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ABSTRACT

Diffusion for code generates code by iteratively removing noise from the latent
representation of a code snippet. During later steps of the diffusion process, when
the code snippet has almost converged, differences between discrete representa-
tions of these snippets look like last-mile repairs applied to broken or incomplete
code. We evaluate the extent to which this resemblance can be exploited to lever-
age pre-trained code diffusion models for the problem of last-mile repair by con-
sidering two applications with significant potential. First, we can leverage the
diffusion model for last-mile repair by adding noise to a broken code snippet and
resuming the diffusion process. Second, we can leverage the diffusion model to
generate an arbitrary amount of training data for other last-mile repair approaches
(that are computationally more efficient) by sampling an intermediate program
(input) and the final program (output) from the diffusion process. We perform
experiments on three domains (Python, Excel and PowerShell) to evaluate both
applications, as well as analyze properties. 1

1 INTRODUCTION

Diffusion models have emerged as a powerful paradigm in generative modeling, particularly for
tasks that involve complex data structures (Ho et al., 2020). Instead of generating a sample from a
distribution in one go (like a GAN or VAE) or auto-regressively (like a GPT) they learn to iteratively
reverse diffusion steps that add (typically Gaussian) noise to the data. Initially popularized in the
domain of image generation, diffusion models have since been adapted for modalities like video
generation (Ho et al., 2022; Xing et al., 2023)—which requires a temporal component—and text or
code generation (Li et al., 2022; Singh et al., 2023a)—which requires diffusion over discrete tokens.

One approach of applying diffusion to discrete domains, like text or code, involves embedding the
input, performing diffusion in the embedded representation, and projecting the denoised embeddings
back to discrete tokens. To train this model end-to-end, the loss incorporates a component over the
discrete tokens, meaning that representation from each step of the reverse diffusion process can be
converted back to the discrete space (Lin et al., 2023). During initial generations, decoding the latent
representation does not resemble anything and tokens frequently change, but in later generations,
these decoded representations become readable and it takes multiple steps to change one token.

As an example, consider the following generations from pre-trained CodeFusion (Singh et al.,
2023a) models—without natural language conditioning—trained on Excel

(t75%) =IF(COUNTIF(A:A, ‘>10’)=0, ‘No values’, AVERAGE(A:A))
(t90% − t100%) =IF(COUNTIF(A:A, ‘>10’)=0, ‘No values’, AVERAGEIF(A:A, ‘>10’))

and Python

(t75% − t90%) words = read(‘myfile’).split()
(t100%) words = open(‘myfile’).read().split()

with changed tokens highlighted in red. It appears as if the diffusion model can look at the whole
(discrete) program, determine what is missing to make it functional, and apply those fixes. This is

1The code and associated datasets can be found at redacted
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Figure 1: Example of diffusion for a⃝ images and b⃝ code. Pure xT is iteratively denoised into a
sample x0 from the target distribution by a model trained on data from the forward process.

exactly the premise of last-mile repair, in which the goal is to repair broken code in such a way that
the solution differs minimally from the broken code (Bavishi et al., 2022). A major challenge in
training (last-mile) repair systems is the long-tail problem in obtaining training data (Huang et al.,
2023) and out-of-distribution generalization when introducing synthetic errors (Joshi et al., 2024).

In this paper, we address those challenging by asking if code diffusion can serve as a continuous
human noise operator? In other words, we evaluate the extent to which the discrete representations
obtained during reverse diffusion steps—which look like mistakes that humans could make—are
representative of mistakes that humans actually make. This exploration has two main applications:
we can use the diffusion model to directly repair code, and we can use the diffusion model to
generate training data for specialized approaches.

We support our claims with experiments on three programming languages: Python, PowerShell and
Excel. We find that diffusion models are capable of last-mile repair, with the models being able to
repair 56.4–68.2% of Python and Excel snippets across different noise levels. We also find that the
diffusion-generated synthetic data has higher diversity and complexity compared to existing data
generators and GPT-4o, which is reflected in higher performance observed (+2.5 – 3.5%) when
fine-tuning different models (codet5-small, phi-35-mini and mistral-7b) on the synthetic data.

