PANOM: AUTOMATIC HYPER-PARAMETER TUNING FOR INVERSE PROBLEMS

Tianci Liu?, Quan Zhang?, and Qi Lei3

1Purdue University, 2Michigan State University, 3Princeton University

Inverse Problems as a Bilevel optimization task Experimental Results: Qualitative Comparison

Many existing methods for inverse problems have objectives of the form

zZ = argmin Lrecon(G(Z), y) + 6Lreg<z>, €T = G(%), (1) —g —
<
= 5
for some type of loss Lrecon and penalty Lreg. Recent works used generative priors as regularizers and achieved state-of-the-art S ‘g
performances using normalizing flows [1, 2]. O
Empirically, the choice of hyper-parameter £ is critical, but without validation data, automatic hyper-parameter tuning methods cannot >
be applied. We propose a new criterion by formulating it as a bilevel optimization task. Let R(3, &) := Q1 (PSNR(&, &M-F)) + (1 — RS,
a)@Qao(]|z]| | éMLEH) where ()1 and ()o are two probability density functions estimated by training samples of prior G. We define Z
IMax R(ﬁ, .’,AU), s.t., Tr — arginax Lrecon(G(Z), y) + BLreg(Z). (2)
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We solve Eqgn (2) through a zeroth optimization by using maximum likelihood estimate given by 3 = 0. Define

Ours
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1= D 1(PSNR(@, #ME) > PSNR(&,, &LE)) — 0.5, 7 1= | 2[|/A(||2ME) — 1. 3
n=1

we propose PSNR And NOrm Matching (PANOM) shown in Algorithm 1. Intuitively, 4 and 9 encourage the recovery to have a
reasonable PSNR and ratio ||z||5/||zM-E|| with high probability estimated by empirical Q; and Qs.

Algorithm 1 PANOM based automated hyper-parameter tuning for inverse problems

Input: data y, prior ()1, (Q2, h, and G, (i, learning rate 77, and maximum number of iterations 7.

AR . _MLE, ~MLE\ _ . :
Initialize 2 = 0, 3 = Bini; estimate 27 (2" ) with maximum = steps.

while iteration number not reaching 7" do
Inner-loop steps: update z by K steps of gradient ascent of logp(y | G(2)) + S log pa(G(2))
Outer-loop step: update S with learning rate 7 by

B Bx(14+nA), where A = asign(y1)7i + (1 — a)sign(y2)72
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Test set examples Out-of-distribution examples

Fig. 3: Result of denoising Gaussian noise on CelebA-HQ faces and out-of-distribution images. For grid search we show recovered
images achieving the highest PSNR(x, x).

end while
——a=.5 ——a=0 a=1 # (grid) = 5(9) # (grid) = 10(14) - # (grid) = 15(19)
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In this work, we propose PANOM, an automated hyper-parameter tuning strategy for inverse problems. Our method shows compa-
rable recovery performance with manual grid search, but requires no human guidance and is much more efficient and convenient.
We also conjecture that the proposed bilevel optimization starting from small 5 will facilitate the optimization procedure, and we

leave the theoretical understanding to future studies.

Fig. 2: Averages and standard errors of recovered PSNR(x, ) on test and OOD examples, best results are in bold. Numbers
9,14, 19 in parentheses in #(grids) are total grid numbers on NCS task. Computational cost of Grid Search is %#(grids)

times of our method.
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