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A APPENDIX

A.1 BIOACOUSTICS DATASETS

We use Xeno-Canto (XC; Vellinga & Planqué, 2015) as the source dataset for bird species classi-
fication in the audio domain. XC is a growing, user-contributed collection of Creative Commons
recordings of wild birds across the world. Our snapshot, downloaded on July 18, 2022, contains
around 675,000 files spanning 10,932 bird species. Recordings are focal (purposefully capturing
an individual’s vocalizations in natural conditions, as opposed to passively capturing all ambient
sounds), and each is annotated with a single foreground label (for the recording’s main subject) and
optionally a varying number of background labels (for other species vocalizing in the background).

For our distributionally-shifted datasets, we use multiple collections of passive (also called sound-
scape) recordings from various geographical locations. We use a 75/25 % split to obtain Dadaptt —
used to adapt the model—and Dtestt —used to evaluate the adapted model.

• Sapsucker Woods (SSW; Kahl et al., 2022a) contains soundscape recordings from the
Sapsucker Woods bird sanctuary in Ithaca, NY, USA.

• Sierra Nevada (Kahl et al., 2022b) contains soundscape recordings from the Sierra Nevada
in California, USA.

• Hawai’i (Navine et al., 2022) contains soundscape recordings from Hawai’i, USA. Some
species, particularly endangered honeycreepers, are endemic to Hawai’i and many are
under-represented in the Xeno-Canto training set.

• Powdermill (Chronister et al. (2021)) contains high-activity dawn chorus recordings cap-
tured over four days in Pennsylvania, USA.

• Caples is an unreleased dataset collected by the California Academy of Science at the
Caples Creek area in the central Californian Sierra Nevadas. Work is underway to open-
source this dataset.

• Colombia is an unreleased dataset, previously used as part of the test set for the BirdCLEF
2019 competition.

• High Sierras is an unreleased dataset, previously used as part of the test set for the Kaggle
Cornell Birdcall Identification challenge. Recordings are typically sparse, but with very
low SNR due to wind noise. Work is underway to open-source this dataset.

A.2 XENO-CANTO DATA PROCESSING

Xeno-Canto recordings range from less than 1 second to several hours long. To extract 6-second
segments we use a heuristic to identify segments with strong signal.

1. If the audio is shorter than 6 seconds, pad the recording evenly left and right using wrap-
around padding.

2. Convert the audio into a log mel-spectrogram.

3. Denoise the spectrogram:

(a) For each channel calculate the mean and standard deviation. All values that lie more
than 1.5 standard deviations from the mean are considered outliers.

(b) Calculate a robust mean and standard deviation using the inliers3.
(c) Any values that lie more than 0.75 robust standard deviations away from the robust

mean are considered signal. Shift the signal in each channel by its robust mean, and
set all noise to zero.

4. Sum all channels in the denoised spectrogram to create a signal vector.

5. Use SciPy’s find peaks cwt function to retrieve peaks, using 10 Ricker wavelets with
widths linearly spaced between 0.5 and 2 seconds

3In the calculation of the mean and variance we add 1 to the denominator to avoid division by zero in the
case that all values are considered outliers.
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Table 5: Summary of Bioacoustic Soundscape Dataset Characteristics.
‘XC/Species’ indicates the average number of Xeno-Canto training example files per species. ‘Low
Data Species’ are species with fewer than 50 training examples available. Labels per example is
computed on the peak-sliced data, while hours and number of labels refer to the original raw dataset.

Hours #Species #Labels
Labels/

Example Climate
XC/

Species
Low
data

Sapsucker 285 96 50,760 1.5 Temperate 367.9 3%
Sierra Nevada 33 56 20,147 1.9 Temperate 416.0 0%
Hawai’i 51 27 59,583 1.5 Tropical 166.3 44%
Powdermill 6 48 16,052 3.2 Temperate 360.0 0%
Caples 6 78 4,993 1.4 Temperate 334.8 10%
Colombia 8 63 1,489 1.4 Tropical 215.8 6%
High Sierras 34 19 14,494 1.2 Alpine 323.5 5%

6. Select windows of 0.6 seconds centred at each peak and discard the peak if the maximum
value in this window is smaller than 1.5 times the mean of the signal vector.

