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ABSTRACT

In real-world multi-agent reinforcement learning (MARL) applications, agents
may not have perfect state information (e.g., due to inaccurate measurement or
malicious attacks), which challenges the robustness of agents’ policies. Though
robustness is getting important in MARL deployment, little prior work has studied
state uncertainties in MARL, neither in problem formulation nor algorithm design.
Motivated by this robustness issue, we study the problem of MARL with state
uncertainty in this work. We provide the first attempt to the theoretical and empirical
analysis of this challenging problem. We first model the problem as a Markov Game
with state perturbation adversaries (MG-SPA), and introduce Robust Equilibrium
as the solution concept. We conduct a fundamental analysis regarding MG-SPA
and give conditions under which such an equilibrium exists. Then we propose
a robust multi-agent Q-learning (RMAQ) algorithm to find such an equilibrium,
with convergence guarantees. To handle high-dimensional state-action space, we
design a robust multi-agent actor-critic (RMAAC) algorithm based on an analytical
expression of the policy gradient derived in the paper. Our experiments show
that the proposed RMAQ algorithm converges to the optimal value function; our
RMAAC algorithm outperforms several MARL methods that do not consider state
uncertainty in several multi-agent environments.

1 INTRODUCTION

Figure 1: Motivation of con-
sidering state uncertainty in
RL.

Reinforcement Learning (RL) recently has achieved remarkable suc-
cess in many decision-making problems, such as robotics, autonomous
driving, traffic control, and game playing (Espeholt et al., 2018; Sil-
ver et al., 2017; Mnih et al., 2015; Chen et al., 2022b). However, in
real-world applications, the agent may face state uncertainty in that
accurate information about the state is unavailable. This uncertainty
may be caused by unavoidable sensor measurement errors, noise, miss-
ing information, communication issues, and/or malicious attacks (Su
et al., 2023; Li et al., 2023). A policy not robust to state uncertainty
can result in unsafe behaviors and even catastrophic outcomes. For
instance, consider the path planning problem shown in Figure 1, where the agent (green ball) observes
the position of an obstacle (red ball) through sensors and plans a safe (no collision) and shortest path
to the goal (black cross). In Figure 1-(a), the agent can observe the true state s (red ball) and choose
an optimal and collision-free curve a⇤ (in red) tangent to the obstacle. In comparison, when the agent
can only observe the perturbed state s̃ (yellow ball) caused by inaccurate sensing or state perturbation
adversaries (Figure 1-(b)), it will choose a straight line ã (in blue) as the shortest and collision-free
path tangent to s̃. However, by following ã, the agent actually crashes into the obstacle. To avoid
collision in the worst case, one can construct a state uncertainty set that contains the true state based
on the observed state. Then the robustly optimal path under state uncertainty becomes the yellow
curve ã⇤ tangent to the uncertainty set, as shown in Figure 1-(c).
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In single-agent RL, imperfect information about the state has been studied in the literature of
partially observable Markov decision process (POMDP) (Kaelbling et al., 1998). However, as
pointed out in recent literature (Huang et al., 2017; Kos & Song, 2017; Yu et al., 2021b; Zhang
et al., 2020a), the conditional observation probabilities in POMDP cannot capture the worst-case
(or adversarial) scenario, and the learned policy without considering state uncertainties may fail
to achieve the agent’s goal. Similarly, the existing literature of decentralized partially observable
Markov decision process (Dec-POMDP) (Oliehoek et al., 2016) does not provide theoretical analysis
or algorithmic tools for MARL under worst-case state uncertainties either. Dealing with state
uncertainty becomes even more challenging for Multi-Agent Reinforcement Learning (MARL),
where each agent aims to maximize its own total return during the interaction with other agents and
the environment. Even one agent receives misleading state information, its action affects both its
own return and the other agents’ returns (Zhang et al., 2020b) and may result in catastrophic failure.

Figure 2: Motivation of considering state uncer-
tainty in MARL.

To better illustrate the effect of state uncertainty
in MARL, the path planning problem in Figure 1
is modified such that two agents are trying to
reach their individual goals without collision (a
penalty or negative reward applied). When the
blue agent knows the true position sg0 (the sub-
script denotes time, which starts from 0) of the
green agent, it will get around the green agent
to quickly reach its goal without collision. How-
ever, in Figure 2-(a), when the blue agent can
only observe the perturbed position s̃g0 (yellow
circle) of the green agent, it would choose a
straight line that it thought safe (Figure 2-(a1)),
which eventually leads to a crash (Figure 2-(a2)).
In Figure 2-(b), the blue agent adopts a robust
trajectory by considering a state uncertainty set
based on its observation. As shown in Figure 2-

(b1), there is no overlap between (sb0, s̃
g
0) or (sbT , s̃

g
T ). Since the uncertainty sets centered at s̃g0 and

s̃gT (the dotted circles) include the true state of the green agent, this robust trajectory also ensures
no collision between (sb0, s

g
0) or (sbT , s

g
T ). The blue agent considers the interactions with the green

agent to ensure no collisions at any time. Therefore, it is necessary to consider state uncertainty
in a multi-agent setting where the dynamics of other agents are considered. More related work is
discussed in Appendix A.

In this work, we develop a robust MARL framework that accounts for state uncertainty. Specifically,
we model the problem of MARL with state uncertainty as a Markov Game with state perturbation
adversaries (MG-SPA), in which each agent is associated with a state perturbation adversary. One
state perturbation adversary always plays against its corresponding agent by preventing the agent
from knowing the true state accurately. We analyze the MARL problem with adversarial or worst-
case state perturbations. Compared to single-agent RL, MARL is more challenging due to the
interactions among agents and the necessity of studying equilibrium policies (Nash, 1951; McKelvey
& McLennan, 1996; Slantchev, 2008; Daskalakis et al., 2009; Etessami & Yannakakis, 2010). The
contributions of this work are summarized as follows.

Contributions: To the best of our knowledge, this work is the first attempt to systematically
characterize state uncertainties in MARL and provide both theoretical and empirical analysis. First,
we formulate the MARL problem with state uncertainty as a Markov Game with state perturbation
adversaries (MG-SPA). We define the solution concept of the game as a Robust Equilibrium, where
all players including the agents and the adversaries use policies that no one has an incentive to
deviate. In an MG-SPA, each agent not only aims to maximize its return when considering other
agents’ actions but also needs to act against all state perturbation adversaries. Therefore, a Robust
Equilibrium policy of one agent is robust to the state uncertainties. Second, we study its fundamental
properties and prove the existence of a Robust Equilibrium under certain conditions. We develop a
robust multi-agent Q-learning (RMAQ) algorithm with convergence guarantee, and an actor-critic
(RMAAC) algorithm for computing a robust equilibrium policy in an MG-SPA. Finally, we conduct
experiments in a two-player game to validate the convergence of the proposed Q-learning method
RMAQ. We show that our RMAQ and RMAAC algorithms can learn robust policies that outperform
baselines under state perturbations in multi-agent environments.
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2 METHODOLOGY
2.1 MARKOV GAME WITH STATE PERTURBATION ADVERSARIES (MG-SPA)

Preliminary: A Markov Game (MG) G is defined as (N , S, {Ai}i2N , {ri}i2N , p, �), where N
is a set of N agents, S is the state space, Ai is the action space of agent i (Littman, 1994; Owen,
2013).� 2 [0, 1) is the discounting factor. A = A1 ⇥ · · · ⇥ AN is the joint action space. The
state transition p : S ⇥ A ! �(S) is controlled by the current state and joint action, where �(S)
represents the set of all probability distributions over the joint state space S. Each agent has a
reward function, ri : S ⇥ A ! R. At time t, agent i chooses its action ait according to a policy
⇡i : S ! �(Ai).

Notations: We use a tuple G̃ := (N ,M, S, {Ai}i2N , {B ĩ}ĩ2M, {ri}i2N , p, f, �) to denote a
Markov game with state perturbation adversaries (MG-SPA). In an MG-SPA, we introduce an
additional set of adversaries M = {1̃, · · · , Ñ} to a Markov game (MG) with an agent set N . Each
agent i is associated with an adversary ĩ and a true state s 2 S if without adversarial perturbation.
Each adversary ĩ is associated with an action bĩ 2 B ĩ and the same state s 2 S as agent i. We define
the adversaries’ joint action as b = (b1̃, ..., bÑ ) 2 B, B = B1̃⇥ · · ·⇥BÑ . At time t, adversary ĩ can
manipulate the corresponding agent i’s state. Once adversary ĩ gets state st, it chooses an action bĩt
according to a policy ⇢ĩ : S ! �(B ĩ). According to a perturbation function f , adversary ĩ perturbs
state st to s̃it = f(st, bĩt) 2 S. We use s̃t = (s̃1t , · · · , s̃Nt ) to denote a joint perturbed state and use
the notation f(st, bt) = s̃t for vectored perturbation function. We denote the adversaries’ joint policy
as ⇢(bt|st) =

Q
ĩ2M ⇢ĩ(bĩt|st). The definitions of agent action and agents’ joint action are the same

as their definitions in an MG. Agent i chooses its action ait with s̃it according to a policy ⇡i(ait|s̃it),
⇡i : S ! �(Ai). We denote the agents’ joint policy as ⇡(at|s̃t) =

Q
i2N ⇡(ait|s̃it). Agents execute

the agents’ joint action at, then at time t+ 1, the joint state st turns to the next state st+1 according
to a transition probability function p : S ⇥ A ! �(S). Each agent i gets a reward according to a
state-wise reward function rit : S⇥A! R. Each adversary ĩ gets an opposite reward�rit. In an MG,
the transition probability function and reward function are considered as the model of the game. In an
MG-SPA, the perturbation function f is also considered as a part of the model, i.e., the model of an
MG-SPA consists of f, p and {ri}i2N . To incorporate realistic settings into our analysis, we restrict
the power of each adversary, which is a common assumption for state perturbation adversaries in the
RL literature (Zhang et al., 2020a; 2021; Everett et al., 2021). We define perturbation constraints
s̃i 2 Bdist(✏, s) ⇢ S to restrict the adversary ĩ to perturb a state only to a predefined set of states.
Bdist(✏, s) is a ✏-radius ball measured in metric dist(·, ·), which is often chosen to be the l-norm
distance: dist(s, s̃i) = ks � s̃ikl. We omit the subscript dist in the following context. For each
agent i, it attempts to maximize its expected sum of discounted rewards, i.e. its objective function
J i(⇡, ⇢) = E

⇥P1
t=1 �

t�1rit(st, at, bt)|s1 = s, at ⇠ ⇡(·|s̃t), bt ⇠ ⇢(·|st)
⇤
. Each adversary ĩ aims

to minimize the objective function of agent i and is considered as receiving an opposite reward of
agent i, which also leads to a value function �J i(⇡, ⇢) for adversary ĩ. We further define the value
functions in an MG-SPA as follows:
Definition 2.1. (Value Functions) v⇡,⇢ = (v⇡,⇢,1, · · · , v⇡,⇢,N ), q⇡,⇢ = (q⇡,⇢,1, · · · , q⇡,⇢,N )
are defined as the state-value function or value function for short, and the action-value
function, respectively. The ith element v⇡,⇢,i and q⇡,⇢,i are defined as q⇡,⇢,i(s, a, b) =
E
⇥P1

t=1 �
t�1rit|s1 = s, a1 = a, b1 = b, at ⇠ ⇡(·|s̃t), bt ⇠ ⇢(·|st), s̃t = f(st, bt)

⇤
, v⇡,⇢,i(s) =

E
⇥P1

t=1 �
t�1rit|s1 = s, at ⇠ ⇡(·|s̃t), bt ⇠ ⇢(·|st), s̃t = f(st, bt)

⇤
, respectively.

We name an equilibrium for an MG-SPA as a Robust Equilibrium (RE) and define it as follows:

Definition 2.2. (Robust Equilibrium) Given a Markov game with state perturbation adversaries G̃, a
joint policy d⇤ = (⇡⇤, ⇢⇤) where ⇡⇤ = (⇡1

⇤, · · · ,⇡N
⇤ ) and ⇢⇤ = (⇢1̃⇤, · · · , ⇢Ñ⇤ ) is said to be in robust

equilibrium, or a robust equilibrium, if and only if, for any i 2 N , s 2 S, v(⇡
�i
⇤ ,⇡i

⇤,⇢
�ĩ
⇤ ,⇢ĩ),i(s) �

v(⇡
�i
⇤ ,⇡i

⇤,⇢
�ĩ
⇤ ,⇢ĩ

⇤),i(s) � v(⇡
�i
⇤ ,⇡i,⇢�ĩ

⇤ ,⇢ĩ
⇤),i(s) for all ⇡i and ⇢ĩ, where �i/� ĩ represents the indices

of all agents/adversaries except agent i/ adversary ĩ.

