
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CODE DIFFUSION MODELS ARE CONTINUOUS HUMAN
NOISE OPERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion for code generates code by iteratively removing noise from the latent
representation of a code snippet. During later steps of the diffusion process, when
the code snippet has almost converged, differences between discrete representa-
tions of these snippets look like last-mile repairs applied to broken or incomplete
code. We evaluate the extent to which this resemblance can be exploited to lever-
age pre-trained code diffusion models for the problem of last-mile repair by con-
sidering two applications with significant potential. First, we can leverage the
diffusion model for last-mile repair by adding noise to a broken code snippet and
resuming the diffusion process. Second, we can leverage the diffusion model to
generate an arbitrary amount of training data for other last-mile repair approaches
(that are computationally more efficient) by sampling an intermediate program
(input) and the final program (output) from the diffusion process. We perform
experiments on three domains (Python, Excel and PowerShell) to evaluate both
applications, as well as analyze properties. 1

1 INTRODUCTION

Diffusion models have emerged as a powerful paradigm in generative modeling, particularly for
tasks that involve complex data structures (Ho et al., 2020). Instead of generating a sample from a
distribution in one go (like a GAN or VAE) or auto-regressively (like a GPT) they learn to iteratively
reverse diffusion steps that add (typically Gaussian) noise to the data. Initially popularized in the
domain of image generation, diffusion models have since been adapted for modalities like video
generation (Ho et al., 2022; Xing et al., 2023)—which requires a temporal component—and text or
code generation (Li et al., 2022; Singh et al., 2023a)—which requires diffusion over discrete tokens.

One approach of applying diffusion to discrete domains, like text or code, involves embedding the
input, performing diffusion in the embedded representation, and projecting the denoised embeddings
back to discrete tokens. To train this model end-to-end, the loss incorporates a component over the
discrete tokens, meaning that representation from each step of the reverse diffusion process can be
converted back to the discrete space (Lin et al., 2023). During initial generations, decoding the latent
representation does not resemble anything and tokens frequently change, but in later generations,
these decoded representations become readable and it takes multiple steps to change one token.

As an example, consider the following generations from pre-trained CodeFusion (Singh et al.,
2023a) models—without natural language conditioning—trained on Excel

(t75%) =IF(COUNTIF(A:A, ‘>10’)=0, ‘No values’, AVERAGE(A:A))
(t90% − t100%) =IF(COUNTIF(A:A, ‘>10’)=0, ‘No values’, AVERAGEIF(A:A, ‘>10’))

and Python

(t75% − t90%) words = read(‘myfile’).split()
(t100%) words = open(‘myfile’).read().split()

with changed tokens highlighted in red. It appears as if the diffusion model can look at the whole
(discrete) program, determine what is missing to make it functional, and apply those fixes. This is

1The code and associated datasets can be found at redacted

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

$SDFI*&m@9#!
{Ord$[Tot^Alm_t],
OrD#@[R#eg&on],
'G^ea$T%2!'}

=SUM{Orders[
TotalAmnt),
Orders.Region{"},
‘East’))

=SUMIFS(
 [TotalAmount],
 Orders[Region],
 “East”))

=SUMIFS(
 Orders[TotalAmount],
 Orders[Region],
 “East”)

b

a

Forward process parametrized by computed in closed form.

Backward process parametrized by learned by a model.

Images

Code

Figure 1: Example of diffusion for a⃝ images and b⃝ code. Pure xT is iteratively denoised into a
sample x0 from the target distribution by a model trained on data from the forward process.

exactly the premise of last-mile repair, in which the goal is to repair broken code in such a way that
the solution differs minimally from the broken code (Bavishi et al., 2022). A major challenge in
training (last-mile) repair systems is the long-tail problem in obtaining training data (Huang et al.,
2023) and out-of-distribution generalization when introducing synthetic errors (Joshi et al., 2024).

In this paper, we address those challenging by asking if code diffusion can serve as a continuous
human noise operator? In other words, we evaluate the extent to which the discrete representations
obtained during reverse diffusion steps—which look like mistakes that humans could make—are
representative of mistakes that humans actually make. This exploration has two main applications:
we can use the diffusion model to directly repair code, and we can use the diffusion model to
generate training data for specialized approaches.

We support our claims with experiments on three programming languages: Python, PowerShell and
Excel. We find that diffusion models are capable of last-mile repair, with the models being able to
repair 56.4–68.2% of Python and Excel snippets across different noise levels. We also find that the
diffusion-generated synthetic data has higher diversity and complexity compared to existing data
generators and GPT-4o, which is reflected in higher performance observed (+2.5 – 3.5%) when
fine-tuning different models (codet5-small, phi-35-mini and mistral-7b) on the synthetic data.

