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ABSTRACT

Recent studies have shown that the regret of reinforcement learning (RL) can be
polylogarithmic in the planning horizon H . However, it remains an open question
whether such a result holds for adversarial RL. In this paper, we answer this ques-
tion affirmatively by proposing the first horizon-free policy search algorithm. To
tackle the challenges caused by exploration and adversarially chosen reward over
episodes, our algorithm employs (1) a variance-uncertainty-aware weighted least
square estimator for the transition kernel; and (2) an occupancy measure-based
technique for the online search of a stochastic policy. We show that our algorithm
achieves an Õ

(
(d + log |S|)

√
K + d2

)
regret with full-information feedback1,

where d is the dimension of a known feature mapping linearly parametrizing the
unknown transition kernel of the MDP, K is the number of episodes, |S| is the
cardinality of the state space. We also provide hardness results to justify the near
optimality of our algorithm and the inevitability of log |S| in the regret bound.

1 INTRODUCTION

Learning in episodic Markov Decision Processes (MDPs) (Altman, 1999; Dann & Brunskill, 2015;
Neu & Pike-Burke, 2020) is a key problem in reinforcement learning (RL) (Szepesvári, 2010; Sutton
& Barto, 2018), where an agent sequentially interacts with an environment with a fixed horizon
length H . Each action at the agent takes at state st incurs some reward r(st, at), and takes it
into the next state st+1. The agent will restart in the same environment after every H time steps.
Although the curse of horizon has been deemed as a challenge in episodic RL (Jiang & Agarwal,
2018), a recent line of works have developed near-optimal algorithms to achieve a regret with no
polynomial dependence on H for both tabular MDPs (Zhang et al., 2021a) and RL with linear
function approximation (Zhang et al., 2021b; Kim et al., 2022; Zhou & Gu, 2022). This suggest
that the regret of episodic RL can get rid of linear dependency on H . Nevertheless, these horizon-
free algorithms are only applicable to learning MDPs where the reward function is either fixed or
stochastic, yet in many real-world scenarios, we have cope with the adversarially changing reward
(Even-Dar et al., 2009; Yu et al., 2009; Zimin & Neu, 2013). However, little is known about horizon-
free RL in adversarial MDPs. Thus, the following question remains open.

Can we design near-optimal horizon-free RL algorithms under adversarial reward and unknown
transition with function approximation employed?

In this paper, we affirmatively answer the question for linear mixture MDPs with adversarial reward
under full-information feedback (Cai et al., 2020; He et al., 2022b). We propose a new algorithm
termed Horizon-Free Occupancy-Measure Guided Optimistic Policy Search (HF-O2PS). Following
Cai et al. (2020); He et al. (2022b), we use online mirror descent (OMD) to update the policies and
value-targeted regression (VTR) (Jia et al., 2020; Ayoub et al., 2020) to learn the transition. Never-
theless, we show that the value-function-based mirror descent inevitably introduces the polynomial
dependency on the planning horizon H in the regret upper bound. To address this issue, inspired
by Rosenberg & Mansour (2019a); Jin et al. (2020a) and Kalagarla et al. (2020), we use occupancy
measure as a proxy of the policy and conduct OMD on the occupancy measures to update. Like Jin

∗Equal Contribution
1Here Õ(·) hides logarithmic factors of H , K and 1/δ.

1



Published as a conference paper at ICLR 2024

et al. (2020a), we maintain a confidence set of the transition kernel and utilize constrained OMD to
handle the unknown transition. To achieve a horizon-free regret bound, we also adapt the high-order
moment estimator in Zhou & Gu (2022) to stochastic policies and obtain a tighter Bernstein-type
confidence set. The regret of our algorithm can be upper bounded by Õ(d

√
K + d2) in the first K

episodes with high probability, where d is the dimension of the feature mapping. To the best of our
knowledge, our algorithm is the first algorithm to achieve horizon-free regret in learning adversarial
linear mixture MDPs. Our three main contributions are summarized as follows:

• We propose a new algorithm, HF-O2PS, for linear mixture MDPs with adversarial reward uni-
formly bounded by 1/H. Compared to the previous works (e.g., Cai et al. (2020); He et al. (2022b)),
HF-O2PS use occupancy-measure-based OMD rather than direct policy optimization. HF-O2PS
also use the high-order moment estimator to further facilitate the learning of the transition kernel.