We seek to characterize the optimal value v⇤(s) = (v1⇤(s), · · · , vN⇤ (s)) defined by
vi⇤(s) = max⇡i min⇢ĩ v(⇡

�i
⇤ ,⇡i,⇢�ĩ

⇤ ,⇢ĩ),i(s). For notation convenience, we use vi(s) to denote
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v(⇡
�i
⇤ ,⇡i,⇢�ĩ

⇤ ,⇢ĩ),i(s). The Bellman Equations of an MG-SPA are in the forms of (1) and (2). The
Bellman Equation is a recursion for expected rewards, which helps us identifying or finding an RE.

qi⇤(s, a, b) = ri + �
X

s02S

p(s0|s, a, b)max
⇡i

min
⇢ĩ

E
⇥
qi⇤(s

0, a0, b0)|a0 ⇠ ⇡(·|s̃), b0 ⇠ ⇢(·|s)
⇤
, (1)

vi⇤(s) = max
⇡i

min
⇢ĩ

E
"
X

s02S

p(s0|s, a, b)[ri(s, a, b) + �vi⇤(s
0)]|a ⇠ ⇡(·|s̃), b ⇠ ⇢(·|s)

#
, (2)

for all i 2 N , where ⇡ = (⇡i,⇡�i
⇤ ), ⇢ = (⇢ĩ, ⇢�ĩ

⇤ ), and ⇡�i
⇤ , ⇢�ĩ

⇤ are in robust equilibrium for G̃. We
prove them in the following subsection.

2.2 THEORETICAL ANALYSIS OF MG-SPA
Vector Notations: To make the analysis easy to read, we follow and extend the vector notations in
Puterman (2014). Let V denote the set of bounded real valued functions on S with component-wise
partial order and norm kvik := sups2S |vi(s)|. Let VM denote the subspace of V of Borel measurable
functions. For discrete state space, all real-valued functions are measurable so that V = VM . But
when S is a continuum, VM is a proper subset of V . Let v = (v1, · · · , vN ) 2 V be the set of bounded
real valued functions on S⇥· · ·⇥S, i.e. the across product of N state set and norm kvk := supj kvjk.
For discrete S, let |S| denote the number of elements in S. Let ri denote a |S|-vector, with sth
component ri(s) which is the expected reward for agent i under state s. And P the |S|⇥ |S| matrix
with (s, s0)th entry given by p(s0|s). We refer to rid as the reward vector of agent i, and Pd as the
probability transition matrix corresponding to a joint policy d = (⇡, ⇢). rid + �Pdvi is the expected
total one-period discounted reward of agent i, obtained using the joint policy d = (⇡, ⇢). Let z as
a list of joint policy {d1, d2, · · · } and P 0

z = I , we denote the expected total discounted reward of
agent i using z as viz =

P1
t=1 �

t�1P t�1
z ridt

= rid1
+ �Pd1r

i
d2

+ · · ·+ �n�1Pd1 · · ·Pdn�1r
i
tn + · · · .

Now, we define the following minimax operator which is used in the rest of the paper.
Definition 2.3. (Minimax Operator) For vi 2 V, s 2 S, we define the nonlinear operator Li on
vi(s) by Livi(s) := max⇡i min⇢ĩ [rid + �Pdvi](s), where d := (⇡�i

⇤ ,⇡i, ⇢�ĩ
⇤ , ⇢ĩ). We also define

the operator Lv(s) = L(v1(s), · · · , vN (s)) = (L1v1(s), · · · , LNvN (s)). Then Livi is a |S|-vector,
with sth component Livi(s).

For discrete S and bounded ri, it follows from Lemma 5.6.1 in Puterman (2014) that Livi 2 V for all
vi 2 V . Therefore Lv 2 V for all v 2 V. And in this paper, we consider the following assumptions
in Markov games with state perturbation adversaries.
Assumption 2.4. (1) Bounded rewards; |ri(s, a, b)| M i < M <1 for all i 2 N , a 2 A, b 2 B

and s 2 S. (2) Finite state and action spaces; all S,Ai, B ĩ are finite. (3) Stationary transition
probability and reward functions. (4) f is a bijection when s is fixed. (5) All agents share one common
reward function.

The next two propositions characterize the properties of the minimax operator L and space V. They
have been proved in Appendix B.2.
Proposition 2.5. (Contraction mapping) Suppose 0  � < 1, and Assumption 2.4 holds. Then L is a
contraction mapping on V.
Proposition 2.6. (Complete Space) V is a complete normed linear space.
Theorem 2.7. Suppose 0  � < 1 and Assumption 2.4 holds. (1) (Solution of Bellman Equation) A
value function v⇤ 2 V is an optimal value function if for all i 2 N , the point-wise value function
vi⇤ 2 V satisfies the corresponding Bellman Equation (2), i.e. vi⇤ = Livi⇤ for all i 2 N . (2) (Existence
and uniqueness of optimal value function) There exists a unique v⇤ 2 V satisfying Lv⇤ = v⇤, i.e.
for all i 2 N , Livi⇤ = vi⇤. (3) (Robust Equilibrium (RE) and optimal value function) A joint policy
d⇤ = (⇡⇤, ⇢⇤), where ⇡⇤ = (⇡1

⇤, · · · ,⇡N
⇤ ) and ⇢⇤ = (⇢1̃⇤, · · · , ⇢Ñ⇤ ), is a robust equilibrium if and

only if vd⇤ is the optimal value function. (4) (Existence of Robust Equilibrium) There exists a mixed
RE for an MG-SPA.

In Theorem 2.7, we show the fundamental theoretical analysis of an MG-SPA. In (1), we show
that an optimal value function of an MG-SPA satisfies the Bellman Equations by applying the
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Squeeze theorem [Theorem 3.3.6, Sohrab (2003)]. Theorem 2.7-(2) shows that the unique solution of
the Bellman Equation exists, a consequence of the fixed-point theorem (Smart, 1980). Therefore,
the optimal value function of an MG-SPA exists under Assumption 2.4. By introducing (3), we
characterize the relationship between the optimal value function and a Robust Equilibrium. However,
(3) does not imply the existence of an RE. To this end, in (4), we formally establish the existence
of RE when the optimal value function exists. We formulate a 2N -player Extensive-form game
(EFG) (Osborne & Rubinstein, 1994; Von Neumann & Morgenstern, 2007) based on the optimal
value function such that its Nash Equilibrium (NE) is equivalent to an RE of the MG-SPA. The full
proof of Theorem 2.7 is in Appendix B.3.

Though the existence of NE in a stochastic game with perfect information has been investigated
(Nash, 1951; Wald, 1945), it is still an open and challenging problem when players have no global
state or partially observable information (Hansen et al., 2004; Yang & Wang, 2020). There is a bunch
of literature developing algorithms trying to find the NE in Dec-POMDP or partially observable
stochastic game (POSG), and conducting algorithm analysis assuming that NE exists (Chades et al.,
2002; Hansen et al., 2004; Nair et al., 2002) without proving the conditions for existence of NE. Once
established the existence of RE, we design algorithms to find it. We first develop a robust multi-agent
Q-learning (RMAQ) algorithm with convergence guarantee. We then propose a robust multi-agent
actor-critic (RMAAC) algorithm to handle the case with high-dimensional state-action spaces.
2.3 ROBUST MULTI-AGENT Q-LEARNING (RMAQ) ALGORITHM

By solving the Bellman Equation, we are able to get the optimal value function of an MG-
SPA as shown in Theorem 2.7. We therefore develop a value iteration (VI)-based method
called robust multi-agent Q-learning (RMAQ) algorithm. Recall the Bellman equation using
action-value function in (1), the optimal action-value q⇤ satisfies qi⇤(s, a, b) := ri(s, a, b) +
�E

⇥P
s02S p(s0|s, a, b)qi⇤(s0, a0, b0)|a0 ⇠ ⇡⇤(·|s̃0), b0 ⇠ ⇢⇤(·|s0)

⇤
. As a consequence, the tabular-

setting RMAQ update can be written as below,

qit+1(st, at, bt) = (1� ↵t)q
i
t(st, at, bt)+ (3)

↵t

2

4rit(st, at, bt) + �
X

at+12A

X

bt+12B

⇡qt
⇤,t(at+1|s̃t+1)⇢

qt
⇤,t(bt+1|st+1)q

i
t(st+1, at+1, bt+1)

3

5 ,

where (⇡qt
⇤,t, ⇢

qt
⇤,t) is an NE policy by solving the 2N -player Extensive-form game (EFG) based on a

payoff function (q1t , · · · , qNt ,�q1t , · · · ,�qNt ). The joint policy (⇡qt
⇤,t, ⇢

qt
⇤,t) is used in updating qt. All

related definitions of the EFG (q1t , · · · , qNt ,�q1t , · · · ,�qNt ) are introduced in Appendix B.1. How
to solve an EFG is out of the scope of this work, algorithms to do this exist in the literature (Čermák
et al., 2017; Kroer et al., 2020). Note that, in RMAQ, each agent’s policy is related to not only its own
value function, but also other agents’ value function. This multi-dependency structure considers the
interactions between agents in a game, which is different from the the Q-learning in single-agent RL
that considers optimizing its own value function. Meanwhile, establishing the convergence of a multi-
agent Q-learning algorithm is also a general challenge. Therefore, we try to establish the convergence
of (3) in Theorem 2.9, motivated from Hu & Wellman (2003). Due to space limitation, in Appendix
C.2, we prove that RMAQ is guaranteed to get the optimal value function q⇤ = (q1⇤, · · · , qN⇤ ) by
updating qt = (q1t , · · · , qNt ) recursively using (3) under Assumptions 2.8.
Assumption 2.8. (1) State and action pairs have been visited infinitely often. (2) The learning
rate ↵t satisfies the following conditions: 0  ↵t < 1,

P
t�0 ↵

2
t  1; if (s, a, b) 6= (st, at, bt),

↵t(s, a, b) = 0. (3) An NE of the 2N -player EFG based on (q1t , · · · , qNt ,�q1t , · · · ,�qNt ) exists at
each iteration t.
Theorem 2.9. Under Assumption 2.8, the sequence {qt} obtained from (3) converges to {q⇤} with
probability 1, which are the optimal action-value functions that satisfy Bellman equations (1) for all
i = 1, · · · , N .

Assumption 2.8-(1) is a typical ergodicity assumption used in the convergence analysis of Q-learning
(Littman & Szepesvári, 1996; Hu & Wellman, 2003; Szepesvári & Littman, 1999; Qu & Wierman,
2020; Sutton & Barto, 1998). And for Q-learning algorithm design papers that the exploration
property is not the main focus, this assumption is also a common assumption (Fujimoto et al., 2019).
For exploration strategies in RL (McFarlane, 2018), researchers use ✏-greedy exploration (Gomes &
Kowalczyk, 2009), UCB (Jin et al., 2018; Azar et al., 2017), Thompson sampling (Russo et al., 2018),
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Boltzmann exploration (Cesa-Bianchi et al., 2017), etc. And for assumption 2.8-(3), researchers
have found that the convergence is not necessarily so sensitive to the existence of NE for the stage
games during training (Hu & Wellman, 2003; Yang et al., 2018). In particular, under Assumption 2.4,
an NE of the 2N -player EFG exists, which has been proved in Lemma B.6 in Appendix B.1. We
also provide an example in the experiment part (the two-player game) where assumptions are indeed
satisfied, and our RMAQ algorithm successfully converges to the RE of the corresponding MG-SPA,

2.4 ROBUST MULTI-AGENT ACTOR-CRITIC (RMAAC) ALGORITHM

According to the above descriptions of a tabular RMAQ algorithm, each learning agent has to
maintain N action-value functions. The total space requirement is N |S||A|N |B|N if |A1| = · · · =
|AN |, |B1| = · · · = |BN |. This space complexity is linear in the number of joint states, polynomial
in the number of agents’ joint actions and adversaries’ joint actions, and exponential in the number of
agents. The computational complexity is mainly related to algorithms to solve an Extensive-form
game (Čermák et al., 2017; Kroer et al., 2020). However, even for general-sum normal-form games,
computing an NE is known to be PPAD-complete, which is still considered difficult in game theory
literature (Daskalakis et al., 2009; Chen et al., 2009; Etessami & Yannakakis, 2010). These properties
of the RMAQ algorithm motivate us to develop an actor-critic method to handle high-dimensional
space-action spaces. Because actor-critic methods can incorporate function approximation into the
update (Konda & Tsitsiklis, 1999).

We consider each agent i’s policy ⇡i is parameterized as ⇡✓i for i 2 N , and the adversary’s policy
⇢ĩ is parameterized as ⇢!i . We denote ✓ = (✓1, · · · , ✓N ) as the concatenation of all agents’ policy
parameters, ! has the similar definition. For simplicity, we omit the subscript ✓i,!i, since the
parameters can be identified by the names of policies. Note that we here parameterize all policies
⇡i, ⇢ĩ as deterministic policies. Then the value function vi(s) under policy (⇡, ⇢) satisfies v⇡,⇢,i(s) =
Ea⇠⇡,b⇠⇢

⇥P
s02S p(s0|s, a, b)[ri(s, a, b) + �v⇡,⇢,i(s0)]

⇤
. We establish the general policy gradient

with respect to the parameter ✓,! in the following theorem. Then we propose our robust multi-
agent actor-critic algorithm (RMAAC) which adopts a centralized-training decentralized-execution
algorithm structure in MARL literature (Li et al., 2019; Lowe et al., 2017; Foerster et al., 2018). We
put the pseudo-code of RMAAC in Appendix C.2.3.
Theorem 2.10. (Policy Gradient in RMAAC for MG-SPA) For each agent i 2 N and adversary
ĩ 2M, the policy gradients of the objective J i(✓,!) with respect to the parameter ✓,! are:

r✓iJ i(✓,!) = E(s,a,b)⇠p(⇡,⇢)

⇥
qi,⇡,⇢(s, a, b)r✓i log ⇡i(ai|s̃i)

⇤
(4)

r!iJ i(✓,!) = E(s,a,b)⇠p(⇡,⇢)

h
qi,⇡,⇢(s, a, b)[r!i log ⇢ĩ(bĩ|s) + reg]

i
(5)

where reg = rs̃i log ⇡
i(ai|s̃i)rbĩf(s, b

ĩ)r!i⇢ĩ(bĩ|s).