2 BACKGROUND

2.1 DIFFUSION MODELS

A diffusion model is a latent variable model that constructs a Markov chain x0,x1 · · ·xT and sim-
ulates data x0 ∼ pdata by learning to reverse this Markov chain (Ho et al., 2020). The sequence
of continuous latent variables x1:T is constructed by incrementally adding (typically Gaussian)
noise to data x0 until, at diffusion step T , samples xT are approximately Gaussian. Each tran-
sition xt−1 → xt is parametrized by q(xt | xt−1) = N (xt;

√
1− βtxt−1, βtI) where the hyper-

parameter βt is the amount of noise added at diffusion step t. The diffusion model generates samples
by reversing this chain: it iteratively denoises the sequence of latent variables xT :0 to approximate
a sample from the target distribution. Each denoising transition xt → xt−1 is parametrized by the
model that predicts pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). In practice, instead of con-
structing the whole chain, we can immediately obtain xt from x0 as xt =

√
ᾱtx0 +

√
1− ᾱtϵ with

ᾱt =
∏t

i=1 1 − βt and ϵ ∼ N (0, I). The model fθ(xt, t) is parametrized to predict x0 with an
empirically validated loss function Lsimple = Ex0,ϵt,t∥fθ(xt, t) − x0∥2 (Ho et al., 2020; Li et al.,
2022). At inference time, we compute xt−1 =

√
ᾱtfθ(xt, t) +

√
1− ᾱtϵ to iteratively denoise xt.

Example 1 Figure 1 shows the generations of a latent diffusion model. It can be seen how the model
iteratively denoises to the concrete representation from the output space.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 DIFFUSION MODELS FOR CODE

Code generation is a discrete generation task, where the expected output is a snippet c = [c1, . . . , ck]
of k tokens. CodeFusion (Singh et al., 2023a) draws inspiration from text diffusion (Li et al., 2022)
where each token ci is embedded E(ci) ∈ Rd to convert c into a continuous representation E(c) ∈
Rkd to which a regular diffusion process can be applied. In the reverse process, a trainable rounding
step pθ(ci | x≤i) computes a distribution over possible tokens for each position i given all previous
(denoise) tokens x≤i. Note that the decoder is trained to always generate a constant number of n > k
tokens, one of which is an end-of-sequence token and n− k − 1 padding tokens. Like CodeFusion,
we set n = 128.

Example 2 Figure 1 shows the generations of a latent code diffusion model. The intermediate
representations, when visualized in the discrete token space, show how the model iteratively denoises
to a syntactically valid Excel formula. Furthermore, we can see how the generation at t75% has the
table name missing in the structured reference which the model fixes through refinement.

(t75%) =SUMIFS([TotalAmount], Orders[Region], "East"))
(t90% − t100%) =SUMIFS(Orders[TotalAmount], Orders[Region], "East"))

More generally, Figure 2 shows trends in discrete code refinement over diffusion time-steps as (a)
the number of tokens being changed and (b) the maximum distance between tokens being edited. In
Figure 2a, as expected, significantly fewer tokens are changed further down the diffusion process.
In Figure 2b, one key observation is that diffusion models tend to prioritize global repairs before
drilling down and addressing local issues. These trends of fewer and localized edits near the end of
the diffusion process motivate the application of the diffusion process for last-mile repair.

10 20 30 40 50 60 70 80 90
Noise (%)

0

20

40

60

80

100

To
ke

ns
 C

ha
ng

ed
 (%

)

Magnitude of Change

(a) Percentage of tokens changed in each iteration.

10 20 30 40 50 60 70 80 90
Noise (%)

20

40

60

80

100

M
ax

 D
is

ta
nc

e
b/

w
 T

ok
en

s Global vs Local

(b) Maximal distance between two edits.

Figure 2: Trends in code refinement over diffusion time steps.

3 DIFFUSION FOR REPAIR

Let ĉ be a buggy code snippet that is not accepted by the compiler. The goal of last-mile repair is
to find a code snippet c∗ = argminc d(c, ĉ) such that c∗ is accepted by the compiler and performs
a task intended by the user, with d the edit distance between two code snippets. Like previous
work on last-mile repair, we only consider syntactic errors (Bavishi et al., 2022; Joshi et al., 2023).
In the following three sections, we respectively reiterate the components and training process of
CODEFUSION, describe how to apply it to problem of last-mile repair, and describe how to generate
pairs (ĉ, c∗) that can be used to train specialized systems.