7. Keep only up to 5 peaks, with the highest corresponding values in the signal vector.

8. Select a 6 second window centred at each peak. If the window overlaps the start or begin-
ning of the boundary, shift the window accordingly.

A.3 SOUNDSCAPES DATA PROCESSING

We extract 5-second segments from soundscapes recording by cross-referencing the bounding box
labels with the same heuristic used to extract 6-second segments from XC recordings:

1. Use the procedure outlined in Appendix A.2 to extract 5-second (rather than 6-second)
windows from up to 200 (rather than 5) high-signal peaks per source file.

2. For all 5-second windows:

(a) If it does not overlap in time with any bounding box label, drop it.
(b) Otherwise, find all overlapping bounding box labels and label the window with the

union of all their labels.

A.4 METRICS

A.4.1 MAP

Define PrecX(s, c) as the generalized inverse rank of a ground-truth positive label c in an observa-
tion s, computed as:

PrecX(s, c) =
1

RankX(s, c)

RankX(s,c)∑
r=1

1[Label(s, c) ∈ C(s)]

whereX is the corpus over which we perform rankings, RankX s, c is the rank of the score for class
c in observation s in the corpus X , Label(s, r) is the ground-truth label of class r in observation s,
and C(s) is the set of ground-truth positive classes in observation s. Finally, 1[Label(s, r) ∈ C(s)]
is the indicator function for whether observation s is a ground-truth member of class c.

The mAP metric measures the per-example precision, averaged over the set E of all examples in the
dataset:

1

|E|
∑
s∈E

1

|C(s)|
∑
c∈C(s)

PrecE(s, c)
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Table 6: Grid used for tuning hyper-parameters.

Method Hyperparameter Grid

All

Learning rate { 1e-5, 1e-4, 1e-3 }
Trainable parameters { BatchNorm scale and bias, all }
Use of dropout {True, False }
Use source BN statistics {True, False }
Learning rate cosine decay {True, False }

SHOT (Liang et al., 2020) Pseudo-labels weight β {0., 0.3, 0.6, 0.9}
Pseudo-labelling Lee et al. (2013) Confidence threshold {0., 0.5, 0.9, 0.95}

Dropout Student Softness weight α {0.1, 1.0}
Pseudo-label update frequency {Every iteration, Every epoch}

NOTELA
k nearest neighbors {5, 10}
Softness weight α {0.1, 1.0}
Pseudo-label update frequency {Every iteration, Every epoch}

A.4.2 CMAP

Class-wise mean average precision (cmAP) is defined as:

1

|C|
∑
c∈C

1

|c ∈ E|
∑
s∈E

PrecC(s, c)

Here |c ∈ E| denotes the total number of ground-truth positive examples of class c in the dataset.
Notice that in this case, the precision ranking is over the logits for each target class, instead of
ranking the logits in a single observation.

A.5 HYPERPARAMETER VALIDATION

As mentioned in section 5, we reproduce all methods and ensure fairness of comparisons by (i) using
the same pre-trained models and (ii) re-tuning each method’s hyperparameters. All experiments are
carried out with a batch size set to 64 (both audio and vision). Table 6 displays the grids used
for hyper-parameter tuning (also both for audio and vision tasks). Note that to reduce the load of
hyperparameters to tune in NOTELA, we make the design choice of using λ = α, which effectively
removes one degree of freedom.