3 EXPERIMENT
3.1 ROBUST MULTI-AGENT Q-LEARNING (RMAQ)

Figure 3: Two-player game: each player
has two states and the same action set
with size 2. Under state s0, two players
get the same reward 1 when they choose
the same action. At state s1, two play-
ers get same reward 1 when they choose
different actions. One state switches to
another state only when two players get
reward, i.e. two players always stay in
the current state until they get reward.

We show the performance of the proposed RMAQ algo-
rithm by applying it to a two-player game. We first intro-
duce the designed two-player game. Then we investigate
the convergence of this algorithm and compare the per-
formance of the Robust Equilibrium policies with other
agents’ policies under different adversaries’ policies.

Two-player game: For the game in Figure 3, two players
have the same action space A = {0, 1} and state space
S = {s0, s1}. The two players get the same positive
rewards when they choose the same action under state s0
or choose different actions under state s1. The state does not change until these two players get a
positive reward. Possible Nash Equilibrium (NE) in this game can be ⇡⇤

1 = (⇡1
1 ,⇡

2
1) that player

1 always chooses action 1, player 2 chooses action 1 under state s0 and action 0 under state s1;
or ⇡⇤

2 = (⇡1
2 ,⇡

2
2) that player 1 always chooses action 0, player 2 chooses action 0 under state s0

and action 1 under state s1. When using the NE policy, these two players always get the same
positive rewards. The optimal discounted state value of this game is vi⇤(s) = 1/(1 � �) for all
s 2 S, i 2 {1, 2}, � is the reward discounted rate. We set � = 0.99, then vi⇤(s) = 100.
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According to the definition of MG-SPA, we add two adversaries, one for each player to perturb the
state and get a negative reward of the player. They have a same action space B = {0, 1}, where 0
means do not disturb, 1 means change the observation to another one. Some times no perturbation
would be a good choice for adversaries. For example, when the true state is s0, players are using
⇡⇤
1 , if adversary 1 does not perturb player 1’s observation, player 1 will still select action 1. While

adversary 2 changes player 2’s observation to state s1, player 2 will choose action 0 which is not
same to player 1’s action 1. Thus, players always fail the game and get no rewards. A Robust
Equilibrium for MG-SPA would be d̃⇤ = (⇡̃1

⇤, ⇡̃
2
⇤, ⇢̃

1
⇤, ⇢̃

2
⇤) that each player chooses actions with equal

probability and so do adversaries. The optimal discounted state value of corresponding MG-SPA is
ṽi⇤(s) = 1/2(1� �) for all s 2 S, i 2 {1, 2} when players use Robust Equilibrium (RE) policies. We
use � = 0.99, then ṽi⇤(s) = 50. More explanations of this two-player game refer to Appendix E.1.

The learning process for RE: We initialize q1(s, a, b) = q2(s, a, b) = 0 for all s, a, b. After
observing the current state, adversaries choose their actions to perturb the agents’ state. Then players
execute their actions based on the perturbed state information. They then observe the next state and
rewards. Then every agent updates its q according to (3). In the next state, all agents repeat the
process above. The training stops after 7500 steps. When updating the Q-values, the agent applies a
NE policy from the Extensive-form game based on (q1, q2,�q1,�q2).
Experiment results: After 7000 steps of training, we find that agents’ Q-values stabilize at certain
values, though the dimension of q is a bit high as q 2 R32. We compare the optimal state value ṽ⇤
and the total discounted rewards in Table 1. The value of the total discounted reward converges to the
optimal state value of the corresponding MG-SPA. This two-player game experiment result validates
the convergence of our RMAQ method. We compare the RE policy with other agents’ policies under
different adversaries’ policies in Appendix E.1. This is to verify the robustness of RE policies.

Discussion: Even for general-sum normal-form games, computing an NE is known to be PPAD-
complete, which is still considered difficult in game theory literature (Conitzer & Sandholm, 2002;
Etessami & Yannakakis, 2010). Therefore, we do not anticipate that the RMAQ algorithm can scale
to very large MARL problems. In the next experimental subsection, we show RMAAC with function
approximation can handle large-scale MARL problems.

3.2 ROBUST MULTI-AGENT ACTOR-CRITIC (RMAAC)

We compare our RMAAC algorithm with MADDPG (Lowe et al., 2017), which does not consider
robustness, and M3DDPG (Li et al., 2019), where robustness is considered with respective to the
opponents’ policies altering. We run experiments in several benchmark multi-agent environments,
based on the multi-agent particle environments (MPE) (Lowe et al., 2017). The host machine adopted
in our experiments is a server configured with AMD Ryzen Threadripper 2990WX 32-core processors
and four Quadro RTX 6000 GPUs. Our experiments are performed on Python 3.5.4, Gym 0.10.5,
Numpy 1.14.5, Tensorflow 1.8.0, and CUDA 9.0.

Experiment procedure: We first train agents’ policies using RMAAC, MADDPG and M3DDPG,
respectively. For our RMAAC algorithm, we set the constraint parameter ✏ = 0.5. And we choose
two types of perturbation functions to validate the robustness of trained policies under different
MG-SPA models. The first one is the linear noise format that f1(s, bĩ) := s+ bĩ, i.e. the perturbed
state s̃i is calculated by adding a random noise bĩ generated by adversary ĩ to the true state s. And
f2(s, bĩ) := s + Gaussian(bĩ,⌃), where the adversary ĩ’s action bĩ is the mean of the Gaussian
distribution. And ⌃ is the covariance, we set it as I , i.e. an identity matrix. We call it Gaussian
noise format. These two formats f1, f2 are commonly used in adversarial training (Creswell et al.,

Figure 4: Comparison of episode mean testing rewards using different algorithms and different
perturbation functions in MPE.
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Table 1: Convergence Values of Total Discounted Rewards when Training Ends
v1(s0) v2(s0) v1(s1) v2(s1) ṽ1⇤(s0) ṽ2⇤(s0) ṽ1⇤(s1) ṽ2⇤(s1)

value 49.99 49.99 49.99 49.99 50.00 50.00 50.00 50.00

Table 2: Variance of testing rewards
Perturbation function Linear noise f1 Gaussian noise f2

Algorithms RM M3 MA RM M3 MA
Cooperative communication (CC) 1.007 1.311 1.292 0.872 1.012 0.976

Cooperative navigation (CN) 0.322 0.357 0.351 0.322 0.349 0.359
Physical deception (PD) 0.225 0.218 0.217 0.244 0.225 0.252

Keep away (KA) 0.161 0.168 0.175 0.167 0.17 0.167
Predator prey (PP) 3.213 2.812 3.671 2.304 2.711 2.811

2018; Zhang et al., 2020a; 2021). Then we test the well-trained policies in the optimally disturbed
environment (injected noise is produced by those adversaries trained with RMAAC algorithm). The
testing step is chosen as 10000 and each episode contains 24 steps. All hyperparameters used in
experiments for RMAAC, MADDPG and M3DDPG are attached in Appendix E.2.2. Note that
since the rewards are defined as negative values in the used multi-agent environments, we add the
same baseline (100) to rewards for making them positive. Then it’s easier to observe the testing
results and make comparisons. Those used MPE scenarios are Cooperative communication (CC),
Cooperative navigation (CN), Physical deception (PD), Predator prey (PP) and Keep away (KA). The
first two scenarios are cooperative games, the others are mixed games. To investigate the algorithm
performance in more complicated situation, we also run experiments in a scenario with more agents,
which is called Predator prey+ (PP+). More details of these games are in Append E.2.1.

Experiment results: In Figure 4 and Table 2, we report the episode mean testing rewards and
variance of 10000 steps testing rewards, respectively. We will use mean rewards and variance for
short in the following experimental report and explanations. In the table and figure, we use RM, M3,
MA for abbreviations of RMAAC, M3DDPG and MADDPG, respectively. In Figure 4, the left five
figures are mean rewards under the linear noise format f1, the right ones are under the Gaussian
noise format f2. Under the optimally disturbed environment, agents with RMAAC policies get the
highest mean rewards in almost all scenarios no matter what noise format is used. The only exception
is when using in Keep away under linear noise. However, our RMAAC still achieves the highest
rewards when testing in Keep away under Gaussian noise. In Table 2, the left three columns report
the variance under the linear noise format f1, and the right ones are under the Gaussian noise format
f2. The variance is used to evaluate the stability of the trained policies, i.e. the robustness to system
randomness. Because the testing experiments are done in the same environments that are initialized
by different random seeds. We can see that, by using our RMAAC method, the agents can get the
lowest variance in most of scenarios under these two different perturbation formats. Therefore, our
RMAAC algorithm is also more robust to the system randomness, compared with the baselines. Due
to the page limits, more experiment results and explanations are in Appendix E.2.

4 CONCLUSION
We study the problem of multi-agent reinforcement learning with state uncertainties in this work.
We model the problem as a Markov Game with state perturbation adversaries (MG-SPA), where
each agent aims to find out a policy to maximize its own total discounted reward and each associated
adversary aims to minimize the reward. This problem is challenging with little prior work on theoreti-
cal analysis or algorithm design. We provide the first attempt of theoretical analysis and algorithm
design for MARL under worst-case state uncertainties. We first introduce Robust Equilibrium as the
solution concept for MG-SPA, and prove conditions under which such an equilibrium exists. Then
we propose a robust multi-agent Q-learning algorithm (RMAQ) to find such an equilibrium, with
convergence guarantees under certain conditions. We also derive the policy gradients and design a
robust multi-agent actor-critic (RMAAC) algorithm to handle the more general high-dimensional
state-action space MARL problems. We also conduct experiments which validate our methods.
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Supplementary Material for “Robust Multi-Agent
Reinforcement Learning Considering State Uncertainty”

A RELATED WORK

Robust Reinforcement Learning: Robustness is important in the real world because many systems
and applications can be subject to uncertainties and disturbances, such as changes in the environment
(He et al., 2022), failures in sensors or actuators (Ding et al., 2021), defective software implementation
(Kim et al., 2022) or unexpected events (Zi et al., 2022). Recent robust reinforcement learning studied
different types of uncertainties, such as action uncertainties (Tessler et al., 2019) and transition
kernel uncertainties (Sinha et al., 2020; Yu et al., 2021b; Hu et al., 2020; Wang & Zou, 2021; Lim
& Autef, 2019; Nisioti et al., 2021; He et al., 2022). Some recent attempts about adversarial state
perturbations for single-agent validated the importance of considering state uncertainty and improving
the robustness of the learned policy in Deep RL (Huang et al., 2017; Lin et al., 2017; Zhang et al.,
2020a; 2021; Everett et al., 2021). The works of Zhang et al. (2020a; 2021) formulate the state
perturbation in single agent RL as a modified Markov decision process, then study the robustness
of single agent RL policies. The works of Huang et al. (2017) and Lin et al. (2017) show that
adversarial state perturbation undermines the performance of neural network policies in single agent
reinforcement learning and proposes different single agent attack strategies. In this work, we consider
the more challenging problem of adversarial state perturbation for MARL, when the environment of
an individual agent is non-stationary with other agents’ changing policies during the training process.

Robust Multi-Agent Reinforcement Learning: Multi-Agent Reinforcement Learning has attracted
a lot of attention since it can model multiple-agent interactions (Zhou et al., 2022; Mei et al.,
2023). However, there is very limited literature for the solution concept or theoretical analysis
when considering adversarial state perturbations in MARL. Other types of uncertainties have been
investigated in the literature, such as uncertainties about training partner’s type (Shen & How, 2021)
and the other agents’ policies (Li et al., 2019; Sun et al., 2021; van der Heiden et al., 2020), and
reward uncertainties (Zhang et al., 2020b). The policy considered in these papers relies on the current
true state information, hence, the robust MARL considered in this work is fundamentally different
since the agents do not know the true state information. Dec-POMDP enables a team of agents to
optimize policies with the partial observable states (Oliehoek et al., 2016; Chen et al., 2022a). The
work of Lin et al. (2020) studies state perturbation in cooperative MARL, and proposes an attack
method to attack the state of one single agent in order to decrease the team reward. In contrast, we
consider the worst-case scenario that the state of every agent can be perturbed by an adversary and
focus on theoretical analysis of robust MARL including the existence of optimal value function and
Robust Equilibrium (RE). Our work provides formal definitions of the state uncertainty challenge in
MARL, and derives both theoretical analysis and practical algorithms.

Game Theory and MARL: MARL shares theoretical foundations with game theory research
field and literature review has been provided to understand MARL from a game theoretical per-
spective (Yang & Wang, 2020). A Markov game, sometimes called a stochastic game models the
interaction between multiple agents (Owen, 2013; Littman, 1994). Algorithms to compute the Nash
Equilibrium (NE) in Nash Q-learning (Hu & Wellman, 2003), Dec-POMDP (Oliehoek et al., 2016)
or POSG (partially observable stochastic game) and analysis assuming that NE exists (Chades et al.,
2002; Hansen et al., 2004; Nair et al., 2002) have been developed in the literature without proving the
conditions for the existence of NE. The main theoretical contributions of this work include proving
conditions under which the proposed MG-SPA has Robust Equilibrium solutions, and convergence
analysis of our proposed robust Q-learning algorithm. This is the first attempts to analyze fundamental
properties of MARL under adversarial state uncertainties.