3.1 TRAINING THE DIFFUSION MODEL

The pre-trained components of CODEFUSION generate code from pure Gaussian noise. Because
there is no natural language, we can remove the encoder. A denoiser N removes the noise from
xt at timestep t to obtain the denoised embeddings x̂0 = N(xt, t). A decoder D performs full
self-attention over x̂0 to compute a decoded representation D(x̂0). This allows each denoised token
to be generated with information about other tokens, and improved the likelihood of generating

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

$SDFI*&m@9#!
{Ord$[Tot^Alm_t],
OrD#@[R#eg&on],
'G^ea$T%2!'}

=SUM{Orders[
TotalAmnt),
Orders.Region{"},
‘East’))

=SUMIFS(
 [TotalAmount],
 Orders[Region],
 “East”))

=SUMIFS(
 Orders[TotalAmount],
 Orders[Region],
 “East”)Discrete

Latent

=SUM(
 Orders(TotalAmount),
 Orders(Region),
 “East”)

a

Inject into
reverse process.

b
Regular reverse diffusion.

Figure 3: Using a pre-trained diffusion process (in black) to a⃝ repair broken code and b⃝ generate
(broken, fixed) code pairs for training specialized approaches. a⃝ The broken code is embedded,
noise is added for a timestep t, and the reverse process is resumed as usual, letting the reverse process
fix the code. b⃝ The diffusion process produces intermediate (broken) code snippets ĉ that can be
paired with the final code c∗ to form a training example.

syntactically correct code (Singh et al., 2023a). Finally, the classification head H computes p(y | di)
for each di ∈ D(x̂0) to project decoded embeddings back to discrete tokens.

To train these components on a code snippet c, an embedding layer E first obtains the continuous
representation x0 = E(c). We sample t ∈ [1, . . . , T] and ϵt ∼ N (0, 1) and compute xt from x0.
The model is trained on

L = ∥N(xt, t)− x0∥︸ ︷︷ ︸
1

+ ∥D(x̂0)− E(c)∥︸ ︷︷ ︸
2

− ce(c, H(D(x̂0)))︸ ︷︷ ︸
3

and consists of three parts that

1. minimize the error between the predicted noise ϵ̂t and the actual noise ϵt to train N ,
2. minimize the error between the decoded embeddings D(x̂0) and embedded code E(c) to

train D and L, and
3. apply cross-entropy loss with respect to the ground truth code snippet c to train H .

This loss is taken from CODEFUSION (Singh et al., 2023a) and is an adaptation of the loss function
used by GENIE (Lin et al., 2023).

3.2 DIFFUSION STEPS AS REPAIR OPERATORS 0

Figure 4: Overlap between Xĉ
t

(green) and Xc∗

t (blue) indicates
that we can find some t for which
the embedding will project ĉ into a
trajectory that ends up in c∗.

We exploit the Markov property of the reverse diffusion pro-
cess to inject an embedded version of the noisy snippet into
the reverse process. In other words, we can pick some t, gen-
erate ϵ ∼ N (0, 1) and compute xĉ

t =
√
ᾱE(ĉ) +

√
1− ᾱtϵ

where E is the embedding layer (that CodeFusion discards af-
ter training). The diffusion process then denoises xĉ

t → xĉ
0

and we return H(D(N(xĉ
0, 0))).

Let Xĉ
t [E] be the space of embedded representations xĉ

t ob-
tained from ĉ for all ϵ ∼ N (0, 1) at step t (parametrized by
E). Let Xc∗

t [N,D,H] be the space of embedded representa-
tions encountered at step t in reverse diffusion processes start-
ing from ϵ ∼ N (0, 1) that end up in c∗ (parametrized by N ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

D and H). Our intuition is that there exists some t for which these spaces have a significant over-
lap, and there are thus many values of ϵ that project ĉ into a trajectory to c∗. If t is too large, the
probability of ending up there is small (too much noise). If t is too small, it will never end up there
(not enough noise). Figure 4 summarizes this.

3.3 DIFFUSION MODELS AS REPAIR GENERATORS

We exploit the seemingly discrete nature of later diffusion steps to generate synthetic repair data.
Starting the reverse process from xT ∼ N (0, 1) we build the chain x̂T → x̂0 and decode each
snippet into cT → c0. We can then select any (ct, c0) as a training pair if ct ̸= c0.

In previous work, mistakes are introduced in the discrete token space, by implementing specialized
functions that imitate human errors (Yasunaga & Liang, 2020; Joshi et al., 2024) and optionally
training a neural network to imitate those (Yasunaga & Liang, 2021). Our aim is to show that the
space of discrete representations encountered during the reverse diffusion process shares enough
similarities to the discrete errors that humans make to be useful for last-mile repair.