2 BACKGROUND

2.1 DIFFUSION MODELS

A diffusion model is a latent variable model that constructs a Markov chain x0,x1 · · ·xT and sim-
ulates data x0 ∼ pdata by learning to reverse this Markov chain (Ho et al., 2020). The sequence
of continuous latent variables x1:T is constructed by incrementally adding (typically Gaussian)
noise to data x0 until, at diffusion step T , samples xT are approximately Gaussian. Each tran-
sition xt−1 → xt is parametrized by q(xt | xt−1) = N (xt;

√
1− βtxt−1, βtI) where the hyper-

parameter βt is the amount of noise added at diffusion step t. The diffusion model generates samples
by reversing this chain: it iteratively denoises the sequence of latent variables xT :0 to approximate
a sample from the target distribution. Each denoising transition xt → xt−1 is parametrized by the
model that predicts pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). In practice, instead of con-
structing the whole chain, we can immediately obtain xt from x0 as xt =

√
ᾱtx0 +

√
1− ᾱtϵ with

ᾱt =
∏t

i=1 1 − βt and ϵ ∼ N (0, I). The model fθ(xt, t) is parametrized to predict x0 with an
empirically validated loss function Lsimple = Ex0,ϵt,t∥fθ(xt, t) − x0∥2 (Ho et al., 2020; Li et al.,
2022). At inference time, we compute xt−1 =

√
ᾱtfθ(xt, t) +

√
1− ᾱtϵ to iteratively denoise xt.

Example 1 Figure 1 shows the generations of a latent diffusion model. It can be seen how the model
iteratively denoises to the concrete representation from the output space.
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2.2 DIFFUSION MODELS FOR CODE

Code generation is a discrete generation task, where the expected output is a snippet c = [c1, . . . , ck]
of k tokens. CodeFusion (Singh et al., 2023a) draws inspiration from text diffusion (Li et al., 2022)
where each token ci is embedded E(ci) ∈ Rd to convert c into a continuous representation E(c) ∈
Rkd to which a regular diffusion process can be applied. In the reverse process, a trainable rounding
step pθ(ci | x≤i) computes a distribution over possible tokens for each position i given all previous
(denoise) tokens x≤i. Note that the decoder is trained to always generate a constant number of n > k
tokens, one of which is an end-of-sequence token and n− k − 1 padding tokens. Like CodeFusion,
we set n = 128.

Example 2 Figure 1 shows the generations of a latent code diffusion model. The intermediate
representations, when visualized in the discrete token space, show how the model iteratively denoises
to a syntactically valid Excel formula. Furthermore, we can see how the generation at t75% has the
table name missing in the structured reference which the model fixes through refinement.

(t75%) =SUMIFS([TotalAmount], Orders[Region], "East"))
(t90% − t100%) =SUMIFS(Orders[TotalAmount], Orders[Region], "East"))

More generally, Figure 2 shows trends in discrete code refinement over diffusion time-steps as (a)
the number of tokens being changed and (b) the maximum distance between tokens being edited. In
Figure 2a, as expected, significantly fewer tokens are changed further down the diffusion process.
In Figure 2b, one key observation is that diffusion models tend to prioritize global repairs before
drilling down and addressing local issues. These trends of fewer and localized edits near the end of
the diffusion process motivate the application of the diffusion process for last-mile repair.
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Figure 2: Trends in code refinement over diffusion time steps.

3 DIFFUSION FOR REPAIR

Let ĉ be a buggy code snippet that is not accepted by the compiler. The goal of last-mile repair is
to find a code snippet c∗ = argminc d(c, ĉ) such that c∗ is accepted by the compiler and performs
a task intended by the user, with d the edit distance between two code snippets. Like previous
work on last-mile repair, we only consider syntactic errors (Bavishi et al., 2022; Joshi et al., 2023).
In the following three sections, we respectively reiterate the components and training process of
CODEFUSION, describe how to apply it to problem of last-mile repair, and describe how to generate
pairs (ĉ, c∗) that can be used to train specialized systems.