B THEORY

In this section, we give the full proof of all propositions and theorems in the theoretical analysis of an
MG-SPA.

In section B.1, we construct an extensive-form game (EFG) (Başar & Olsder, 1998; Osborne &
Rubinstein, 1994; Von Neumann & Morgenstern, 2007) whose payoff function is related to value
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functions of an MG-SPA. And, we give certain conditions under which, a Nash Equilibrium for the
constructed EFG exists. In section B.2, we prove the propositions 2.5 and 2.6. In section B.3, we
give the full proof of Theorem 2.7.

To make the supplemental material self-contained, we re-show the vector notations and assumptions
we have presented in section 2.2. Readers can also skip the repeated text and go directly to section B.1.

We follow and extend the vector notations in Puterman (2014). Let V denote the set of bounded real
valued functions on S with component-wise partial order and norm kvik := sups2S |vi(s)|. Let VM

denote the subspace of V of Borel measurable functions. For discrete state space, all real-valued
functions are measurable so that V = VM . But when S is a continuum, VM is a proper subset of V .
Let v = (v1, · · · , vN ) 2 V be the set of bounded real valued functions on S⇥ · · ·⇥S, i.e. the across
product of N state set and norm kvk := supj kvjk. We also define the set Q and Q in a similar style
such that qi 2 Q, q 2 Q.

For discrete S, let |S| denote the number of elements in S. Let ri denote a |S|-vector, with sth
component ri(s) which is the expected reward for agent i under state s. And P the |S|⇥ |S| matrix
with (s, s0)th entry given by p(s0|s). We refer to rid as the reward vector of agent i, and Pd as the
probability transition matrix corresponding to a joint policy d = (⇡, ⇢). rid + �Pdvi is the expected
total one-period discounted reward of agent i, obtained using the joint policy d = (⇡, ⇢). Let z as
a list of joint policy {d1, d2, · · · } and P 0

z = I , we denote the expected total discounted reward of
agent i using z as viz =

P1
t=1 �

t�1P t�1
z ridt

= rid1
+ �Pd1r

i
d2

+ · · ·+ �n�1Pd1 · · ·Pdn�1r
i
tn + · · · .

Now, we define the following minimax operator which is used in the rest of the paper.
Definition B.1. (Minimax Operator, same as definition 2.3) For vi 2 V, s 2 S, we define the nonlin-
ear operator Li on vi(s) by Livi(s) := max⇡i min⇢ĩ [rid+ �Pdvi](s), where d := (⇡�i

⇤ ,⇡i, ⇢�ĩ
⇤ , ⇢ĩ).

We also define the operator Lv(s) = L(v1(s), · · · , vN (s)) = (L1v1(s), · · · , LNvN (s)). Then Livi

is a |S|-vector, with sth component Livi(s).

For discrete S and bounded ri, it follows from Lemma 5.6.1 in Puterman (2014) that Livi 2 V for all
vi 2 V . Therefore Lv 2 V for all v 2 V. And in this paper, we consider the following assumptions
in Markov games with state perturbation adversaries.
Assumption B.2. (same as assumption 2.4)

(1) Bounded rewards; |ri(s, a, b)| M i < M <1 for all i 2 N , a 2 A, b 2 B and s 2 S.

(2) Finite state and action spaces; all S,Ai, B ĩ are finite.

(3) Stationary transition probability and reward functions.

(4) f is a bijection when s is fixed.

(5) All agents share one common reward function.

B.1 EXTENSIVE-FORM GAME

Figure 5: a team extensive-form game
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An extensive-form game (EFG) (Başar & Olsder, 1998; Osborne & Rubinstein, 1994; Von Neumann
& Morgenstern, 2007) basically involves a tree structure with several nodes and branches, providing
an explicit description of the order of players and the information available to each player at the time
of his decision.

Look at Figure 5, an EFG involves from the top of the tree to the tip of one of its branches. And a
centralized nature player (P1) has |S̃| alternatives (branches) to choose from, whereas a centralized
agent (P2) has |A| alternatives, and the order of play is that the centralized nature player acts before
the centralized agent does. The set A is same as the agents’ joint action set in an MG-SPA, set S̃ is a
set of perturbed state constrained by a constrained parameter ✏. At the end of lower branches, some
numbers will be given. These numbers represent the playoffs to the centralized agent (or equivalently,
losses incurred to the centralized nature player) if the corresponding paths are selected by the players.
We give the formal definition of an EFG we will use in the proof and the main text as follows:
Definition B.3. An extensive-form game based on (v1, · · · , vN ,�v1, · · · ,�vN ) under s 2 S is a
finite tree structure with:

1. A player P1 has a action set S̃ = B(✏, s)⇥ · · ·⇥ B(✏, s), with a typical element designed
as s̃. And P1 moves first,

2. Another player P2 has an action set A, with a typical element designed as a. And P2 which
moves after P1,

3. a specific vertex indicating the starting point of the game,

4. a payoff function gs(s̃, a) = (g1s(s̃, a), · · · , gNs (s̃, a)) where gis(s̃, a) = ri(s, a, f�1
s (s̃)) +P

s0 p(s
0|a, f�1

s (s̃))vi(s0) assigns a real number to each terminal vector of the tree. Player
P1 gets �gs(s̃, a) while player P2 gets gs(s̃, a),

5. a partition of the nodes of the tree into two player sets (to be denoted by N̄1 and N̄2 for P1
and P2, respectively),

6. a sub-partition of each player set N̄ i into information set {⌘ij}, such that the same number
of immediate branches emanates from every node belonging to the same information set,
and no node follows another node in the same information set.

Note that fs(b) := f(s, b) = (f(s, b1̃), · · · , f(s, bÑ )) is the vector version of the perturbation
function f in an MG-SPA. Since in an MG-SPA, qi(s, a, b) = ri(s, a, b)+

P
s0 p(s

0|s, a, b)vi(s0) for
all i = 1, · · · , N , gis(s̃, a) = qi(s, a, f�1

s (s̃)) as well. We can also use (q1, · · · , qN ,�q1, · · · ,�qN )
to denote an extensive-form game based on (v1, · · · , vN ,�v1, · · · ,�vN ). Then we define the
behavioral strategies for P1 and P2, respectively in the following definition.
Definition B.4. (Behavioral strategy) Let Ii denote the class of all information sets of Pi, with a
typical element designed as ⌘i. Let U i

⌘i denote the set of alternatives of Pi at the nodes belonging
to the information set ⌘i. Define U i = [U i

⌘i where the union is over ⌘i 2 Ii. Let Y⌘1 denote the
set of all probability distributions on U1

⌘1 , where the latter is the set of all alternatives of P1 at the
nodes belonging to the information set ⌘1. Analogously, let Z⌘2 denote the set of all probability
distributions on U2

⌘2 . Further define Y = [I1Y⌘1 , Z = [I2Z⌘2 . Then, a behavioral strategy � for
P1 is a mapping from the class of all his information sets I1 into Y , assigning one element in Y for
each set in I1, such that �(⌘1) 2 Y⌘1 for each ⌘1 2 I1. A typical behavioral strategy � for P2 is
defined, analogously, as a restricted mapping from I2 into Z. The set of all behavioral strategies for
Pi is called his behavioral strategy set, and it is denoted by �i.

The information available to the centralized agent (P2) at the time of his play is indicated on the tree
diagram in Figure 5 by dotted lines enclosing an area (i.e. the information set) including the relevant
nodes. This means the centralized agent is in a position to know exactly how the centralized nature
player acts. In this case, a strategy for the centralized agent is a mapping from the collection of his
information sets into the set of his actions.

And the behavioral strategy � for P1 is a mapping from his information sets and action space into
a probability simplex, i.e. �(s̃|s) is the probability of choosing s̃ given s. Similarly, the behavioral
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strategy � for P2 is �(a|s̃), i.e. the probability of choosing action a when s̃ is given. Note that every
behavioral strategy is a mixed strategy. We then give the definition of Nash Equilibrium in behavioral
strategies for an EFG.
Definition B.5. (Nash Equilibrium in behavioral strategies) A pair of strategies {�⇤ 2 �1,�⇤ 2 �2}
is said to constitute a Nash Equilibrium in behavioral strategies if the following inequalities are
satisfied that for all i = 1, · · · , N,� 2 �1,� 2 �2, s 2 S:

J i(�i⇤,�
�i
⇤ ,�i,��i

⇤ ) � J i(�i⇤,�
�i
⇤ ,�i

⇤,�
�i
⇤ ) � J i(�i,��i

⇤ ,�i
⇤,�

�i
⇤ ) (6)

where J i(�,�) is the expected payoff i.e. �E�,�[gis] when P1 takes �, P2 takes �, �(s̃|s) =QN
i=1 �

i(s̃i|s), ⇡(a|s̃) =
QN

i=1 ⇡
i(ai|s̃i).

In the following parts as well as the main text, when we mention a Nash Equilibrium for an EFG, it
refers to a Nash Equilibrium in behavioral strategies. How to solve an EFG is out of our scope since
it has been investigated in many literature (Başar & Olsder, 1998; Schipper, 2017; Slantchev, 2008).
And the single policies �i and �i can be attained through the marginal probabilities calculation with
chain rules (Devore et al., 2012; Mémoli, 2012).
Lemma B.6. Suppose v1 = · · · = vN , and S,A are finite. An NE (�⇤,�⇤) of the EFG based on
(v1, · · · , vN ,�v1, · · · ,�vN ) exists.

Proof. Since S̃ is a subset of S, S̃ is finite when S is finite. When v1 = · · · = vN , and S̃, A
are finite, an EFG based on (v1, · · · , vN ,�v1, · · · ,�vN ) degenerates to a zero-sum two-person
extensive-form game with finite strategies and perfect recall. Thus, an NE of this EFG exists (Başar
& Olsder, 1998; Schipper, 2017; Slantchev, 2008).

Lemma B.7. Suppose f is a bijection when s is fixed for all i = 1, · · · , N . For an EFG
(v1, · · · , vN ,�v1, · · · ,�vN ) with an NE (�⇤,�⇤), we call a joint policy (⇡v

⇤ , ⇢
v
⇤) as the joint policy

implied from the NE (�⇤,�⇤) , where ⇢v⇤(b|s) = �⇤(s̃ = fs(b)|s),⇡v
⇤(a|s̃ = fs(b)) = �⇤(a|s̃). The

joint policy (⇡v
⇤ , ⇢

v
⇤) satisfies Livi(s) = ri(⇡v

⇤ ,⇢
v
⇤)
(s) + �

P
s02S p(⇡v

⇤ ,⇢
v
⇤)
(s0|s)vi(s0) for all s 2 S.

Proof. The NE of the extensive-form game (�⇤,�⇤) implies that for all i = 1, · · · , N , s 2 S,� 2
�1,� 2 �2, we have

J i(�⇤,�) � J i(�⇤,�⇤) � J i(�,�⇤),

where J i(�,�) = �E[ri(s, a, f�1
s (s̃)) +

P
s0 p(s

0|s, a, f�1
s (s̃))vi(s0)|s̃ ⇠ �(·|s), a ⇠ �(·|s̃)] ac-

cording to Definition B.5. Let b denote f�1
s (s̃), because f is a bijection when s is fixed, fs(b) =

(fs(b1̃), · · · , fs(bÑ )) is a bijection, and the inverse function f�1
s (s̃) = (f�1

s (s̃1), · · · , f�1
s (s̃N ))

exists and is a bijection as well, then we have

�J i(�⇤,�⇤) =E
"
ri(s, a, f�1

s (s̃)) +
X

s0

p(s0|s, a, f�1
s (s̃))vi(s0)|s̃ ⇠ �⇤(·|s), a ⇠ �⇤(·|s̃)

#

=E
"
ri(s, a, b) +

X

s0

p(s0|s, a, b)vi(s0)|b ⇠ �⇤(fs(b)|s), a ⇠ �⇤(·|fs(b))
#

=E
"
ri(s, a, b) +

X

s0

p(s0|s, a, b)vi(s0)|b ⇠ ⇢v⇤(·|s), a ⇠ ⇡v
⇤(·|s̃)

#

Similarly, we have

�J i(�⇤,�) = E
"
ri(s, a, b) +

X

s0

p(s0|s, a, b)vi(s0)|b ⇠ ⇢v⇤(·|s), a ⇠ ⇡v(·|s̃)
#
,

�J i(�,�⇤) = E
"
ri(s, a, b) +

X

s0

p(s0|s, a, b)vi(s0)|b ⇠ ⇢v(·|s), a ⇠ ⇡v
⇤(·|s̃)

#
.

Recall the definition of the minimax operator of Livi(s), we have, for all s 2 S,

Livi(s) = ri(⇡v
⇤ ,⇢

v
⇤)
(s) + �

X

s02S

p(⇡v
⇤ ,⇢

v
⇤)
(s0|s)vi(s0)
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Based on the proof, we also denote (⇡v
⇤ , ⇢

v
⇤) as an NE policy for the EFG

(v1, · · · , vN ,�v1, · · · ,�vN ) for convenience, instead of calling it the joint policy derived
from an NE for the EFG (v1, · · · , vN ,�v1, · · · ,�vN ).