4 EXPERIMENTS

We evaluate both how the diffusion process acts as a repair operator, how the generated data can be
used for supervised repair training, and provide additional insights in how the diffusion generates
(and repairs) code.

4.1 EXPERIMENTAL SETUP

Benchmarks We evaluate our approach on three different benchmarks that span different types of
code (formulas, code, commands).

1. Excel (Bavishi et al., 2022) is a benchmark of 200 broken formulas mined from a public
Excel help forum2.

2. PowerShell (Joshi et al., 2023) is a repair benchmark for 208 PowerShell commands col-
lected from StackExchange3 by comparing commends in the question with those in ac-
cepted answers.

3. Python (Yasunaga & Liang, 2021) is a code repair benchmark collected from GitHub. We
evaluate on a random sample of 200 syntactically invalid Python code snippets. These do
not have a ground truth repair, hence, we employ the same evaluation metric described in
the BIFI paper using (1) syntactic validity and (2) token edit distance < 5.

Pre-training data Collecting snippets of code for unsupervised approaches is significantly easier
than finding data for repair.

1. For Python, we use a collection of code snippets for simple tasks from StackOverflow4.
The corpus has 130K snippets with an average token length of 79.4 tokens.

2. For Excel, we use a corpus of 1.8 million workbooks (Singh et al., 2022), and sample 200K
workbooks and collect all formulas present in them to generate 108K unique formulas with
an average length of 35.8 tokens.

3. For PowerShell, we mine PowerShell commands from StackOverflow and other online
forums ourselves. The corpus has 110K samples with an average length of 24.9 characters.

Metrics When available, we use execution match—comparing the output of executing the re-
paired code with an expected output—which allows for semantically different but functionally
equivalent code snippets. To further analyze the syntactic closeness of the repairs to the orig-
inal code, we also report sketch match, which is implemented as the exact string match of

2www.mrexcel.com
3www.stackexchange.com
4www.stackoverflow.com

5

www.mrexcel.com
www.stackexchange.com
www.stackoverflow.com

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Python PowerShell Excel

Denoiser Decoder #P Noise Sketch Execute Sketch Execute Sketch Execute

CF CF 45M
any% 65.3 68.1 14.3 21.2 62.3 63.4
best% 60.4 62.0 11.0 17.4 56.2 58.9
vote% 61.2 62.4 11.7 18.2 57.1 59.1

Unet

Clamp 15M
any% 19.4 20.3 2.1 3.5 17.8 18.4
best% 19.1 20.1 1.8 3.3 16.7 17.3
vote% 19.1 20.2 1.8 3.3 16.9 17.5

Decoder 15M
any% 34.2 35.4 3.4 5.6 26.5 27.2
best% 31.3 32.6 3.1 5.2 23.4 24.5
vote% 31.5 33.0 3.1 5.3 22.8 23.1

Transformer

Clamp 30M
any% 55.2 56.2 8.7 13.5 50.2 51.1
best% 51.1 52.5 7.4 11.8 46.5 47.3
vote% 51.9 52.8 7.5 12.1 47.3 48.2

Decoder 45M
any% 64.7 66.9 14.2 21.2 60.5 61.1
best% 58.9 60.2 10.7 16.8 54.2 56.8
vote% 60.1 61.3 11.4 17.9 54.8 57.8

Table 1: Repair results for different diffusion architectures (#P is number of parameters and CF is
CodeFusion). We report sketch and execution match for all languages at different noise settings:
(1) any% denotes any noise level was able to satisfy for each sample; (2) best% denotes picking
the best noise level across all samples; (3) vote% denotes voting among different noise levels and
considering the most frequent code generation as the result. We find that all models have capacity
to perform code repair.

code with constants (strings, numbers, cell references) anonymized. For example, a noisy code
snippet SUM(A1:A10)/COUNT(A1:A10) and its diffusion repaired snippet AVERAGE(A1:A10) match in
execution but not in their sketches (SUM(:)/COUNT(:) and AVERAGE(:)). On the other hand,
SUM(A1:A5)/COUNT(A1:A5) may not be an execution match but is a sketch match.

Models We implement the same architecture and pre-training as CodeFusion (Singh et al., 2023a).
The embedding (E) has a dimension of 512. The denoiser (D) is a transformer encoder (Vaswani
et al., 2017) with 10 transformer blocks. The decoder (D) is a block with 6 transformer decoder
layers. The classification head (H) is a single fully connected layer. Additionally, we try the
following ablated variations.

• We replace the denoiser with U-Net (Ronneberger et al., 2015)—a common denoiser for
image diffusion—with standard hyper-parameters (Rombach et al., 2022b).