3.1 TRAINING THE DIFFUSION MODEL

The pre-trained components of CODEFUSION generate code from pure Gaussian noise. Because
there is no natural language, we can remove the encoder. A denoiser N removes the noise from
xt at timestep t to obtain the denoised embeddings x̂0 = N(xt, t). A decoder D performs full
self-attention over x̂0 to compute a decoded representation D(x̂0). This allows each denoised token
to be generated with information about other tokens, and improved the likelihood of generating
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Figure 3: Using a pre-trained diffusion process (in black) to a⃝ repair broken code and b⃝ generate
(broken, fixed) code pairs for training specialized approaches. a⃝ The broken code is embedded,
noise is added for a timestep t, and the reverse process is resumed as usual, letting the reverse process
fix the code. b⃝ The diffusion process produces intermediate (broken) code snippets ĉ that can be
paired with the final code c∗ to form a training example.

syntactically correct code (Singh et al., 2023a). Finally, the classification head H computes p(y | di)
for each di ∈ D(x̂0) to project decoded embeddings back to discrete tokens.

To train these components on a code snippet c, an embedding layer E first obtains the continuous
representation x0 = E(c). We sample t ∈ [1, . . . , T ] and ϵt ∼ N (0, 1) and compute xt from x0.
The model is trained on

L = ∥N(xt, t)− x0∥︸ ︷︷ ︸
1

+ ∥D(x̂0)− E(c)∥︸ ︷︷ ︸
2

− ce(c, H(D(x̂0)))︸ ︷︷ ︸
3

and consists of three parts that

1. minimize the error between the predicted noise ϵ̂t and the actual noise ϵt to train N ,
2. minimize the error between the decoded embeddings D(x̂0) and embedded code E(c) to

train D and L, and
3. apply cross-entropy loss with respect to the ground truth code snippet c to train H .

This loss is taken from CODEFUSION (Singh et al., 2023a) and is an adaptation of the loss function
used by GENIE (Lin et al., 2023).

3.2 DIFFUSION STEPS AS REPAIR OPERATORS 0

Figure 4: Overlap between Xĉ
t

(green) and Xc∗

t (blue) indicates
that we can find some t for which
the embedding will project ĉ into a
trajectory that ends up in c∗.

We exploit the Markov property of the reverse diffusion pro-
cess to inject an embedded version of the noisy snippet into
the reverse process. In other words, we can pick some t, gen-
erate ϵ ∼ N (0, 1) and compute xĉ

t =
√
ᾱE(ĉ) +

√
1− ᾱtϵ

where E is the embedding layer (that CodeFusion discards af-
ter training). The diffusion process then denoises xĉ

t → xĉ
0

and we return H(D(N(xĉ
0, 0))).

Let Xĉ
t [E] be the space of embedded representations xĉ

t ob-
tained from ĉ for all ϵ ∼ N (0, 1) at step t (parametrized by
E). Let Xc∗

t [N,D,H] be the space of embedded representa-
tions encountered at step t in reverse diffusion processes start-
ing from ϵ ∼ N (0, 1) that end up in c∗ (parametrized by N ,
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D and H). Our intuition is that there exists some t for which these spaces have a significant over-
lap, and there are thus many values of ϵ that project ĉ into a trajectory to c∗. If t is too large, the
probability of ending up there is small (too much noise). If t is too small, it will never end up there
(not enough noise). Figure 4 summarizes this.

3.3 DIFFUSION MODELS AS REPAIR GENERATORS

We exploit the seemingly discrete nature of later diffusion steps to generate synthetic repair data.
Starting the reverse process from xT ∼ N (0, 1) we build the chain x̂T → x̂0 and decode each
snippet into cT → c0. We can then select any (ct, c0) as a training pair if ct ̸= c0.