B.2 PROOF OF TWO PROPOSITIONS

Proposition B.8. (Contraction mapping, same as proposition 2.5 in the main text.) Suppose 0 
� < 1 and Assumption 2.4 hold. Then L is a contraction mapping on V.

Proof. Let u and v be in V. Given Assumption 2.4, these two EFGs (u1, · · · , uN ,�u1, · · · ,�uN ),
(vi, · · · , vN ,�vi, · · · ,�vN ) both have at least one mixed Nash Equilibrium according to Lemma
B.6. And let (⇡u

⇤ , ⇢
u
⇤) and (⇡v

⇤ , ⇢
v
⇤) be two Nash Equilibrium for these two games, respectively.

According to Lemma B.7, we have the following equations hold for all s 2 S,

Livi(s) = ri(⇡v
⇤ ,⇢

v
⇤)
(s) + �

X

s02S

p(⇡v
⇤ ,⇢

v
⇤)
(s0|s)vi(s0)

Liui(s) = ri(⇡u
⇤ ,⇢

u
⇤ )
(s) + �

X

s02S

p(⇡u
⇤ ,⇢

u
⇤ )
(s0|s)ui(s0)

Then we have

ri(⇡u
⇤ ,⇢

v
⇤)
(s) + �

X

s02S

p(⇡u
⇤ ,⇢

v
⇤)
(s0|s)vi(s0)  Livi(s)  ri(⇡v

⇤ ,⇢
u
⇤ )
(s) + �

X

s02S

p(⇡v
⇤ ,⇢

u
⇤ )
(s0|s)vi(s0),

ri(⇡v
⇤ ,⇢

u
⇤ )
(s) + �

X

s02S

p(⇡v
⇤ ,⇢

u
⇤ )
(s0|s)ui(s0)  Liui(s)  ri(⇡u

⇤ ,⇢
v
⇤)
(s) + �

X

s02S

p(⇡u
⇤ ,⇢

v
⇤)
(s0|s)ui(s0),

since (⇡u
⇤ , ⇢

v
⇤) and (⇡v

⇤ , ⇢
u
⇤) are derived from the Nash Equilibrium of the EFG

(vi, · · · , vN ,�vi, · · · ,�vN ), and (⇡u
⇤ , ⇢

v
⇤) and (⇡v

⇤ , ⇢
u
⇤) are also derived from the Nash Equilibrium

of the EFG (ui, · · · , uN ,�ui, · · · ,�uN ). We assume that Livi(s)  Liui(s), then we have

0  Liui(s)� Livi(s)


"
ri(⇡u

⇤ ,⇢
v
⇤)
(s) + �

X

s02S

p(⇡u
⇤ ,⇢

v
⇤)
(s0|s)ui(s0)

#
�
"
ri(⇡u

⇤ ,⇢
v
⇤)
(s) + �

X

s02S

p(⇡u
⇤ ,⇢

v
⇤)
(s0|s)vi(s0)

#

 �
X

s02S

p(⇡u
⇤ ,⇢

v
⇤)
(s0|s)(ui(s0)� vi(s0))

 �||vi � ui||

Repeating this argument in the case that Liui(s)  Livi(s) implies that

||Livi(s)� Liui(s)||  �||vi � ui||

for all s 2 S, i.e. Li is a contraction mapping on V . Recall that ||v|| = supj ||vj ||, then we have

||Lv � Lu|| = sup
j

||Ljvj � Ljuj ||  � sup
j

||vj � uj || = �||v � u||

L is a contraction mapping on V.

Proposition B.9. (Complete Space, same as proposition 2.6 in the main text.) V is a complete
normed linear space.

Proof. Recall that V denote the set of bounded real valued functions on S ⇥ · · ·⇥ S, i.e. the across
product of N state set with component-wise partial order and norm ||v|| := sups2S supj |vi(s)|.
Since V is closed under addition and scalar multiplication and is endowed with a norm, it is a normed
linear space. Since every Cauchy sequence contains a limit point in V, V is a complete space.
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B.3 PROOF OF THEOREM 2.7

In this section, our goal is to prove Theorem 2.7. We first prove (1) the optimal value function
of an MG-SPA satisfies the Bellman Equation by applying the Squeeze theorem [Theorem 3.3.6,
Sohrab (2003)] in B.3.1. Then we prove that a unique solution of the Bellman Equation exists using
fixed-point theorem (Smart, 1980) in B.3.2. Thereby, the existence of the optimal value function
gets proved. By introducing (3), we characterize the relationship between the optimal value function
and a Robust Equilibrium. The proof of (3) can be found in B.3.3. However, (3) does not imply the
existence of an RE. To this end, in (4), we formally establish the existence of RE when the optimal
value function exists. We formulate a 2N -player Extensive-form game (EFG) (Osborne & Rubinstein,
1994; Von Neumann & Morgenstern, 2007) based on the optimal value function such that its Nash
Equilibrium (NE) is equivalent to an RE of the MG-SPA. The details are in B.3.4.
Theorem B.10. (Same as theorem 2.7 in the main text.) Suppose 0  � < 1 and Assumption 2.4
holds.

(1) (Solution of Bellman Equation) A value function v⇤ 2 V is an optimal value function if for all
i 2 N , the point-wise value function vi⇤ 2 V satisfies the corresponding Bellman Equation (2), i.e.
vi⇤ = Livi⇤ for all i 2 N .

(2) (Existence and uniqueness of optimal value function) There exists a unique v⇤ 2 V satisfying
Lv⇤ = v⇤, i.e. for all i 2 N , Livi⇤ = vi⇤.

(3) (Robust Equilibrium (RE) and optimal value function) A joint policy d⇤ = (⇡⇤, ⇢⇤), where
⇡⇤ = (⇡1

⇤, · · · ,⇡N
⇤ ) and ⇢⇤ = (⇢1̃⇤, · · · , ⇢Ñ⇤ ), is a robust equilibrium if and only if vd⇤ is the optimal

value function.

(4) (Existence of Robust Equilibrium) There exists a mixed RE for an MG-SPA.

B.3.1 (1) SOLUTION OF BELLMAN EQUATION

Proof. First, we prove that if there exists a vi 2 V such that vi � Lvi then vi � vi⇤. vi � Lvi implies
vi � maxmin[ri+ �Pvi] = rid+ �Pdvi, where d = (⇡v,�i

⇤ ,⇡v,i
⇤ , ⇢v,�i

⇤ , ⇢v,i⇤ ) is a Nash Equilibrium
for the EFG v = (v1, · · · , vN ,�v1, · · · ,�vN ). We omit the superscript v for convenience when
there is no confusion. We choose a list of policy i.e. z = (d1, d2, · · · ) where dj = (⇡�i

⇤ ,⇡i
j , ⇢

�ĩ
⇤ , ⇢ĩ⇤).

Then we have

vi � rd1 + �Pd1v
i � rid1

+ �Pd1(r
i
d2

+ �Pd2v
i) = rid1

+ �Pd1r
i
d2

+ �Pd1Pd2v
i

By induction, it follows that, for n � 1,

vi � rid1
+ �Pd1r

i
d2

+ · · ·+ �n�1Pd1 · · ·Pdn�1r
i
dn

+ �nPn
z v

i

vi � viz � �nPn
z v

i �
1X

t=n

�tP t
zr

i
dt+1

(7)

Since ||�nPn
z v

i||  �n||vi|| and � 2 [0, 1), for ✏ > 0, we can find a sufficiently large n such that

✏e/2 � �nPn
z v

i � �✏e/2 (8)

where e denotes a vector of 1’s. And as a result of Assumption 2.4-(1), we have

�
1X

t=n

�tP t
zr

i
dt+1
� ��

nMe

1� � (9)

Then we have

vi(s)� viz(s) � �✏ (10)

for all s 2 S and ✏ > 0. Let all dj the same, since ✏ was arbitrary, we have

vi(s) � max
⇡i

min
⇢ĩ

viz(s) = vi⇤(s) (11)
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Then we prove that if there exists a vi 2 V such that vi  Lvi then vi  vi⇤. For arbitrary ✏ > 0

there exists a joint policy d0 = (⇡�i
⇤ ,⇡i

⇤, ⇢
�ĩ
⇤ , ⇢ĩ) and a list of policy z = (d0, d0, · · · ) such that

vi  rid0 + �Pd0vi + ✏

(I � �Pd0)vi  rid0 + ✏

 (I � �Pd0)�1rid0 + (1� �)�1✏e = viz + (1� �)�1✏e

 vi⇤ + (1� �)�1✏e

The equality holds because the Theorem 6.1.1 in Puterman (2014). Since ✏ was arbitrary, we have

vi  vi⇤ (12)

So if there exists a vi 2 V such that vi = Livi i.e. vi  Livi and vi � Livi, we have vi = vi⇤, i.e.
if vi satisfies the Bellman Equation, vi is an optimal value function.

B.3.2 (2) EXISTENCE OF OPTIMAL VALUE FUNCTION

Proof. Proposition 2.5 and 2.6 establish that V is a complete normed linear space and L is a
contraction mapping, so that the hypothesis of Banach Fixed-Point Theorem are satisfied (Smart,
1980). Therefore there exists a unique solution v⇤ 2 V to Lv = v. From (1), we know if v⇤ satisfies
the Bellman Equation, it is an optimal value function. Therefore, the existence of the optimal value
function is proved.

B.3.3 (3) ROBUST EQUILIBRIUM AND OPTIMAL VALUE FUNCTION

Proof. (i) Robust Equilibrium! Optimal value function.

Suppose d⇤ is a robust equilibrium. Then vd
⇤
= v⇤. From (2), it follows that vd

⇤
satisfies Lv = v.

Thus vd
⇤

is the optimal value function.

(ii) Optimal value function! Robust Equilibrium.

Suppose vd
⇤

is the optimal value function, i.e., Lvd
⇤
= vd

⇤
. The proof of (1) implies that vd

⇤
= v⇤,

so d⇤ is in robust equilibrium.

B.3.4 (4) EXISTENCE OF ROBUST EQUILIBRIUM

Proof. From (2), we know that there exists a solution v⇤ 2 V to Bellman Equation Lv = v. Now, we
consider an EFG based on (v1⇤, · · · , vN⇤ ,�v1⇤, · · · ,�vN⇤ ). Under Assumption 2.4, we can get an NE
policy (⇡v⇤

⇤ , ⇢v⇤⇤ ) by solving the EFG as a consequence of Lemma B.6. According to Lemma B.7,
(⇡v⇤

⇤ , ⇢v⇤⇤ ) satisfies

Livi⇤(s) = ri(⇡v⇤
⇤ ,⇢v⇤

⇤ )(s) + �
X

s02S

p(⇡v⇤
⇤ ,⇢v⇤

⇤ )(s
0|s)vi⇤(s0),

for all s 2 S. According to (3), (⇡v⇤
⇤ , ⇢v⇤⇤ ) is a Robust Equilibrium.
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C ALGORITHM

C.1 ROBUST MULTI-AGENT Q-LEARNING (RMAQ)

In this section, we prove the convergence of RMAQ under certain conditions. First, let’s recall the
convergence theorem and certain assumptions.

Assumption C.1. (Same as assumption 2.8) (1) State and action pairs have been visited infinitely
often. (2) The learning rate ↵t satisfies the following conditions: 0  ↵t < 1,

P
t�0 ↵

2
t  1; if

(s, a, b) 6= (st, at, bt), ↵t(s, a, b) = 0. (3) An NE of the EFG based on (q1t , · · · , qNt ,�q1t , · · · ,�qNt )
exists at each iteration t.

Theorem C.2. (Same as theorem 2.9) Under Assumption C.1, the sequence {qt} obtained from
(13) converges to {q⇤} with probability 1, which are the optimal action-value functions that satisfy
Bellman equations (1) for all i = 1, · · · , N .

qit+1(st, at, bt) = (1� ↵t)q
i
t(st, at, bt)+ (13)

↵t

2

4rit(st, at, bt) + �
X

at+12A

X

bt+12B

⇡qt
⇤,t(at+1|s̃t+1)⇢

qt
⇤,t(bt+1|st+1)q

i
t(st+1, at+1, bt+1)

3

5 ,

Proof. Define the operator Tqt = T (q1t , · · · , qNt ) = (T 1q1t , · · · , TNqNt ) where the operator T i is
defined as below:

T iqit(s, a, b) = rit + �
X

a02A

X

b02B

⇡qt
⇤ (a0|s̃0)⇢qt⇤ (b0|s0)qit(s0, a0, b0) (14)

for i 2 N , where (⇡qt
⇤ , ⇢qt⇤ ) is the tuple of Nash Equilibrium policies for the EFG based on

(q1t , · · · , qNt ,�q1t , · · · ,�qNt ) obtained from (13). Because of proposition C.3 and proposition C.4
the Lemma 8 in Hu & Wellman (2003) or Corollary 5 in Szepesvári & Littman (1999) tell that
qt+1 = (1� ↵t)qt + ↵tTqt converges to q⇤ with probability 1.

Proposition C.3. (contraction mapping) Tqt = (T 1q1t , · · · , TNqNt ) is a contraction mapping.