• We replace the decoder and classification head with a clamping approach that rounds each
denoised token to the closest embedded token (Li et al., 2022) and adapt the loss function
to only incorporate the denoiser (1) and classification (3) components.

• We remove the paragraph denoising objective, which instead of adding noise to all tokens,
only adds noise to language keywords (like SUM for Excel, or map for Python).

4.2 DIFFUSION FOR CODE REPAIR

We evaluate a pre-trained diffusion model on last-mile repair. Table 1 contains the execution and
sketch match, pooled across noise levels using three strategies, for different diffusion architectures.
In any%, any noise level was able to correctly repair the code for each sample, indicating the
promise of diffusion for repair. In best%, we pick the best global noise level for each benchmark
set, which are indicated in Figure 5. In vote%, we pick the repaired code that was obtained most
often across noise levels (using exact string match).

Our findings show that all variations of diffusion models have repair capabilities, with transformer-
based architectures performing (∼ two to four times) better. The decoder and classification head,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

which are aimed at improving the syntactic validity of code, remain important components. Vote-
pooling across noise levels is slightly more effective than the free lunch of an optimal noise level.

Figure 5 shows how the execution match evolves in function of the noise level (increments of 10%)
and marks the “optimal” noise level (based on average + one standard deviation). Last-mile repairs
are typically small, causing all lower noise levels to work. For larger noise levels, we see a decline
in performance, as the model makes too many changes to the code.

Additionally, we examine how error complexity correlates with the noise levels required for repair.
Figure 6 shows an area plot of maximum and minimum noise levels where the correct code is
generated at least once with increasing complexity, computed as normalized edit distance for the
repair tasks. The results suggest the acceptable noise band varies based on the complexity where
an earlier injection is preferred for more complex tasks as these require more iterations to repair.
Furthermore, across languages, we see that Excel has a much wider band as it requires fewer edits
while for Python and PowerShell more edits are required for the repair.

10 20 30 40 50 60 70 80 90
Noise (%)

20

40

60

80

100

Ex
ec

ut
io

n
M

at
ch

(a) Excel

10 20 30 40 50 60 70 80 90
Noise (%)

20

40

60

80

100

Ex
ec

ut
io

n
M

at
ch

(b) Python

10 20 30 40 50 60 70 80 90
Noise (%)

0

10

20

30

40

50

60

Ex
ec

ut
io

n
M

at
ch

(c) PowerShell

Figure 5: The evolution of execution match for increasing noise levels added to the noisy snippet
(ĉ). The optimal noise level is marked. We find that for simpler languages like formulas, injecting
later helps while for more complex languages like Python and PowerShell, injecting earlier gives
the model more time to repair to the correct code.

To put our results in perspective, Table 2 compares the pass@1 rate of the pre-trained diffusion
model with existing approaches. For LaMirage (Bavishi et al., 2022) and BIFI (Yasunaga &
Liang, 2021) we report the numbers from their respective papers. For the other approaches, we re-
implement them, with the Codex (Chen et al., 2021) and GPT-4o results based on the RING prompt
without compiler feedback. We note that these very powerful models (GPT-4o), specific repair
systems (BIFI and LaMirage) and using additional context (RING) still perform better. Still, outper-
forming the Codex model on Python (+8%) and PowerShell (+11%) with a small (60M parameter)
model that was not specifically trained for repair, is a remarkable result that indicates significant
potential of applying diffusion to code repair.

Python Excel PowerShell

Approach Type Year Sketch Exec. Sketch Exec. Sketch Exec.

Codex Prompt 2021 0.56 0.60 0.65 0.67 0.08 0.10
RING Prompt 2022 0.78 0.82 0.68 0.74 0.15 0.18
GPT-4o Prompt 2024 0.81 0.84 0.68 0.75 0.15 0.24
LaMirage Fine-tuned 2022 0.67 0.71 0.69 0.72 – –
BIFI Fine-tuned 2021 0.72 0.76 – – – –
CodeFusion Pre-trained – 0.65 0.68 0.62 0.63 0.14 0.21

Table 2: Comparison performance of CodeFusion with state-of-the-art last-mile repair approaches.

