results are highlighted in bold while the second-best results
are underlined. NA denotes Not Applicable.

Attack Method FID↓ LPIPS↓ NIMA-AVA↑ HyperIQA↑ TReS↑
Benign NA NA 5.38 50.97 59.80

TT 43.15 0.13 5.46 50.81 58.08
SAE 57.66 0.39 5.64 49.61 57.22
ReColorAdv 50.40 0.13 5.46 50.81 58.08
cAdv 47.02 0.20 5.61 52.58 61.41
tAdv 36.75 0.08 5.37 49.46 57.30
ACE 21.63 0.13 5.31 51.28 59.92
ColorFool 48.79 0.38 5.18 50.13 58.98
NCF 37.02 0.32 5.18 48.95 54.95
ACA 41.69 0.24 5.60 48.74 55.86

Ours 25.63 0.10 5.62 55.53 66.31

4.5 Ablation Studies
In Table 5, we ablate the designs mentioned in Section 3.3. We can
observe that the avg.ASR and Subject Consistency increase by 6.08%
and 0.04 by using ReToMe, indicating that the Recursive Token
Merging Technique exhibits strong adversarial transferability and
enhanced temporal consistency. Additionally, the ablation study
of II strategy is shown in Table 6. In detail, the first two lines
denote that we fix the iteration number at each timestep, while
the last line displays our II strategy. The results verify that our
II strategy performs a good trade-off between transferability and
spatial imperceptibility.

ReToMe Avg.ASR Subject
Consistency

w/o 53.17 0.8410
w/ 59.25 0.8803

Table 5: Ablation study of Re-
ToMe.

Iter Strategy Avg. ASR (%) FID

Fix Iter 4 44.69 18.86
Fix Iter 12 70.11 33.42
Iter 4→12 59.25 25.63

Table 6: Ablation study of II
strategy.
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Figure 6: Comparison of different merging ratios.

Moreover, we investigate the impact of different merging ratios
on adversarial transferability and video quality, using Slow-50 as
an example surrogate model. The results are illustrated in Figure 6,
which demonstrate that a merging ratio of 𝑝 = 0.5 achieves the
best adversarial transferability with high frame quality.

5 CONCLUSION
In this paper, we propose the Recursive Token Merging for Video
Diffusion-based Unrestricted Adversarial Attack (ReToMe-VA). As
far as we know, this is the first diffusion-based framework to gener-
ate imperceptible adversarial video clips with higher transferability.
ReToMe-VA adopts a Timestep-wise Adversarial Latent Optimiza-
tion strategy to achieve spatial imperceptibility. Moreover, ReToMe-
VA introduces a Recursive Token Merging (ReToMe) mechanism.
By aligning and compressing redundant tokens across frames, Re-
ToMe produces temporally consistent adversarial videos. ReToMe
provides more diverse and robust attack direction by incorporating
inter-frame interactions into the adversarial optimization process,
consequently boosting adversarial transferability. Extensive experi-
ments and visualization demonstrate the efficacy of ReToMe-VA,
particularly in surpassing the best baseline by an average of 14.16%
in normally trained models. We hope our work will pave the way
for future research in enhancing the robustness of video recognition
models against adversarial threats, as well as contributing to the
development of more effective video adversarial attack methods.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

ReToMe-VA: Recursive Token Merging for Video Diffusion-based Unrestricted Adversarial Attack MM ’24, 28 October - 1 November 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Jonathan Aigrain and Marcin Detyniecki. 2019. Detecting adversarial examples

and other misclassifications in neural networks by introspection. arXiv preprint
arXiv:1905.09186 (2019).

[2] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. 2021. Is space-time atten-
tion all you need for video understanding?. In ICML, Vol. 2. 4.

[3] Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and D. A. Forsyth. 2020.
Unrestricted Adversarial Examples via Semantic Manipulation. In International
Conference on Learning Representations. https://openreview.net/forum?id=Sye_
OgHFwH

[4] Joao Carreira and Andrew Zisserman. 2017. Quo vadis, action recognition? a
new model and the kinetics dataset. In proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 6299–6308.