Proof. We omit the subscript t when there is no confusion. Assume T ipi � T iqi, we have

0  T ipi � T iqi

=�

�����

�����
X

a02A

X

b02B

⇡p
⇤(a

0|s̃0)⇢p⇤(b0|s0)pi(s0, a0, b0)�
X

a02A

X

b02B

⇡q
⇤(a

0|s̃0)⇢q⇤(b0|s0)qi(s0, a0, b0)

�����

�����

�

�����

�����
X

a02A

X

b02B

⇡q
⇤(a

0|s̃0)⇢q⇤(b0|s0)pi(s0, a0, b0)�
X

a02A

X

b02B

⇡p
⇤(a

0|s̃0)⇢p⇤(b0|s0)qi(s0, a0, b0)

�����

�����

�
����pi � qi

���� . (15)

Repeating the case T ipi  T iqi implies that T i is a contraction mapping such that ||T ipi � T iqi|| 
�||pi � qi|| for all pi, qi 2 Q. Recall that ||p� q|| = supj ||pj � qj ||

||Tp� Tq|| = sup
j

||T jpj � T jqj ||  � sup
j

||pj � qj || = �||p� q||

T is a contraction mapping such that ||Tp� Tq||  �||p� q|| for all p, q 2 Q.

Proposition C.4. (a condition of Lemma 8 in Hu & Wellman (2003) also Corollary 5 in Szepesvári
& Littman (1999))

q⇤ = E[Tq⇤] (16)
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Proof.

E
⇥
T iqi⇤(s, a, b)

⇤
= E

"
ri + �

X

a0inA

X

b0inB

⇡⇤(a
0|s̃0)⇢⇤(b0|s0)qi⇤(s0, a0, b0)

#

= ri + �
X

s02S

p(s0|s, a, b)
X

a02A

X

b02B

⇡⇤(a
0|s̃0)⇢⇤(b0|s0)qi⇤(s0, a0, b0)

= qi⇤(s, a, b) (17)

Therefore q⇤ = E[Tq⇤].

C.2 ROBUST MULTI-AGENT ACTOR-CRITIC (RMAAC)

In this section, we first give the details of policy gradients proof in MG-SPA and then list the Pseudo
code of RMAAC.

C.2.1 PROOF OF POLICY GRADIENTS

Recall the policy gradient in RMAAC for MG-SPA in the following:

Theorem C.5 (Policy gradient in RMAAC for MG-SPA, same as the theorem 2.10). For each agent
i 2 N and adversary ĩ 2 M, the policy gradients of the objective J i(✓,!) with respect to the
parameter ✓,! are:

r✓iJ i(✓,!) = E(s,a,b)⇠p(⇡,⇢)

⇥
qi,⇡,⇢(s, a, b)r✓i log ⇡i(ai|s̃i)

⇤
(18)

r!iJ i(✓,!) = E(s,a,b)⇠p(⇡,⇢)

⇥
qi,⇡,⇢(s, a, b)[r!i log ⇢i(bi|s) + reg]

⇤
(19)

where reg = rs̃i log ⇡
i(ai|s̃i)rbif(s, b

i)r!i⇢(bi|s).

Proof. We first start with the derivative of the state value function on ✓i:

r✓ivi,⇡,⇢(s)

=r✓i

"
X

a2A

X

b2B

⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b)
#

=
X

a2A

X

b2B

⇥
r✓i⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b) + ⇡(a|s̃)⇢(b|s)r✓iqi,⇡,⇢(s, a, b)

⇤

=
X

a2A

X

b2B

2

4r✓i⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b) + ⇡(a|s̃)⇢(b|s)r✓i

X

s0,r

p(s0, r|s, a)(ri + vi,⇡,⇢(s0))

3

5

=
X

a2A

X

b2B

"
r✓i⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b) + ⇡(a|s̃)⇢(b|s)r✓i

X

s0

p(s0|s, a)vi,⇡,⇢(s0)
#

(20)

We use �✓
i

(s) to denote
P

a2A

P
b2B [r✓i⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b)]. We use p⇡,⇢(s ! x, k) to

denote the probability of transition from state s to state x with agents’ joint policy ⇡ and adversaries’
joint policy ⇢ after k steps. For example, p⇡,⇢(s ! s, k = 0) = 1 and p⇡,⇢(s ! s0, k = 1) =P

a2A

P
b2B ⇡(a|s̃)⇢(b|s)p(s0|s, a). In the following proof, we sometimes use the superscript i
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instead of ĩ to denote adversary ĩ when there is no confusion. Then we have:

r✓ivi,⇡,⇢(s)

=�✓
i

(s) +
X

a2A

X

b2B

⇡(a|s̃)⇢(b|s)r✓i

X

s02S

p(s0|s, a)vi,⇡,⇢(s0)

=�✓
i

(s) +
X

a2A

X

b2B

X

s02S

⇡(a|s̃)⇢(b|s)p(s0|s, a)r✓ivi,⇡,⇢(s0)

=�✓
i

(s) +
X

s02S

p⇡,⇢(s! s0, 1)r✓ivi,⇡,⇢(s0)

=�✓
i

(s) +
X

s02S

p⇡,⇢(s! s0, 1)

"
�✓

i

(s0) +
X

s002S

p⇡,⇢(s0 ! s00, 1)r✓ivi,⇡,⇢(s00)

#

= · · ·

=
X

x2S

1X

k=0

p⇡,⇢(s! x, k)�✓
i

(x) (21)

By plugging in r✓ivi,⇡,⇢(s) =
P

x2S

P1
k=0 p

⇡,⇢(s ! x, k)�✓
i

(x) into the objective function
J i(✓,!), we can get the following results:

r✓iJ i(✓,!) = r✓ivi,⇡,⇢(s1)

=
X

s2S

1X

k=0

p⇡,⇢(s1 ! s, k)�✓
i

(s)

=
X

s2S

⌘(s)�✓
i

(s) ;Let ⌘(s) =
1X

k=0

p⇡,⇢(s1 ! s, k)�✓i(s)

=

 
X

s2S

⌘(s)

!
X

s2S

⌘(s)P
s2S ⌘(s)

�✓
i

(s)

/
X

s2S

⌘(s)P
s2S ⌘(s)

�✓
i

(s) ;

 
X

s2S

⌘(s)

!
is a constant

=
X

s2S

X

a2A

X

b2B

d⇡,⇢(s)r✓i⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b) ;Let d⇡,⇢(s) =
⌘(s)P
s2S ⌘(s)

=
X

s2S

X

a2A

X

b2B

d⇡,⇢(s)
r✓i⇡(a|s̃)
⇡(a|s̃) ⇢(b|s)qi,⇡,⇢(s, a, b)⇡(a|s̃)

=E(s,a,b)⇠p(⇡,⇢)

⇥
qi,⇡,⇢(s, a, b)r✓i log ⇡i(ai|s̃i)

⇤
(22)

Now we calculate the derivative of the state value function on !i:

r!ivi,⇡,⇢(s)

=r!i

"
X

a2A

X

b2B

⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b)
#

=
X

a2A

X

b2B

⇥
r!i⇢(b|s)⇡(a|s̃)qi,⇡,⇢(s, a, b) +r!i⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b) + ⇢(b|s)⇡(a|s̃)r!iqi,⇡,⇢(s, a, b)

⇤

(23)

We let  !i

(s) =
P

a2A

P
b2B

⇥
r!i⇢(b|s)⇡(a|s̃)qi,⇡,⇢(s, a, b)

⇤
and
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�!
i

(s) =
P

a2A

P
b2B

⇥
r!i⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b)

⇤
. Similar tor✓ivi,⇡,⇢(s), we have:

r!ivi,⇡,⇢(s)

= !i

(s) + �!
i

(s) +
X

a2A

X

b2B

"
⇡(a|s̃)⇢(b|s)r✓i

X

s02S

p(s0|s, a)vi,⇡,⇢(s0)
#

= !i

(s) + �!
i

(s) +
X

a2A

X

b2B

X

s02S

⇡(a|s̃)⇢(b|s)p(s0|s, a)r!ivi,⇡,⇢(s0)

= !i

(s) + �!
i

(s) +
X

s02S

p⇡,⇢(s! s0, 1)r!ivi,⇡,⇢(s0)

= !i

(s) + �!
i

(s) +
X

s02S

p⇡,⇢(s! s0, 1)

"
 !i

(s0) + �!
i

(s0) +
X

s02S

p⇡,⇢(s0 ! s00, 1)r!ivi,⇡,⇢(s00)

#

= · · ·

=
X

x2S

1X

k=0

p⇡,⇢(s! x, k)[ !i

(s) + �!
i

(s)] (24)

By plugging in r!ivi,⇡,⇢(s) =
P

x2S

P1
k=0 p

⇡,⇢(s ! x, k)[ !i

(s) + �!
i

(s)] into the objective
function J i(✓,!), we can get the following results:

r!iJ i(✓,!) = r!ivi,⇡,⇢(s1)

=
X

s2S

1X

k=0

p⇡,⇢(s1 ! s, k)
h
 !i

(s) + �!
i

(s)
i

/
X

s2S

X

a2A

X

b2B

d⇡,⇢(s)
⇥
r!i⇡(a|s̃)⇢(b|s)qi,⇡,⇢(s, a, b) +r!i⇢(b|s)⇡(a|s̃)qi,⇡,⇢(s, a, b)

⇤

=E(s,a,b)⇠p(⇡,⇢)

⇥
qi,⇡,⇢(s, a, b)r!i log ⇢(b|s) + qi,⇡,⇢(s, a, b)r!i log ⇡(a|s̃)

⇤

=E(s,a,b)⇠p(⇡,⇢)

⇥
qi,⇡,⇢(s, a, b)r!i log ⇢i(bi|s) + qi,⇡,⇢(s, a, b)r!i log ⇡i(ai|s̃i)

⇤

=E(s,a,b)⇠p(⇡,⇢)


qi,⇡,⇢(s, a, b)r!i log ⇢i(bi|s) + qi,⇡,⇢(s, a, b)

rs̃i⇡
i(ai|s̃i)rbif(s, b

i)r!i⇢(bi|s)
⇡i(ai|s̃i)

�

=E(s,a,b)⇠p(⇡,⇢)

�
qi,⇡,⇢(s, a, b)[r!i log ⇢i(bi|s) +rs̃i log ⇡

i(ai|s̃i)rbif(s, b
i)r!i⇢(bi|s)]

 

(25)

C.2.2 POLICY GRADIENTS FOR DETERMINISTIC POLICES

Theorem C.6 (Policy gradients for deterministic polices in RMAAC for MG-SPA). For each agent
i 2 N and adversary ĩ 2 M using deterministic policies, the policy gradients of the objective
J i(✓,!) with respect to the parameter ✓,! are:

r✓iJ i(✓,!) =
1

T

TX

t=1

raiqi(st, at, bt)r✓i⇡i(s̃it)|ai
t=⇡i(s̃it),b

i
t=⇢i(st) (26)

r!iJ i(✓,!) =
1

T

TX

t=1

⇥
rbiq

i(st, at, bt) + reg
⇤
r!i⇢i(st)|ai

t=⇡i(s̃it),b
i
t=⇢i(st) (27)

where reg = rbit
f(st, bit)raiqi(st, at, bt)rf⇡i(f).
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Proof. Note that we here parameterize all policies ⇡i, ⇢ĩ as deterministic policies. Then we have:

r✓iJ i(✓,!) = Es⇠p(⇡,⇢)

⇥
r✓iqi(s, a, b)

⇤

= Es⇠p(⇡,⇢)

⇥
raiqi(s, a, b)r✓i⇡i(s̃i)

⇤
, (28)

r!iJ i(✓,!) = Es⇠p(⇡,⇢)

⇥
r!iqi(s, a, b)

⇤

= Es⇠p(⇡,⇢)

⇥
raiqi(s, a, b)rs̃i⇡

i(s̃i)rbif(s
i, bi)r!i⇢i(s) +rbiq

i(s, a, b)r!i⇢i(s)
⇤

= Es⇠p(⇡,⇢)

⇥
r!i⇢i(s)

⇥
rbiq

i(s, a, b) + reg
⇤⇤
, (29)

where reg = raiqi(s, a, b)rs̃i⇡
i(s̃i)rbif(s, b

i). When the actors are updated in a mini-batch
fashion (Mnih et al., 2015; Li et al., 2014), (4) and (5) approximate (28) and (29), respectively.