In previous work, mistakes are introduced in the discrete token space, by implementing specialized
functions that imitate human errors (Yasunaga & Liang, 2020; Joshi et al., 2024) and optionally
training a neural network to imitate those (Yasunaga & Liang, 2021). Our aim is to show that the
space of discrete representations encountered during the reverse diffusion process shares enough
similarities to the discrete errors that humans make to be useful for last-mile repair.

4 EXPERIMENTS

We evaluate both how the diffusion process acts as a repair operator, how the generated data can be
used for supervised repair training, and provide additional insights in how the diffusion generates
(and repairs) code.

4.1 EXPERIMENTAL SETUP

Benchmarks We evaluate our approach on three different benchmarks that span different types of
code (formulas, code, commands).

1. Excel (Bavishi et al., 2022) is a benchmark of 200 broken formulas mined from a public
Excel help forum2.

2. PowerShell (Joshi et al., 2023) is a repair benchmark for 208 PowerShell commands col-
lected from StackExchange3 by comparing commends in the question with those in ac-
cepted answers.

3. Python (Yasunaga & Liang, 2021) is a code repair benchmark collected from GitHub. We
evaluate on a random sample of 200 syntactically invalid Python code snippets. These do
not have a ground truth repair, hence, we employ the same evaluation metric described in
the BIFI paper using (1) syntactic validity and (2) token edit distance < 5.

Pre-training data Collecting snippets of code for unsupervised approaches is significantly easier
than finding data for repair.

1. For Python, we use a collection of code snippets for simple tasks from StackOverflow4.
The corpus has 130K snippets with an average token length of 79.4 tokens.

2. For Excel, we use a corpus of 1.8 million workbooks (Singh et al., 2022), and sample 200K
workbooks and collect all formulas present in them to generate 108K unique formulas with
an average length of 35.8 tokens.

3. For PowerShell, we mine PowerShell commands from StackOverflow and other online
forums ourselves. The corpus has 110K samples with an average length of 24.9 characters.

Metrics When available, we use execution match—comparing the output of executing the re-
paired code with an expected output—which allows for semantically different but functionally
equivalent code snippets. To further analyze the syntactic closeness of the repairs to the orig-
inal code, we also report sketch match, which is implemented as the exact string match of

2www.mrexcel.com
3www.stackexchange.com
4www.stackoverflow.com
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Python PowerShell Excel

Denoiser Decoder #P Noise Sketch Execute Sketch Execute Sketch Execute

CF CF 45M
any% 65.3 68.1 14.3 21.2 62.3 63.4
best% 60.4 62.0 11.0 17.4 56.2 58.9
vote% 61.2 62.4 11.7 18.2 57.1 59.1

Unet

Clamp 15M
any% 19.4 20.3 2.1 3.5 17.8 18.4
best% 19.1 20.1 1.8 3.3 16.7 17.3
vote% 19.1 20.2 1.8 3.3 16.9 17.5

Decoder 15M
any% 34.2 35.4 3.4 5.6 26.5 27.2
best% 31.3 32.6 3.1 5.2 23.4 24.5
vote% 31.5 33.0 3.1 5.3 22.8 23.1

Transformer

Clamp 30M
any% 55.2 56.2 8.7 13.5 50.2 51.1
best% 51.1 52.5 7.4 11.8 46.5 47.3
vote% 51.9 52.8 7.5 12.1 47.3 48.2

Decoder 45M
any% 64.7 66.9 14.2 21.2 60.5 61.1
best% 58.9 60.2 10.7 16.8 54.2 56.8
vote% 60.1 61.3 11.4 17.9 54.8 57.8

Table 1: Repair results for different diffusion architectures (#P is number of parameters and CF is
CodeFusion). We report sketch and execution match for all languages at different noise settings:
(1) any% denotes any noise level was able to satisfy for each sample; (2) best% denotes picking
the best noise level across all samples; (3) vote% denotes voting among different noise levels and
considering the most frequent code generation as the result. We find that all models have capacity
to perform code repair.

code with constants (strings, numbers, cell references) anonymized. For example, a noisy code
snippet SUM(A1:A10)/COUNT(A1:A10) and its diffusion repaired snippet AVERAGE(A1:A10) match in
execution but not in their sketches (SUM(:)/COUNT(:) and AVERAGE(:)). On the other hand,
SUM(A1:A5)/COUNT(A1:A5) may not be an execution match but is a sketch match.