A major advantage of CodeFusion is its ability to generate diverse outputs, as it is conditioned on
noise. Figure 3 shows the pass@1, pass@3 and pass@5 rates for diffusion, GPT-4o and RING.
CodeFusion sees the biggest jump in performance (± 5%) across all languages, even performing
better than GPT-4o on the (most difficult) PowerShell benchmark. This reinforces the potential of
diffusion for last-mile repair. Pooling over different noise vectors, execution feedback and larger
diffusion models can leverage this potential even further, which we leave for future work.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10 20 30 40 50 60 70 80 90 100
Complexity (%)

0

20

40

60

80

100

N
oi

se
 L

ev
el

 (%
)

Excel

(a) Excel

10 20 30 40 50 60 70 80 90 100
Complexity (%)

0

20

40

60

80

100

N
oi

se
 L

ev
el

 (%
)

Python

(b) Python

10 20 30 40 50 60 70 80 90 100
Complexity (%)

0

20

40

60

80

100

N
oi

se
 L

ev
el

 (%
)

PowerShell

(c) PowerShell

Figure 6: Noise range for which the correct code snippet is recovered for increasing differences
between the broken and fixed code. We show the maximum and minimum noise for which a sample
was repaired correctly. The band width is largest for Excel since it requires simpler and fewer
modifications while PowerShell has a narrow band towards higher noise as it needs more iterations
to repair.

Python Excel PowerShell

Approach p@1 p@3 p@5 p@1 p@3 p@5 p@1 p@3 p@5

CodeFusion 68.1 70.5 72.4 63.4 65.8 68.2 21.2 23.1 26.4
GPT-4o 81.2 81.7 82.1 75.3 75.6 75.7 23.9 24.1 24.2
RING 82.4 82.6 82.9 73.8 74.2 74.5 18.0 18.0 18.2

Table 3: Pass@k rates for repair for the best diffusion model adapted for repair (CodeFusion). The
performance for CodeFusion increases the most when increasing k, as it is able to generate diverse
repairs due to its noise condition.

4.3 DIFFUSION FOR SYNTHETIC DATA GENERATION

We evaluate the pre-trained diffusion model (CodeFusion architecture) on generating training data
for supervised approaches. We uniformly sample t and select (ct, c0) from the diffusion process.
We then fine-tune several code generation models on this dataset and evaluate their performance on
a repair benchmark containing real human errors. We sample 20K training points.

As baselines, we consider generators from existing work, as well as generating data with a large
language model (GPT-4o). For Python, we use the popular BIFI (Yasunaga & Liang, 2021) model,
which learns to break code based on a set of manually curated repair operators. For Excel, we use
the 17 operators used to fine-tune FLAME (Joshi et al., 2024) on last-mile formula repair. The prompt
for GPT-4o is a few-shot, chain-of-thought prompt where we instruct the model to break a formula
according to mistakes that a human would make. We use two versions: (1) using the error categories
from BIFI to mimic common human errors and (2) not providing guidance to promote diversity in
the mistakes. We have included a template of this prompt in Appendix A.1.

Table 4 shows the performance of different data generation techniques across various models:
CodeT5+ (2B) (Wang et al., 2023), Phi-3.5-mini-instruct (3.8B) (Abdin et al., 2024) and Mistral-7B-
instruct-v0.3 (7B) (Jiang et al., 2023). Our results show that models trained on diffusion-generated
consistently perform better than or on part with even the specialized approaches, across all models.
Similar to the repair performance, a significant contributor is the diversity in the generated data,
which is harder to control for GPT-4o.

We analyze properties of the generated data distributions for diffusion and GPT-4o in Figure 5. We
show the average distance between token edits (localization), average n-gram similarity between
randomly sampled data points (diversity), and average token edit distance between the noisy and
correct code (complexity). Diffusion-generated data has more diversity, higher complexity, and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

more global errors. The diffusion model generates both the code and the error from pure noise,
whereas GPT-4o starts from provided code.

Python PowerShell Excel formula

Generator Repair Model Sketch Exec. Sketch Exec. Sketch Exec.

Diffusion
CodeT5+ (2B) 89.2 91.1 25.4 34.2 72.0 77.6
Phi-3.5-mini-instruct (3.8B) 87.5 88.3 28.2 33.2 71.0 76.8
Mistral (7B) 87.1 89.3 27.4 34.2 73.3 75.6

GPT-4o
CodeT5+ (2B) 87.6 88.2 23.4 28.1 69.2 72.1
Phi-3.5-mini (3.8B) 84.2 86.9 21.0 27.3 70.1 74.3
Mistral (7B) 85.4 87.7 24.5 29.4 69.3 70.0

Syntactic
CodeT5+ (2B) 85.4 87.3 – – 70.1 72.4
Phi-3.5-mini (3.8B) 84.2 85.3 – – 72.4 77.6
Mistral (7B) 86.0 89.3 – – 71.2 73.5

Table 4: Results on fine-tuning different language models on the synthetic repair data generated
by diffusion, GPT-4o and Syntactic systems (BIFI (Yasunaga & Liang, 2021) for Python and flame
(Joshi et al., 2024) for Excel). We see that Diffusion generated data consistently performs better
than language model and syntactic systems.