[5] Jianqi Chen, Hao Chen, Keyan Chen, Yilan Zhang, Zhengxia Zou, and Zhenwei
Shi. 2023. Diffusion models for imperceptible and transferable adversarial attack.
arXiv preprint arXiv:2305.08192 (2023).

[6] Kai Chen, Zhipeng Wei, Jingjing Chen, Zuxuan Wu, and Yu-Gang Jiang. 2023.
GCMA: Generative Cross-Modal Transferable Adversarial Attacks from Images
to Videos. In Proceedings of the 31st ACM International Conference on Multimedia.
698–708.

[7] Zhaoyu Chen, Bo Li, Shuang Wu, Kaixun Jiang, Shouhong Ding, and Wen-
qiang Zhang. 2023. Content-based Unrestricted Adversarial Attack. In Ad-
vances in Neural Information Processing Systems, A. Oh, T. Neumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 51719–51733. https://proceedings.neurips.cc/paper_files/paper/2023/file/
a24cd16bc361afa78e57d31d34f3d936-Paper-Conference.pdf

[8] Yiting Cheng, Fangyun Wei, Jianmin Bao, Dong Chen, and Wenqiang Zhang.
2023. Adpl: Adaptive dual path learning for domain adaptation of semantic
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2023).

[9] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. 2019. Slow-
fast networks for video recognition. In Proceedings of the IEEE/CVF international
conference on computer vision. 6202–6211.

[10] S Alireza Golestaneh, Saba Dadsetan, and Kris M Kitani. 2022. No-reference
image quality assessment via transformers, relative ranking, and self-consistency.
In Proceedings of the IEEE/CVF winter conference on applications of computer vision.
1220–1230.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[12] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. 2018.
Countering Adversarial Images using Input Transformations. In International
Conference on Learning Representations.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. Advances in neural information processing systems 30
(2017).

[15] Hossein Hosseini and Radha Poovendran. 2018. Semantic Adversarial Examples.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops.

[16] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang,
Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. 2023.
Vbench: Comprehensive benchmark suite for video generative models. arXiv
preprint arXiv:2311.17982 (2023).

[17] Cassidy Laidlaw and Soheil Feizi. 2019. Functional Adversarial Attacks. In
Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/
6e923226e43cd6fac7cfe1e13ad000ac-Paper.pdf

[18] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun
Zhu. 2018. Defense against adversarial attacks using high-level representation
guided denoiser. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 1778–1787.

[19] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han
Hu. 2022. Video swin transformer. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 3202–3211.

[20] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[21] Yiqiang Lv, Jingjing Chen, Zhipeng Wei, Kai Chen, Zuxuan Wu, and Yu-Gang
Jiang. 2023. Downstream Task-agnostic Transferable Attacks on Language-Image
Pre-training Models. In 2023 IEEE International Conference on Multimedia and
Expo (ICME). IEEE, 2831–2836.

[22] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu,
and Stefano Ermon. 2021. Sdedit: Guided image synthesis and editing with
stochastic differential equations. arXiv preprint arXiv:2108.01073 (2021).

[23] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2023.
Null-text inversion for editing real images using guided diffusion models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
6038–6047.

[24] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. 2021. Video
transformer network. In Proceedings of the IEEE/CVF international conference on
computer vision. 3163–3172.

[25] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima
Anandkumar. 2022. Diffusion models for adversarial purification. arXiv preprint
arXiv:2205.07460 (2022).

[26] Mandela Patrick, Dylan Campbell, Yuki Asano, Ishan Misra, Florian Metze,
Christoph Feichtenhofer, Andrea Vedaldi, and Joao F Henriques. 2021. Keeping
your eye on the ball: Trajectory attention in video transformers. Advances in
neural information processing systems 34 (2021), 12493–12506.

[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International conference on machine learning. PMLR, 8748–8763.

[28] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[29] Ali Shahin Shamsabadi, Ricardo Sanchez-Matilla, and Andrea Cavallaro. 2020.
ColorFool: Semantic Adversarial Colorization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

[30] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. 2016. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the 2016 acm sigsac conference on computer and communications
security. 1528–1540.

[31] Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning
Zhang. 2020. Blindly assess image quality in the wild guided by a self-adaptive
hyper network. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 3667–3676.