Models We implement the same architecture and pre-training as CodeFusion (Singh et al., 2023a).
The embedding (E) has a dimension of 512. The denoiser (D) is a transformer encoder (Vaswani
et al., 2017) with 10 transformer blocks. The decoder (D) is a block with 6 transformer decoder
layers. The classification head (H) is a single fully connected layer. Additionally, we try the
following ablated variations.

• We replace the denoiser with U-Net (Ronneberger et al., 2015)—a common denoiser for
image diffusion—with standard hyper-parameters (Rombach et al., 2022b).

• We replace the decoder and classification head with a clamping approach that rounds each
denoised token to the closest embedded token (Li et al., 2022) and adapt the loss function
to only incorporate the denoiser (1) and classification (3) components.

• We remove the paragraph denoising objective, which instead of adding noise to all tokens,
only adds noise to language keywords (like SUM for Excel, or map for Python).

4.2 DIFFUSION FOR CODE REPAIR

We evaluate a pre-trained diffusion model on last-mile repair. Table 1 contains the execution and
sketch match, pooled across noise levels using three strategies, for different diffusion architectures.
In any%, any noise level was able to correctly repair the code for each sample, indicating the
promise of diffusion for repair. In best%, we pick the best global noise level for each benchmark
set, which are indicated in Figure 5. In vote%, we pick the repaired code that was obtained most
often across noise levels (using exact string match).

Our findings show that all variations of diffusion models have repair capabilities, with transformer-
based architectures performing (∼ two to four times) better. The decoder and classification head,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

which are aimed at improving the syntactic validity of code, remain important components. Vote-
pooling across noise levels is slightly more effective than the free lunch of an optimal noise level.

Figure 5 shows how the execution match evolves in function of the noise level (increments of 10%)
and marks the “optimal” noise level (based on average + one standard deviation). Last-mile repairs
are typically small, causing all lower noise levels to work. For larger noise levels, we see a decline
in performance, as the model makes too many changes to the code.

Additionally, we examine how error complexity correlates with the noise levels required for repair.
Figure 6 shows an area plot of maximum and minimum noise levels where the correct code is
generated at least once with increasing complexity, computed as normalized edit distance for the
repair tasks. The results suggest the acceptable noise band varies based on the complexity where
an earlier injection is preferred for more complex tasks as these require more iterations to repair.
Furthermore, across languages, we see that Excel has a much wider band as it requires fewer edits
while for Python and PowerShell more edits are required for the repair.
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Figure 5: The evolution of execution match for increasing noise levels added to the noisy snippet
(ĉ). The optimal noise level is marked. We find that for simpler languages like formulas, injecting
later helps while for more complex languages like Python and PowerShell, injecting earlier gives
the model more time to repair to the correct code.

To put our results in perspective, Table 2 compares the pass@1 rate of the pre-trained diffusion
model with existing approaches. For LaMirage (Bavishi et al., 2022) and BIFI (Yasunaga &
Liang, 2021) we report the numbers from their respective papers. For the other approaches, we re-
implement them, with the Codex (Chen et al., 2021) and GPT-4o results based on the RING prompt
without compiler feedback. We note that these very powerful models (GPT-4o), specific repair
systems (BIFI and LaMirage) and using additional context (RING) still perform better. Still, outper-
forming the Codex model on Python (+8%) and PowerShell (+11%) with a small (60M parameter)
model that was not specifically trained for repair, is a remarkable result that indicates significant
potential of applying diffusion to code repair.