A.6 PROOF OF EQUATION 3

We hereby provide the proof, as well as a more formal justification for the updates given in Equa-
tion 3. We start by restating the objective we want to minize:

min
y1:N

Tr

− 1

N

N∑
i=1

y>i log(pi) +
α

N

N∑
i=1

y>i log(yi)−
λ

N

N∑
i=1

N∑
j=1

wij y
>
i yj


s.t 1>yi = 1, yi ≥ 0 . (4)

General case. Let us consider an easier problem, in which the Laplacian term has been linearized
around the current solution yi = pi,

min
y1:N

Tr

− 1

N

N∑
i=1

y>i log(pi) +
α

N

N∑
i=1

y>i log(yi)−
λ

N

N∑
i=1

N∑
j=1

wij y
>
i pj


s.t 1>yi = 1 . (5)
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Table 7: Top-1 accuracy, averaged over 5 random seeds, along with 95% confidence interval for
each corruption in CIFAR-10-C.

Corruption Baseline AdaBN Pseudo-Labelling SHOT TENT NOTELA

brightness 91.28± 0.0 92.2± 0.03 92.55± 0.19 92.67± 0.06 92.58± 0.12 92.96± 0.14
contrast 52.84± 0.0 87.3± 0.02 89.73± 1.26 89.22± 0.08 89.34± 0.35 90.23± 0.3
defocus 53.16± 0.0 87.4± 0.09 89.41± 0.21 88.42± 0.08 89.17± 0.09 89.38± 0.23
elastic 73.28± 0.0 77.02± 0.1 80.08± 0.43 78.97± 0.08 79.74± 0.21 79.98± 0.19
fog 74.08± 0.0 85.92± 0.04 88.37± 0.51 87.34± 0.16 87.95± 0.16 88.17± 0.18
frost 59.6± 0.0 82.45± 0.05 85.18± 0.6 84.62± 0.17 85.28± 0.2 85.4± 0.22
frosted 46.36± 0.0 65.38± 0.03 71.29± 0.81 70.75± 0.12 71.77± 0.18 71.57± 0.32
gaussian 28.16± 0.0 73.31± 0.03 78.72± 0.53 76.51± 0.12 77.13± 0.12 77.35± 0.05
impulse 28.04± 0.0 64.36± 0.05 70.9± 0.93 68.86± 0.14 70.05± 0.27 70.18± 0.17
jpeg 69.12± 0.0 72.57± 0.06 80.37± 0.21 75.86± 0.15 77.26± 0.41 77.71± 0.1
motion 65.16± 0.0 86.29± 0.05 88.1± 0.54 87.94± 0.22 88.38± 0.15 88.56± 0.14
pixelate 41.84± 0.0 80.7± 0.04 85.77± 0.45 83.62± 0.28 85.14± 0.36 85.5± 0.2
shot 34.52± 0.0 75.68± 0.07 81.24± 0.59 79.7± 0.12 80.8± 0.05 81.07± 0.13
snow 75.12± 0.0 82.88± 0.03 86.02± 0.88 85.14± 0.14 86.42± 0.2 86.66± 0.18
zoom 57.36± 0.0 88.02± 0.05 90.09± 0.46 89.67± 0.19 90.15± 0.22 90.38± 0.13

We purposefully omitted the yi ≥ 0 constraint, which will be satisfied later on by our solution to
Equation 4. The Lagrangian of this problem is

L(y1:N ) =Tr

− 1

N

N∑
i=1

y>i log(pi) +
α

N

N∑
i=1

y>i log(yi)−
λ

N

N∑
i=1

N∑
j=1

wij y
>
i pj

 (6)

+
1

N

N∑
i=1

γi(1
>yi − 1) , (7)

and the gradient of this Lagrangian with respect to yi is

N.∇yiL = − log(pi) + α(log(yi) + 1)− λ
N∑
j=1

wijpj + γi1 . (8)

Solving for yi yields

yi = exp

(
−α+ γi

α

)
exp

λ

α

N∑
j=1

wijpj

� p
1/α
i . (9)

Now γi is chosen such that the constraint y>i 1 = 1 is satisfied, resulting in

yi ∝ p
1/α
i � exp

λ

α

N∑
j=1

wijpj

 . (10)

Concavity. Let W = (wij) ∈ RN×N be the matrix of affinity weights. An additional assumption
on W allows a more formal justification of the linearization of the Laplacian term. Specifically, we
can justify that if W +W> is positive semi-definite, then the last term in Equation 4 is concave.