[32] Hossein Talebi and Peyman Milanfar. 2018. NIMA: Neural image assessment.
IEEE transactions on image processing 27, 8 (2018), 3998–4011.

[33] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. 2018. A closer look at spatiotemporal convolutions for action recognition.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
6450–6459.

[34] Ruikui Wang, Yuanfang Guo, and Yunhong Wang. 2023. Global-local charac-
teristic excited cross-modal attacks from images to videos. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 37. 2635–2643.

[35] XinWang, Jie Ren, Shuyun Lin, Xiangming Zhu, YisenWang, and Quanshi Zhang.
2020. A unified approach to interpreting and boosting adversarial transferability.
arXiv preprint arXiv:2010.04055 (2020).

[36] Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zuxuan Wu, Tom Goldstein,
and Yu-Gang Jiang. 2022. Towards transferable adversarial attacks on vision
transformers. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36. 2668–2676.

[37] Zhipeng Wei, Jingjing Chen, Zuxuan Wu, and Yu-Gang Jiang. 2022. Boosting
the transferability of video adversarial examples via temporal translation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 2659–2667.

[38] Zhipeng Wei, Jingjing Chen, Zuxuan Wu, and Yu-Gang Jiang. 2022. Cross-modal
transferable adversarial attacks from images to videos. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 15064–15073.

[39] Zhipeng Wei, Jingjing Chen, Zuxuan Wu, and Yu-Gang Jiang. 2023. Enhanc-
ing the self-universality for transferable targeted attacks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 12281–12290.

[40] Cihang Xie, JianyuWang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. 2017. Miti-
gating adversarial effects through randomization. arXiv preprint arXiv:1711.01991
(2017).

[41] Weilin Xu, David Evans, and Yanjun Qi. 2017. Feature squeezing: Detecting
adversarial examples in deep neural networks. arXiv preprint arXiv:1704.01155
(2017).

[42] Ceyuan Yang, Yinghao Xu, Jianping Shi, Bo Dai, and Bolei Zhou. 2020. Temporal
pyramid network for action recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 591–600.

[43] Shengming Yuan, Qilong Zhang, Lianli Gao, Yaya Cheng, and Jingkuan Song.
2022. Natural Color Fool: Towards Boosting Black-box Unrestricted Attacks.
In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 7546–7560. https://proceedings.neurips.cc/paper_files/paper/2022/file/
31d0d59fe946684bb228e9c8e887e176-Paper-Conference.pdf

[44] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
2018. The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
586–595.

9

https://openreview.net/forum?id=Sye_OgHFwH
https://openreview.net/forum?id=Sye_OgHFwH
https://proceedings.neurips.cc/paper_files/paper/2023/file/a24cd16bc361afa78e57d31d34f3d936-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a24cd16bc361afa78e57d31d34f3d936-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/6e923226e43cd6fac7cfe1e13ad000ac-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/6e923226e43cd6fac7cfe1e13ad000ac-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/31d0d59fe946684bb228e9c8e887e176-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/31d0d59fe946684bb228e9c8e887e176-Paper-Conference.pdf


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MM ’24, 28 October - 1 November 2024, Melbourne, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[45] Zhengyu Zhao, Zhuoran Liu, and Martha Larson. 2020. Adversarial color en-
hancement: Generating unrestricted adversarial images by optimizing a color
filter. arXiv preprint arXiv:2002.01008 (2020).

[46] Zhengyu Zhao, Zhuoran Liu, and Martha Larson. 2020. Towards large yet
imperceptible adversarial image perturbations with perceptual color distance. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
1039–1048.

10


	Abstract
	1 Introduction
	2 Related Work
	2.1 Transferable Image Unrestricted Attacks
	2.2 Transferable Video Restricted Attacks

	3 Methodology
	3.1 Diffusion-based Unrestricted Attack Framework
	3.2 Timestep-wise Adversarial Latent Optimization
	3.3 Recursive Token Merging

	4 Experiment
	4.1 Experiment Settings
	4.2 Attacks against Normally Trained Models
	4.3 Attacks against Adversarial Defense Mechanisms
	4.4 Visualization
	4.5 Ablation Studies

	5 Conclusion
	References