Python Excel PowerShell

Approach Type Year Sketch Exec. Sketch Exec. Sketch Exec.

Codex Prompt 2021 0.56 0.60 0.65 0.67 0.08 0.10
RING Prompt 2022 0.78 0.82 0.68 0.74 0.15 0.18
GPT-4o Prompt 2024 0.81 0.84 0.68 0.75 0.15 0.24
LaMirage Fine-tuned 2022 0.67 0.71 0.69 0.72 – –
BIFI Fine-tuned 2021 0.72 0.76 – – – –
CodeFusion Pre-trained – 0.65 0.68 0.62 0.63 0.14 0.21

Table 2: Comparison performance of CodeFusion with state-of-the-art last-mile repair approaches.

A major advantage of CodeFusion is its ability to generate diverse outputs, as it is conditioned on
noise. Figure 3 shows the pass@1, pass@3 and pass@5 rates for diffusion, GPT-4o and RING.
CodeFusion sees the biggest jump in performance (± 5%) across all languages, even performing
better than GPT-4o on the (most difficult) PowerShell benchmark. This reinforces the potential of
diffusion for last-mile repair. Pooling over different noise vectors, execution feedback and larger
diffusion models can leverage this potential even further, which we leave for future work.
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Figure 6: Noise range for which the correct code snippet is recovered for increasing differences
between the broken and fixed code. We show the maximum and minimum noise for which a sample
was repaired correctly. The band width is largest for Excel since it requires simpler and fewer
modifications while PowerShell has a narrow band towards higher noise as it needs more iterations
to repair.

Python Excel PowerShell

Approach p@1 p@3 p@5 p@1 p@3 p@5 p@1 p@3 p@5

CodeFusion 68.1 70.5 72.4 63.4 65.8 68.2 21.2 23.1 26.4
GPT-4o 81.2 81.7 82.1 75.3 75.6 75.7 23.9 24.1 24.2
RING 82.4 82.6 82.9 73.8 74.2 74.5 18.0 18.0 18.2

Table 3: Pass@k rates for repair for the best diffusion model adapted for repair (CodeFusion). The
performance for CodeFusion increases the most when increasing k, as it is able to generate diverse
repairs due to its noise condition.

4.3 DIFFUSION FOR SYNTHETIC DATA GENERATION

We evaluate the pre-trained diffusion model (CodeFusion architecture) on generating training data
for supervised approaches. We uniformly sample t and select (ct, c0) from the diffusion process.
We then fine-tune several code generation models on this dataset and evaluate their performance on
a repair benchmark containing real human errors. We sample 20K training points.

As baselines, we consider generators from existing work, as well as generating data with a large
language model (GPT-4o). For Python, we use the popular BIFI (Yasunaga & Liang, 2021) model,
which learns to break code based on a set of manually curated repair operators. For Excel, we use
the 17 operators used to fine-tune FLAME (Joshi et al., 2024) on last-mile formula repair. The prompt
for GPT-4o is a few-shot, chain-of-thought prompt where we instruct the model to break a formula
according to mistakes that a human would make. We use two versions: (1) using the error categories
from BIFI to mimic common human errors and (2) not providing guidance to promote diversity in
the mistakes. We have included a template of this prompt in Appendix A.1.

Table 4 shows the performance of different data generation techniques across various models:
CodeT5+ (2B) (Wang et al., 2023), Phi-3.5-mini-instruct (3.8B) (Abdin et al., 2024) and Mistral-7B-
instruct-v0.3 (7B) (Jiang et al., 2023). Our results show that models trained on diffusion-generated
consistently perform better than or on part with even the specialized approaches, across all models.
Similar to the repair performance, a significant contributor is the diversity in the generated data,
which is harder to control for GPT-4o.