Algorithm 1: RMAAC
1 Randomly initialize the critic network qi(s, a, b|⌘i), the actor network ⇡i(·|✓i), and the adversary

network ⇢i(·|!i) for agent i. Initialize target networks qi0,⇡i0, ⇢i0;
2 for each episode do

3 Initialize a random process N for action exploration;
4 Receive initial state s;
5 for each time step do

6 For each adversary i, select action bi = ⇢i(s) +N w.r.t the current policy and
exploration. Compute the perturbed state s̃i = f(s, bi). Execute actions
ai = ⇡(s̃i) +N and observe the reward r = (r1, ..., rn) and the new state information
s0 and store(s, a, b, s̃, r, s0) in replay buffer D. Set s0 ! s;

7 for agent i=1 to n do

8 Sample a random minibatch of K samples (sk, ak, bk, rk, s0k) from D;
9 Set yik = rik + �qi0(s0k, a

0
k, b

0
k)|ai0

k =⇡i0(s̃ik),b
i0
k =⇢i0(sk);

10 Update critic by minimizing the loss L = 1
K

P
k

⇥
yik � qi(sk, ak, bk)

⇤2;
11 for each iteration step do

12 Update actor ⇡i(·|✓i) and adversary ⇢i(·|!i) using the following gradients
13 ✓i  ✓i + ↵a

1
K

P
kr✓i⇡i(s̃ik)raiqi(sk, ak, bk) where aik = ⇡i(s̃ik),

bik = ⇢i(sk);
14 !i  !i � ↵b

1
K

P
kr!i⇢i(sk)

⇥
rbiq

i(sk, ak, bk) + reg
⇤

where
reg = rai

k
qi(sk, ak, bk)rs̃ik

⇡i(s̃ik), a
i
k = ⇡i(s̃ik), b

i
k = ⇢i(sk);

15 end

16 end

17 Update all target networks: ✓i0  ⌧✓i + (1� ⌧)✓i0, !i0  ⌧!i + (1� ⌧)!i0.
18 end

19 end

C.2.3 PSEUDO CODE OF RMAAC

We provide the Pseudo code of RMAAC with deterministic policies in Algorithm 1. The stochastic
policy version RMAAC is similar to Algorithm 1 but uses different policy gradients.
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D HISTORY-DEPENDENT-POLICY-BASED ROBUST EQUILIBRIUM

It is natural and desirable to consider history-dependent policies in robust MARL with state perturba-
tions, since the agents may not fully capture the state uncertainty from the current state information,
and a policy that only depends on the current state may not be sufficient for ensuring robustness. The
history-dependent policy allows agents to take into account past observations when making decisions
(Yang et al., 2022), which helps agents better reason about the adversaries’ possible strategies and
intentions. This is particularly true in the case of Dec-POMDPs and POSGs, where the agent can-
not fully observe the state. Therefore, we further extend the above Markov-policy-based RE to a
history-dependent-policy-based robust equilibrium and discuss Theorem 2.7 under history-dependent
policies in this subsection. In Section 2.4, we also discuss how the proposed algorithms can adapt to
historical state input. We further validate that a history-dependent-policy-based RE outperforms a
Markov-policy-based RE in Section 3.

In this subsection, we clarify the generalization steps of extending Markov-policy-based RE to history-
dependent-policy-based RE. We first introduce the definition of history-dependent policy with a finite
time horizon h in an MG-SPA. We then give the formal definition of a history-dependent-policy-based
robust equilibrium. Finally, we show that Theorem 2.7 still holds when agents and adversaries adopt
history-dependent policies.

We consider an MG-SPA with a time horizon h, in which adversaries and agents respectively
observe the states and perturbed states in the latest h time steps and adopt history-dependent policies.
More concretely, adversary ĩ can manipulate the corresponding agent i’s state at time t by using a
history-dependent policy ⇢ĩh(·|sh,t) and agent i chooses its actions using a history-dependent policy
⇡i
h(·|s̃ih,t). Specifically, once adversary ĩ gets the true state st at time t, it chooses an action bĩt

according to a history-dependent policy ⇢ĩh : Sh ! �(B ĩ), where sh,t = (st, · · · , st�h+1) 2 Sh is
a concatenated state consists of the latest h time steps of states. According to a perturbation function
f , adversary ĩ perturbs state st to s̃it = f(st, bĩt) 2 S. The adversaries’ joint policy is defined as
⇢h(b|sh) =

Q
ĩ2M ⇢ĩh(b

ĩ|sh). Agent i chooses its action ait for s̃ih,t = (s̃it, · · · , s̃it�h+1) 2 Sh with
probability ⇡i

h(a
i
t|s̃ih,t) according to a history dependent policy ⇡i

h : Sh ! �(Ai). The agents’
joint policy is defined as ⇡h(a|s̃h) =

Q
i2N ⇡i

h(a
i|s̃ih). Then a joint history-dependent policy

dh,⇤ = (⇡h,⇤, ⇢h,⇤) where ⇡h,⇤ = (⇡1
h,⇤, · · · ,⇡N

h,⇤) and ⇢h,⇤ = (⇢1̃h,⇤, · · · , ⇢Ñh,⇤) is said to be in a
history-dependent-policy-based robust equilibrium if and only if, for any i 2 N , ĩ 2M, s 2 S,

v(⇡
�i
h,⇤,⇡

i
h,⇤,⇢

�ĩ
h,⇤,⇢

ĩ
h),i(s) � v(⇡

�i
h,⇤,⇡

i
h,⇤,⇢

�ĩ
h,⇤,⇢

ĩ
h,⇤),i(s) � v(⇡

�i
h,⇤,⇡

i
h,⇢

�ĩ
h,⇤,⇢

ĩ
h,⇤),i(s).

It is worth noting that the main differences between history-dependent-policy-based RE and Markov-
policy-based RE are the definition and notation of policies and states. A Markov-policy-based RE
is a special case of a history-dependent-policy-based RE by adopting the time horizon h = 1. We
also notice that these two REs’ definitions are the same if we remove the subscript h from the
concatenated state and history-dependent policies. Therefore, in this paper, we use notations without
the time horizon subscripts, i.e. Markov policy and Markov-policy-based RE, to avoid redundant
and complicated notations. While in this subsection, we clarify the definitions of history-dependent
policy and history-dependent-policy-based RE and show that Theorem 2.7 still holds when agents
and adversaries use history-dependent policies in the following corollary.
Corollary D.0.1. Theorem 2.7 still holds when all agents and adversaries in an MG-SPA use
history-dependent policies with a finite time horizon.

Proof. From subsection D, we can find the main difference between history-dependent-policy-based
RE and Markov-policy-based RE are the definitions and notations of policies and states. To prove
Theorem 2.7, we construct an EFG based on the current state st. Similarly, to prove Corollary
D.0.1, we construct an EFG based on the concatenated states sh,t and s̃h�1,t�1 that includes the
current state st and historical state information st�1, · · · , st�h+1, s̃t�1, · · · , s̃t�h+1. Notice that
h is a finite number. Hence, the concatenated state space is still finite. We now construct another
extensive-form game in which a centralized nature player (P1) has |S̃| alternatives (branches) to
choose from, whereas a centralized agent (P2) has |A| alternatives, and the order of play is that
the centralized nature player acts before the centralized agent does. The set A is the same as the
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agents’ joint action set in an MG-SPA, set S̃ is a set of perturbed states constrained by a constrained
parameter ✏.

Definition D.1. An extensive-form game based on (v1, · · · , vN ,�v1, · · · ,�vN ) under concatenated
states sh,t = (st, · · · , st�h+1) 2 Sh and s̃h,t�1 = (s̃t�1, · · · , s̃t�h+1) 2 Sh�1 is a finite tree
structure with:

1. A player P1 has a action set S̃ =

Nz }| {
B(✏, s)⇥ · · ·⇥ B(✏, s), with a typical element designed

as s̃. And P1 moves first.

2. Another player P2 has an action set A, with a typical element designed as a. And P2 which
moves after P1.

3. A specific vertex indicating the starting point of the game.

4. A payoff function gs(s̃, a) = (g1s(s̃, a), · · · , gNs (s̃, a)) where s = st = sh,t[1] is the first
element of sh,t, s̃ = s̃t 2 S̃, gis(s̃, a) = ri(s, a, f�1

s (s̃)) +
P

s0 p(s
0|a, f�1

s (s̃))vi(s0)
assigns a real number to each terminal vector of the tree. Player P1 gets �gs(s̃, a) while
player P2 gets gs(s̃, a).

5. A partition of the nodes of the tree into two player sets (to be denoted by N̄1 and N̄2 for P1
and P2, respectively).

6. A sub-partition of each player set N̄ i into information set {⌘ij}, such that the same number
of immediate branches emanates from every node belonging to the same information set,
and no node follows another node in the same information set.

The definitions of behavioral strategy and Nash equilibrium keep the same. Then the behavioral
strategy � for P1 is a mapping from his information sets and action space into a probability simplex,
i.e. �(s̃|sh,t = (st, · · · , st�h+1)) is the probability of choosing s̃ given sh,t. Similarly, the behavioral
strategy � for P2 is �(a|s̃h,t = (s̃, s̃t�1, · · · , s̃t�h+1)), i.e. the probability of choosing action a
when s̃h,t is given.

Now let us check the correctness of Lemma B.6 when EFG is constructed following Definition D.1.
We can find that Sh is a finite state space for any finite time horizon h since Sh is a product topology
on finite spaces. Then Lemma B.6 still holds because the EFG degenerates to a zero-sum two-person
extensive-form game with finite strategies and perfect recall.

Then let us check Lemma B.7. We re-write it in Lemma D.2 in which the behavioral strategy �(a|s̃h,t)
and �(s̃|sh,t) are used. The proof of Lemma D.2 is similar to that of Lemma B.7.

Lemma D.2. Suppose f is a bijection when s is fixed and an NE (�⇤,�⇤) exists for
an EFG (v1, · · · , vN ,�v1, · · · ,�vN ). We define a joint policy (⇡v

⇤ , ⇢
v
⇤) as the joint pol-

icy implied from the NE (�⇤,�⇤) , where ⇢v⇤(b|sh) = �⇤(s̃ = fs(b)|sh),⇡v
⇤(a|s̃h =

(fs(b), s̃t�1, · · · , s̃t�h+1)) = �⇤(a|s̃h). Then the joint policy (⇡v
⇤ , ⇢

v
⇤) satisfies Livi(s) =

ri(⇡v
⇤ ,⇢

v
⇤)
(s) + �

P
s02S p(⇡v

⇤ ,⇢
v
⇤)
(s0|s)vi(s0) for all s 2 S.

Proof. The NE of the extensive-form game (�⇤,�⇤) implies that for all i = 1, · · · , N , s 2 S,� 2
�1,� 2 �2, we have

J i(�,�⇤) � J i(�⇤,�⇤) � J i(�⇤,�),

where J i(�,�) = E[ri(s, a, f�1
s (s̃)) +

P
s0 p(s

0|s, a, f�1
s (s̃))vi(s0)|s̃ ⇠ �(·|sh), a ⇠ �(·|s̃h)]

according to Definition B.5. Let b denote f�1
s (s̃), because f is a bijection when s is fixed, fs(b) =

(fs(b1̃), · · · , fs(bÑ )) is a bijection, and the inverse function f�1
s (s̃) = (f�1

s (s̃1), · · · , f�1
s (s̃N ))
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exists and is a bijection as well, then we have

J i(�⇤,�⇤) =E
"
ri(s, a, f�1

s (s̃)) +
X

s0

p(s0|s, a, f�1
s (s̃))vi(s0)|s̃ ⇠ �⇤(·|sh), a ⇠ �⇤(·|s̃h)

#

=E
"
ri(s, a, b) +

X

s0

p(s0|s, a, b)vi(s0)|b ⇠ �⇤(fs(b)|sh), a ⇠ �⇤(·|(fs(b), s̃t�1, · · · , s̃t�h+1))

#

=E
"
ri(s, a, b) +

X

s0

p(s0|s, a, b)vi(s0)|b ⇠ ⇢v⇤(·|sh), a ⇠ ⇡v
⇤(·|s̃h)

#

Similarly, we have

J i(�⇤,�) = E
"
ri(s, a, b) +

X

s0

p(s0|s, a, b)vi(s0)|b ⇠ ⇢v⇤(·|sh), a ⇠ ⇡v(·|s̃h)
#
,

J i(�,�⇤) = E
"
ri(s, a, b) +

X

s0

p(s0|s, a, b)vi(s0)|b ⇠ ⇢v(·|sh), a ⇠ ⇡v
⇤(·|s̃h)

#
,

where ⇡v, ⇢v are corresponding policies implied from behavioral strategies �,�, respectively. Recall
the definition of the minimax operator of Livi(s), we have, for all s 2 S,

Livi(s) = ri(⇡v
⇤ ,⇢

v
⇤)
(s) + �

X

s02S

p(⇡v
⇤ ,⇢

v
⇤)
(s0|s)vi(s0)

Proposition 2.6 still holds when agents and adversaries adopt history-dependent policies since we
do not require Markov policies in the proof. Propositions 2.5 also holds which can be proved by
utilizing the properties of NE for EFGs defined in Definition D.1. Specifically, in the proof, we use
EFGs defined in Definition D.1 instead of Definition B.3. The subsequent proof of Propositions 2.5
keeps the same.

Then in the proof of Theorem 2.7, we are able to continue to utilize Propositions 2.6 and 2.5. Similarly,
the EFGs used in the proof are replaced by Definition D.1. The definition of the minimax operator
does not constrain the type of policies. The properties of the minimax operator can be continually
used as well. The main body of proof keeps the same. Theorem 2.7 still holds when agents and
adversaries adopt history-dependent policies.
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E EXPERIMENTS

E.1 ROBUST MULTI-AGENT Q-LEARNING (RMAQ)

In this section, we first further introduce the designed two-player game that the reward function,
transition probability function are formally defined. The MG-SPA based on the two-player game is
also further explained. Then we show more experimental results about the proposed robust multi-
agent Q-learning (RMAQ) algorithm, including the training process of the RMAQ algorithm in
terms of the total discounted rewards, the comparison of testing total discounted rewards when using
different policies with different adversaries.

E.1.1 TWO-PLAYER GAME

Figure 6: Two-player game: each player has two states and the same action set with size 2. Under
state s0, two players get the same reward 1 when they choose the same action. At state s1, two players
get same reward 1 when they choose different actions. One state switches to another state only when
two players get reward, i.e. two players always stay in the current state until they get reward.