2 4 6 8 10
Distance b/w Edits

0.0

0.1

0.2

0.3

0.4

0.5 GPT-4 Omni
Diffusion

(a) Localization

0.0 0.2 0.4 0.6 0.8 1.0
N-Gram Similarity

0

1

2

3

4

5
GPT-4 Omni
Diffusion

(b) Diversity

5 10 15 20 25
Edit Distance

0.0

0.1

0.2

0.3
GPT-4 Omni
Diffusion

(c) Complexity

Figure 7: Figure showing the trends in the diffusion (purple) and GPT-4 (green) generated repair
data. We show (a) Localization—average distance between edits; (b) Diversity—average n-gram
diversity in generated correct code; and (c) Complexity—edit distance of the repair.

Finally, Figure 8 shows the overlap between Excel benchmarks solved using the CodeT5+ model
for different sources of synthetic data. Using diffusion data solves all cases that are solved by the
synthetic data, which required manual analysis of human errors to manually implement 17 noise
operators. Bigger mistakes, like completely missing an argument spanning multiple tokens, occur
more in the diffusion data. An extra parenthesis does not occur as much in the diffusion data, as the
pre-trained models quickly learns this structure, and is an explicit instruction in the GPT-4o prompt.

5 RELATED WORK

Diffusion models for text and code Diffusion models have shown their ability to gradually refine
noisy data into realistic outputs through a denoising process (Sohl-Dickstein et al., 2015). They were
originally popularized to generate photo-realistic images (Ho et al., 2020; Rombach et al., 2022a)
and later applied to other high-dimensional data generation, like audio (Kong et al., 2021) and video
(Ho et al., 2022) synthesis. Diffusion has also been adapted for to discrete domains like text (Li
et al., 2022; Lin et al., 2023) and code (Singh et al., 2023a) where the ability to look at the whole
previous generation has benefits over auto-regressive generation. Two approaches are embedding
discrete tokens into a continuous space where the diffusion takes place and then decoding Li et al.
(2022) or directly performing diffusion in the discrete space through a transition matrix He et al.
(2023). In this paper, we use the former approach to explore the latent code repair capabilities of
these models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Venn diagram of benchmarks solved correctly for models trained on synthetic datasets
generated from different sources. Diffusion-generated data supersedes all syntactic cases. The ex-
ample shows cases where diffusion data trained model is able to repair a task while GPT-4o data
trained model cannot and vice versa.

Code repair Automated code repair (Zhang et al., 2023) has long been a key challenge in software
engineering, with early approaches using heuristic searches (Qi et al., 2014) and program synthesis
(Nguyen et al., 2013; Bavishi et al., 2022). More recently, transformer-based systems have been
shown adept at learning to repair code (Berabi et al., 2021; Yasunaga & Liang, 2021; Tufano et al.,
2019). A major limitation of training a repair model is the requirement for large quantities of data.
That is not true anymore for large language models, which are adept at repair code and can take in
additional context like error messages (Joshi et al., 2023). They are expensive to deploy, however,
and it is much harder to steer them to remain close to the original code snippet.

Human error simulation In order to leverage the corpora of unsupervised data, previous works have
explored generating synthetic data using static rules (Joshi et al., 2024; Gupta et al., 2017; Hellen-
doorn et al., 2019) or learning to break programs in a natural way (Yasunaga & Liang, 2020; 2021).
These approaches are limited to the encoded rules and the quality of the learned code breaker—
which depends on the training data—and thus suffer from out-of-domain generalization. In this
work we aim to generalize the synthetic data to the long tail of out of domain cases.

6 CONCLUSION AND LIMITATIONS

In this paper, we explored the potential of applying pre-trained code diffusion to the problem of
last-mile repair. These diffusion models iteratively denoise a latent representation of code and the
discrete decoding of intermediate steps resemble last-mile programming errors. Our experiments
show that injecting actual broken code into this process can cause the diffusion process to repair the
code, and that sampling these intermediate step yields data that can be used to fine-tune last-mile
repair models. In its current state, using diffusion models to generate synthetic training data shows
the most promise.

Diffusion for code has only been applied to shorter snippets with smaller models, on relatively small
datasets. Since there is no additional context, like error messages or test cases, the model might
not capture some of the semantics of the broken snippet. Scaling up the model, context and data
should further improve the potential of these models. Our findings consider the diffusion model as-
is: controlled decoding (Li et al., 2022) can help in remaining close to the source snippet. Like other
work on diffusion for text (Li et al., 2022), we note that inference is slower than auto-regressive
models. We can leverage work on both efficient diffusion models and efficient transformers to speed
up the model.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A
highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Rohan Bavishi, Harshit Joshi, José Cambronero, Anna Fariha, Sumit Gulwani, Vu Le, Ivan Radiček,
and Ashish Tiwari. Neurosymbolic repair for low-code formula languages. Proceedings of the
ACM on Programming Languages, 6(OOPSLA2):1093–1122, 2022.

Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin Vechev. Tfix: Learning to fix coding
errors with a text-to-text transformer. In International Conference on Machine Learning, pp.
780–791. PMLR, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common c lan-
guage errors by deep learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuan-Jing Huang, and Xipeng Qiu. Dif-
fusionbert: Improving generative masked language models with diffusion models. In Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics, pp. 4521–4534,
2023.

Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global
relational models of source code. In International conference on learning representations, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–
8646, 2022.

Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and Yuqing Zhang.
An empirical study on fine-tuning large language models of code for automated program repair.
In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 1162–1174. IEEE, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen, and Ivan
Radiček. Repair is nearly generation: Multilingual program repair with llms. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 5131–5140, 2023.

Harshit Joshi, Abishai Ebenezer, José Cambronero Sanchez, Sumit Gulwani, Aditya Kanade, Vu Le,
Ivan Radiček, and Gust Verbruggen. Flame: A small language model for spreadsheet formulas.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 12995–13003,
2024.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. Advances in Neural Information Processing Systems,
35:4328–4343, 2022.

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and Weizhu
Chen. Text generation with diffusion language models: A pre-training approach with continuous
paragraph denoise. In International Conference on Machine Learning, pp. 21051–21064. PMLR,
2023.

Hoang D. T. Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. Semfix: Program repair
via semantic analysis. International Conference on Software Engineering, pp. 772–781, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The strength of random
search on automated program repair. In Proceedings of the 36th International Conference on
Software Engineering, pp. 254–265, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022a.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022b. URL https://arxiv.org/abs/
2112.10752.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Mohammad Raza, and
Gust Verbruggen. Cornet: A neurosymbolic approach to learning conditional table formatting
rules by example. arXiv preprint arXiv:2208.06032, 2022.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, and Gust Verbruggen.
Codefusion: A pre-trained diffusion model for code generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 11697–11708, 2023a.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, Elnaz Nouri, Mohammad
Raza, and Gust Verbruggen. Format5: Abstention and examples for conditional table formatting
with natural language, 2023b. URL https://arxiv.org/abs/2310.17306.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys
Poshyvanyk. An empirical study on learning bug-fixing patches in the wild via neural machine
translation. ACM Transactions on Software Engineering and Methodology (TOSEM), 28(4):1–29,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https:
//proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation, 2023.

Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang.
A survey on video diffusion models. ACM Computing Surveys, 2023.

Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program repair from diagnostic
feedback. In International Conference on Machine Learning, pp. 10799–10808. PMLR, 2020.

Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning for program repair. In
International conference on machine learning, pp. 11941–11952. PMLR, 2021.

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. A survey of
learning-based automated program repair. ACM Transactions on Software Engineering and
Methodology, 33(2):1–69, 2023.

12

https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2310.17306
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SYNTHETIC DATA GENERATION USING GPT-4O

We use a few-shot, chain-of-thought prompt to generate data. The prompt is inspired from previous
work (Singh et al., 2023b) which also generates synthetic data. The prompt template is shown below.

You are an expert in {{ Language }} and generating errors in them.

<Task >
- You are given a code snippet and you need to introduce errors in it.
- The errors need to be human like.
- The errors can be either syntactic or semantic.
- For succesful completion of this task , you need to perform three steps:
1. Explanation: explain what the code snippet is doing.
2. Error Reasoning: list down what are potential errors

humans might make in writing this code.
3. Buggy Code Generation: generate the buggy version of the code.

<Input >
You are given the correct code snippet in a code block.

<Output >
You need to generate the three steps for this task.
For example ,
"""
1. Explanation:
<explanation of code >

2. Error Reasoning:
- <potential error 1>
- <potential error 2>
...

3. Buggy Code Generation:
‘‘‘
<buggy version of code >
‘‘‘
"""

<Examples >
{{ Examples }}

<Input Code >
{{Code}}

<Steps >

A.2 DIFFUSION REPAIR PROCESS SAMPLE

13

	Introduction
	Background
	Diffusion models
	Diffusion models for code

	Diffusion for repair
	Training the diffusion model
	Diffusion steps as repair operators
	Diffusion models as repair generators

	Experiments
	Experimental Setup
	Diffusion for code repair
	Diffusion for synthetic data generation

	Related work
	Conclusion and limitations
	Appendix
	Synthetic data generation using GPT-4o
	Diffusion Repair Process Sample