We analyze properties of the generated data distributions for diffusion and GPT-4o in Figure 5. We
show the average distance between token edits (localization), average n-gram similarity between
randomly sampled data points (diversity), and average token edit distance between the noisy and
correct code (complexity). Diffusion-generated data has more diversity, higher complexity, and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

more global errors. The diffusion model generates both the code and the error from pure noise,
whereas GPT-4o starts from provided code.

Python PowerShell Excel formula

Generator Repair Model Sketch Exec. Sketch Exec. Sketch Exec.

Diffusion
CodeT5+ (2B) 89.2 91.1 25.4 34.2 72.0 77.6
Phi-3.5-mini-instruct (3.8B) 87.5 88.3 28.2 33.2 71.0 76.8
Mistral (7B) 87.1 89.3 27.4 34.2 73.3 75.6

GPT-4o
CodeT5+ (2B) 87.6 88.2 23.4 28.1 69.2 72.1
Phi-3.5-mini (3.8B) 84.2 86.9 21.0 27.3 70.1 74.3
Mistral (7B) 85.4 87.7 24.5 29.4 69.3 70.0

Syntactic
CodeT5+ (2B) 85.4 87.3 – – 70.1 72.4
Phi-3.5-mini (3.8B) 84.2 85.3 – – 72.4 77.6
Mistral (7B) 86.0 89.3 – – 71.2 73.5

Table 4: Results on fine-tuning different language models on the synthetic repair data generated
by diffusion, GPT-4o and Syntactic systems (BIFI (Yasunaga & Liang, 2021) for Python and flame
(Joshi et al., 2024) for Excel). We see that Diffusion generated data consistently performs better
than language model and syntactic systems.
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Figure 7: Figure showing the trends in the diffusion (purple) and GPT-4 (green) generated repair
data. We show (a) Localization—average distance between edits; (b) Diversity—average n-gram
diversity in generated correct code; and (c) Complexity—edit distance of the repair.

Finally, Figure 8 shows the overlap between Excel benchmarks solved using the CodeT5+ model
for different sources of synthetic data. Using diffusion data solves all cases that are solved by the
synthetic data, which required manual analysis of human errors to manually implement 17 noise
operators. Bigger mistakes, like completely missing an argument spanning multiple tokens, occur
more in the diffusion data. An extra parenthesis does not occur as much in the diffusion data, as the
pre-trained models quickly learns this structure, and is an explicit instruction in the GPT-4o prompt.

5 RELATED WORK

Diffusion models for text and code Diffusion models have shown their ability to gradually refine
noisy data into realistic outputs through a denoising process (Sohl-Dickstein et al., 2015). They were
originally popularized to generate photo-realistic images (Ho et al., 2020; Rombach et al., 2022a)
and later applied to other high-dimensional data generation, like audio (Kong et al., 2021) and video
(Ho et al., 2022) synthesis. Diffusion has also been adapted for to discrete domains like text (Li
et al., 2022; Lin et al., 2023) and code (Singh et al., 2023a) where the ability to look at the whole
previous generation has benefits over auto-regressive generation. Two approaches are embedding
discrete tokens into a continuous space where the diffusion takes place and then decoding Li et al.
(2022) or directly performing diffusion in the discrete space through a transition matrix He et al.
(2023). In this paper, we use the former approach to explore the latent code repair capabilities of
these models.
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Figure 8: Venn diagram of benchmarks solved correctly for models trained on synthetic datasets
generated from different sources. Diffusion-generated data supersedes all syntactic cases. The ex-
ample shows cases where diffusion data trained model is able to repair a task while GPT-4o data
trained model cannot and vice versa.

Code repair Automated code repair (Zhang et al., 2023) has long been a key challenge in software
engineering, with early approaches using heuristic searches (Qi et al., 2014) and program synthesis
(Nguyen et al., 2013; Bavishi et al., 2022). More recently, transformer-based systems have been
shown adept at learning to repair code (Berabi et al., 2021; Yasunaga & Liang, 2021; Tufano et al.,
2019). A major limitation of training a repair model is the requirement for large quantities of data.
That is not true anymore for large language models, which are adept at repair code and can take in
additional context like error messages (Joshi et al., 2023). They are expensive to deploy, however,
and it is much harder to steer them to remain close to the original code snippet.