Look at Figure 6 (same as Figure 3 in the main context.), this is how the designed two-player game
run. The reward function r and transition probability function p are defined in follows.

These two players get same rewards all the time, i.e. they share a reward function r.

ri(s, a1, a2) =

8
>>>><

>>>>:

1, a1 = a2, and s = s0

1, a1 6= a2, and s = s1

0, a1 6= a2, and s = s0

0, a1 = a2, and s = s1

(30)

The state does not change until these two players get a positive reward. So the transition probability
function p is

p(s1|s, a1, a2) =

8
>>>><

>>>>:

1, a1 = a2, and s = s0

0, a1 6= a2, and s = s0

1, a1 = a2, and s = s1

0, a1 6= a2, and s = s1

p(s0|s, a1, a2) =

8
>>>><

>>>>:

0, a1 = a2, and s = s0

1, a1 6= a2, and s = s0

0, a1 = a2, and s = s1

1, a1 6= a2, and s = s1
(31)

Possible Nash Equilibrium can be ⇡⇤
1 = (⇡1

1 ,⇡
2
1) or ⇡⇤

2 = (⇡1
2 ,⇡

2
2) where

⇡1
1(a

1|s) =

8
>>>><

>>>>:

1, a1 = 1, and s = s0

0, a1 = 0, and s = s0

1, a1 = 1, and s = s1

0, a1 = 0, and s = s1

⇡2
1(a

2|s) =

8
>>>><

>>>>:

1, a2 = 1, and s = s0

0, a2 = 0, and s = s0

0, a2 = 1, and s = s1

1, a2 = 0, and s = s1

(32)

⇡1
2(a

1|s) =

8
>>>><

>>>>:

0, a1 = 1, and s = s0

1, a1 = 0, and s = s0

0, a1 = 1, and s = s1

1, a1 = 0, and s = s1

⇡2
2(a

2|s) =

8
>>>><

>>>>:

0, a2 = 0, and s = s0

1, a2 = 1, and s = s0

1, a2 = 0, and s = s1

0, a2 = 1, and s = s1

(33)
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NE ⇡⇤
1 means player 1 always selects action 1, player 2 selects action 1 under state s0 and action 0

under state s1. NE ⇡⇤
2 means player 1 always selects action 0, player 2 selects action 0 under state s0

and action 0 under state s1.

According to the definition of MG-SPA, we add two adversaries for each player to perturb the player’s
observations. And adversaries get negative rewards of players. We let adversaries share a same action
space B1 = B2 = {0, 1}, where 0 means do not disturb, 1 means change the observation to the
opposite one. Therefore, the perturbed function f in this MG-SPA is defined as:

8
>><

>>:

f(s0, b = 0) = s0
f(s1, b = 0) = s1
f(s0, b = 1) = s1
f(s1, b = 1) = s0

(34)

Obviously, f is a bijective function when s is given. And the constraint parameter ✏ = ||S||, where
||S|| := max |s� s0|8s,s02S , i.e. no constraints for adversaries’ power.

A Robust Equilibrium (RE) of this MG-SPA would be d̃⇤ = (⇡̃1
⇤, ⇡̃

2
⇤, ⇢̃

1
⇤, ⇢̃

2
⇤), where

8
>>>><

>>>>:

⇡̃1
⇤(a

1|s) = 0.5, 8s 2 S

⇡̃2
⇤(a

2|s) = 0.5, 8s 2 S

⇢̃1⇤(b
1|s) = 0.5, 8s 2 S

⇢̃2⇤(b
2|s) = 0.5, 8s 2 S

(35)

E.1.2 TRAINING PROCEDURE

In Figure 7, we show the total discounted rewards in the function of training episodes. We set learning
rate as 0.1 and train our RMAQ algorithm for 400 episodes. And each episode contains 25 training
steps. We can see the total discounted rewards converges to 50, i.e. the optimal value in the MG-SPA,
after about 280 episodes or 7000 steps.

Figure 7: The total discounted rewards converges to the optimal value after about 280 training
episodes.

E.1.3 TESTING COMPARISON

We further test well-trained RE policy when ’strong’ adversaries exists. ’Strong’ adversary means its
probability of modifying agents’ observations is larger than the probability of no perturbations in
state information. We make two agents play the game using 3 different policies for 1000 steps under
different adversaries. And the accumulated rewards, total discounted rewards are calculated. We use
the Robust Equilibrium (of the MG-SPA), the Nash Equilibrium (of the original game) and a baseline
policy and report the result in Figure 8. The vertical axis is the accumulated/discounted reward, and
the horizon axis is the probability that the adversary will attack/perturb the state. And we let these
two adversaries share a same policy. We can see as the probability increase, the accumulated and
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discounted rewards of RE agents are stable but those rewards of NE agents and baseline agents are
keep decreasing. This experiment is to validate the necessity of RE policy which is not only robust to
the worst-case or adversarial state uncertainties, but also robust to some worse but note the worst
cases.

Figure 8: RE policy outperforms other polices in terms of total discounted rewards and total accumu-
lated rewards when strong adversaries exist.
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E.2 ROBUST MULTI-AGENT ACTOR-CRITIC (RMAAC)

In this section, we first briefly introduce the multi-agent environments we use in our experiments. Then
we provide more experimental results and explanations, such as the testing results under a cleaned
environment (accurate state information can be attained) and a randomly perturbed environment
(injecting standard Gaussian noise in agents’ observations). In the last subsection, we list all hyper-
parameters we used in the experiments, as well as the baseline source code.

E.2.1 MULTI-AGENT ENVIRONMENTS

Figure 9: Illustrations of the experimental scenarios and some games we consider, including a)
Cooperative communication b) Cooperative navigation c) Predator prey d) Keep away e) Physical
deception f) Navigate communication

Cooperative communication (CC): This is a cooperative game. There are 2 agents and 3 landmarks
of different colors. Each agent wants to get to their target landmark, which is known only by other
agent. Reward is collective. So agents have to learn to communicate the goal of the other agent, and
navigate to their landmark.

Cooperative navigation (CN): This is a cooperative game. There are 3 agents and 3 landmarks.
Agents are rewarded based on how far any agent is from each landmark. Agents are penalized if
they collide with other agents. So, agents have to learn to cover all the landmarks while avoiding
collisions.

Physical deception (PD): This is a mixed cooperative and competitive task. There are 2 collaborative
agents, 2 landmarks, and 1 adversary. Both the collaborative agents and the adversary want to reach
the target, but only collaborative agents know the correct target. The collaborative agents should
learn a policy to cover all landmarks so that the adversary does not know which one is the true target.

Keep away (KA): This is a competitive task. There is 1 agent, 1 adversary, and 1 landmark. The
agent knows the position of the target landmark and wants to reach it. Adversary is rewarded if it
is close to the landmark, and if the agent is far from the landmark. Adversary should learn to push
agent away from the landmark.

Predator prey (PP): This is a mixed game known as predator-prey. Prey agents (green) are faster
and want to avoid being hit by adversaries (red). Predator are slower and want to hit good agents.
Obstacles (large black circles) block the way.

Navigate communication (NC): This is a cooperative game which is similar to Cooperative
communication. There are 2 agents and 3 landmarks of different colors. A agent is the ‘speaker’ that
does not move but observes goal of other agent. Another agent is the listener that cannot speak, but
must navigate to correct landmark.
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Predator prey+ (PP+): This is an extension of the Predator prey environment by adding more agents.
There are 2 preys, 6 adversaries, and 4 landmarks. Prey agents are faster and want to avoid being hit
by adversaries. Predator are slower and want to hit good agents. Obstacles block the way.

E.2.2 EXPERIMENTS HYPER-PARAMETERS

In Table 3, we show all hyper-parameters we use to train our policies and baselines. We also provide
our source code in the supplementary material. The source code of M3DDPG (Li et al., 2019) and
MADDPG (Lowe et al., 2017) accept the MIT License which allows any person obtaining them to
deal in the code without restriction, including without limitation the rights to use, copy, modify, etc.
More information about this license refers to https://github.com/openai/maddpg and
https://github.com/dadadidodi/m3ddpg.

Table 3: Hyper-parameters
Parameter RMAAC M3DDPG MADDPG

optimizer Adam Adam Adam
learning rate 0.01 0.01 0.01
adversarial learning rate 0.005 / /
discount factor 0.95 0.95 0.95
replay buffer size 106 106 106

number of hidden layers 2 2 2
activation function Relu Relu Relu
number of hidden unites per layer 64 64 64
number of samples per minibatch 1024 1024 1024
target network update coefficient ⌧ 0.01 0.01 0.01
iteration steps 20 20 20
constraint parameter ✏ 0.5 / /
episodes in training 10k 10k 10k
time steps in one episode 25 25 25

E.2.3 MORE TESTING RESULTS

In this subsection, we provide the testing results under a cleaned environment (accurate state informa-
tion can be attained) and a randomly disturbed environment (injecting standard Gaussian noise into
agents’ observations).

In Figure 10, we show the comparison of mean episode testing rewards under a cleaned environment
by using 4 different methods, RM1 denotes our RMAAC policy trained with the linear noise format
f1, RM2 denotes our RMAAC policy trained with the Gaussian noise format f2, MA denotes
MADDPG (https://github.com/openai/maddpg), M3 denotes M3DDPG (https://
github.com/dadadidodi/m3ddpg). We can see only in the Predator prey scenario, our
method outperforms others under a cleaned environment. In Figure 11, we can see our method
outperforms others in the Cooperative communication, Keep away and Predator prey scenarios, and
achieves a similar performance as others in the Cooperative navigation scenario under a randomly
perturbed environment. In Table 4 and 5, we also report the variances of testing rewards in different
scenarios under different environment settings. Our method has lower variance in three of five
scenarios.

This kind of performance also happens in robust optimization (Beyer & Sendhoff, 2007; Boyd &
Vandenberghe, 2004; Miao et al., 2021) and distributionally robust optimization (Delage & Ye, 2010;
Rahimian & Mehrotra, 2019; He et al., 2020; 2023) that the robust solution outperforms other non-
robust solutions in the worst-case scenario. Similarly, for single-agent RL with state perturbations,
robust policies perform better compared with baselines under state perturbations (Zhang et al.,
2020b). But the robust solutions may get relatively poor performance compared with other non-robust
solutions when there is no uncertainty or perturbation in the environment even in a single agent RL
problem (Zhang et al., 2020b). Improving the robustness of the trained policy may sacrifice the
performance of the decisions when the perturbations or uncertainties do not happen. That’s why our
RMAAC policies only beat all baselines in one scenario when the state uncertainty is eliminated.
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Figure 10: Comparison of episode mean testing rewards using different algorithms and different
perturbation functions, under cleaned environments.

Figure 11: Comparison of episode mean testing rewards using different algorithms and different
perturbation functions, under randomly perturbed environments.

However, for many real-world systems we can not assume the agents always have accurate information
of the states. Hence, improving the robustness of the policies is very important for MARL as we
explained in the introduction of this work. It is worth noting that our RMAAC policies also work
well in environments with random perturbations instead of worst-case perturbations. As shown in
Fig. 11, the performance of our RMAAC policies outperforms the baselines in most scenarios when
random noise is introduced into the state.

MAPPO is a multi-agent reinforcement learning algorithm which performs well in cooperative
multi-agent settings (Yu et al., 2021a). We use MP to denote MAPPO (https://github.com/
marlbenchmark/on-policy.). In Figure 12, we compare its performance with our RMAAC
algorithm in two cooperative scenarios of MPE. The details of scenarios such as Cooperative
navigation, Navigate communication can be found in the last section. We can see that under the
optimally perturbed environment, RMAAC outperforms MAPPO in all scenarios.

In Figure 13 and Table 6, we compare the episode mean testing rewards and variances under different
environments in the complicated scenario with a large number of agents between different algorithms.
We adopt Gaussian noise format in training RMAAC polices. We can see our method has lower
variance under two of three environments and has the highest rewards under all environments.

Table 4: Variance of testing rewards under cleaned environment
Algorithms RM with f1 RM with f2 M3 MA

Cooperative communication (CC) 0.383 0.376 0.295 0.328
Cooperative navigation (CN) 0.413 0.361 0.416 0.376

Physical deception (PD) 0.175 0.165 0.133 0.143
Keep away (KA) 0.137 0.134 0.17 0.145

Predator prey (PP) 5.139 1.450 4.681 4.725
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Table 5: Variance of testing rewards under randomly perturbed environment
Algorithms RM with f1 RM with f2 M3 MA

Cooperative communication (CC) 0.592 0.547 1.187 0.937
Cooperative navigation (CN) 0.336 0.33 0.328 0.321

Physical deception (PD) 0.222 0.292 0.209 0.184

Keep away (KA) 0.155 0.155 0.166 0.161
Predator prey (PP) 4.629 2.752 3.644 2.9

Figure 12: Comparison of episode mean testing rewards using MAPPO and RMAAC under optimally
perturbed environments.

Figure 13: Comparison of episode mean testing rewards using different algorithms under different
environments in Predator prey+.

Table 6: Variance of testing rewards under different environments in Predator prey+.
Algorithm RM M3 MA

Optimally Perturbed Env 4.199 4.046 3.924

Randomly Perturbed Env 4.664 5.774 6.191
Cleaned Env 3.928 5.521 6.006
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