To show this rewrite Tr
(∑N

i=1

∑N
j=1 wij y

>
i yj

)
as 1>(W � Y >Y )1 where Y = (vect(yi)),

which is in RN×C or RN×2C for the single- and multi-label case respectively. The Hessian of this
function isW ⊗ I+W> ⊗ I, whose eigenvalues are multiplicities of those ofW +W>.

Hence equation 4 can be solved by a concave-convex procedure (CCP; Yuille & Rangarajan, 2003;
Ziko et al., 2018; Boudiaf et al., 2022), which is suited to cases in which one part of the objective is
convex (the two first terms in our case) and the other is concave (the Laplacian term). CCP proceeds
by minimizing a sequence of pseudo-bounds, i.e., an upper bound that is tight at the current solution,
obtained by linearizing the concave part of the objective at the current solution. Therefore, our

17



Under review as a conference paper at ICLR 2023

100 200 300 400 500 600
Adaptation steps

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

m
AP

NOTELA
Dropout Student
Source

Adaptation pseudo-labels 
Validation

Figure 3: NOTELA improves pseudo-label quality over the Source model’s predictions and Dropout
Student approach, as evidenced by the evolution of mAP (computed using pseudo-labels and
ground-truth annotations) over adaptation steps (solid curves) on the Sierra-Nevada dataset (Kahl
et al., 2022b). This directly translates into higher mAP on the test set (dashed curves).

proposed updates from Equation 3 can be interpreted as the first iteration of this procedure. Starting
from the initial solution, y(0)

i = pi, unrolling the CCP procedure would consist of performing the
following updates until convergence:

y
(t)
i ∝ p

1/α
i � exp

λ

α

N∑
j=1

wijy
(t−1)
j

 . (11)

Affinity weights. Let A be the adjacency matrix of the mutual k-nearest neighbours graph, and
D the diagonal matrix with the node degrees (i.e., (D)ii is the number of mututal neighbours for
sample i). We know that A +D is positive semi-definite (Desai & Rao, 1994) and hence matrix
W = D−

1
2 (A + D)D−

1
2 is also positive semi-definite. Note that this is equivalent to the case

where wij is set to the reciprocal of the number of mutual neighbours, and wii = 1.

The terms wii act as an L2 regularizer on the values yi. Note that in our experiments we deviate
from the theory and set wii = 0 to have better control over the regularization of yi.

A.7 ADDITIONAL RESULTS

CIFAR-10-C per-corruption results. We provide the per-corruption results on CIFAR-10-C in
Table 7, as well as the 95% confidence intervals.

Table 8: NOTELA still works with
lower batch size.

Batch size mAP cmAP

8 72.8 50.9
16 76.4 52.9
32 75.1 50.9
64 75.0 50.9

Comparison of pseudo-labels. We provide in Figure 3
additional evidence that our NOTELA(LD) yields more
accurate and stable pseudo-labels on the adaptation set
Dadapt
t than Dropout Student (DS), which directly trans-

lates into better validation performances.

Sensitivity to batch size. Our results presented in the
main paper used a batch size of 64 by default. Con-
sidering the relevance of the SFDA setting for resource-
constrained practitioners, we study the sensibility of our
method to changes in batch size. Our rational for study-
ing this particular axis is that GPU memory can be an
important bottleneck for individual practitioners and non-
specialized research labs. We present results in Table 8, and show that NOTELA does not suffer
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from using smaller batch sizes. As a matter of fact, it even seems that reducing batch size down
to 16 provides a noticeable boost in performances. We hypothesize that using smaller batch size
implicitly injects additional noise during the student step, which may help up to a certain extent.
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