Human error simulation In order to leverage the corpora of unsupervised data, previous works have
explored generating synthetic data using static rules (Joshi et al., 2024; Gupta et al., 2017; Hellen-
doorn et al., 2019) or learning to break programs in a natural way (Yasunaga & Liang, 2020; 2021).
These approaches are limited to the encoded rules and the quality of the learned code breaker—
which depends on the training data—and thus suffer from out-of-domain generalization. In this
work we aim to generalize the synthetic data to the long tail of out of domain cases.

6 CONCLUSION AND LIMITATIONS

In this paper, we explored the potential of applying pre-trained code diffusion to the problem of
last-mile repair. These diffusion models iteratively denoise a latent representation of code and the
discrete decoding of intermediate steps resemble last-mile programming errors. Our experiments
show that injecting actual broken code into this process can cause the diffusion process to repair the
code, and that sampling these intermediate step yields data that can be used to fine-tune last-mile
repair models. In its current state, using diffusion models to generate synthetic training data shows
the most promise.

Diffusion for code has only been applied to shorter snippets with smaller models, on relatively small
datasets. Since there is no additional context, like error messages or test cases, the model might
not capture some of the semantics of the broken snippet. Scaling up the model, context and data
should further improve the potential of these models. Our findings consider the diffusion model as-
is: controlled decoding (Li et al., 2022) can help in remaining close to the source snippet. Like other
work on diffusion for text (Li et al., 2022), we note that inference is slower than auto-regressive
models. We can leverage work on both efficient diffusion models and efficient transformers to speed
up the model.
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Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Mohammad Raza, and
Gust Verbruggen. Cornet: A neurosymbolic approach to learning conditional table formatting
rules by example. arXiv preprint arXiv:2208.06032, 2022.
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Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Elnaz Nouri, Mohammad
Raza, and Gust Verbruggen. Format5: Abstention and examples for conditional table formatting
with natural language, 2023b. URL https://arxiv.org/abs/2310.17306.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys
Poshyvanyk. An empirical study on learning bug-fixing patches in the wild via neural machine
translation. ACM Transactions on Software Engineering and Methodology (TOSEM), 28(4):1–29,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https:
//proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation, 2023.

Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang.
A survey on video diffusion models. ACM Computing Surveys, 2023.

Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program repair from diagnostic
feedback. In International Conference on Machine Learning, pp. 10799–10808. PMLR, 2020.

Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning for program repair. In
International conference on machine learning, pp. 11941–11952. PMLR, 2021.

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. A survey of
learning-based automated program repair. ACM Transactions on Software Engineering and
Methodology, 33(2):1–69, 2023.

12

https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2310.17306
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SYNTHETIC DATA GENERATION USING GPT-4O

We use a few-shot, chain-of-thought prompt to generate data. The prompt is inspired from previous
work (Singh et al., 2023b) which also generates synthetic data. The prompt template is shown below.

You are an expert in {{ Language }} and generating errors in them.

<Task >
- You are given a code snippet and you need to introduce errors in it.
- The errors need to be human like.
- The errors can be either syntactic or semantic.
- For succesful completion of this task , you need to perform three steps:
1. Explanation: explain what the code snippet is doing.
2. Error Reasoning: list down what are potential errors

humans might make in writing this code.
3. Buggy Code Generation: generate the buggy version of the code.

<Input >
You are given the correct code snippet in a code block.

<Output >
You need to generate the three steps for this task.
For example ,
"""
1. Explanation:
<explanation of code >

2. Error Reasoning:
- <potential error 1>
- <potential error 2>
...

3. Buggy Code Generation:
‘‘‘
<buggy version of code >
‘‘‘
"""

<Examples >
{{ Examples }}

<Input Code >
{{Code}}

<Steps >

A.2 DIFFUSION REPAIR PROCESS SAMPLE
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