• Our analysis shows that HF-O2PS achieves a regret bound Õ(d
√
K+d2), where K is the number

of episodes and d is the dimension of the feature mapping. As far as we know, HF-O2PS is the
first algorithm for adversarial RL achieving a horizon-free regret upper bound.

• We also provide hardness results in addition to the regret upper bound. First we show that an
unbounded S will result in a lower bound asymptotically linear in

√
H , which justifies our as-

sumption of |S| <∞. We also provide a minimax lower bound of Ω̃(d
√
K), which manifests the

near optimality of HF-O2PS.

Notation We denote scalars by lowercase letters, and denote vectors and matrices by lower
and uppercase boldface letters respectively. We use [n] to denote the set {1, . . . , n}, and [n] =
{0, . . . , n−1}. Given a Rd×d ∋ Σ ≻ 0 and vector x ∈ Rd, we denote the vector’s L2-norm by ∥x∥2
and define ∥x∥Σ =

√
x⊤Σx. We employ standard asymptotic notations including O(·),Ω(·),Θ(·),

and further use Õ(·) to hide polylogarithmic factors. Let 1{·} denote the indicator function, and
[x][a,b] denote the truncation function x · 1{a ≤ x ≤ b} + a · 1{x < a} + b · 1{x > b} where
a ≤ b ∈ R, x ∈ R. Let ∆(·) represent the probability simplex over a finite set.

2 RELATED WORK

Horizon-free RL RL is once believed to be far more harder than contextual bandits. However,
recent works has begun to overthrow this long-standing stereotype (Wang et al., 2020a). To achieve a
fair comparison with CB, there are two options. One is to assume the total reward is bounded by one
in each episode (Jiang & Agarwal, 2018). Under such assumption, It is possible to obtain entirely
H-independent regret bounds in the tabular setting (Zhang et al., 2021a; 2022). Recent works further
proposed horizon-free algorithms for linear mixture MDPs and linear MDPs (Zhang et al., 2021b;
Kim et al., 2022; Chen et al., 2022; Zhou & Gu, 2022). Though near-optimal algorithms have been
proposed to learn a Dirac policy with Õ(d

√
K + d2) regret under linear function approximation

(Zhou & Gu, 2022), and similar regret guarantees with no poly(H) dependency has been established
in various settings (Zhang et al., 2020; Tarbouriech et al., 2021; Zhou et al., 2022), any of the above
work can not even learn a nontrivial categorical policy. Another assumption is to assume that the
reward is uniformly bounded by 1/H (Assumption 2, Zhang et al., 2021a). We employ the later
assumption to approach MDPs with large state space and adversarial reward and learn stochastic
policies in a horizon-free manner.

RL with adversarial reward A long line of works (Even-Dar et al., 2009; Yu et al., 2009; Neu
et al., 2010; 2012; Zimin & Neu, 2013; Dick et al., 2014; Rosenberg & Mansour, 2019a; Cai et al.,
2020; Jin et al., 2020a; Shani et al., 2020; Luo et al., 2021; He et al., 2022b) has studied RL with ad-
versarial reward, where the reward is selected by the environment at the beginning of each episode.
To cope with adversarial reward, there are generally two iterative schemes. The first scheme is the
policy-optimization-based method (Neu et al., 2010; Cai et al., 2020; Luo et al., 2021; He et al.,
2022b), where the policy is updated according to the estimated state-value function directly. Fol-
lowing this spirit, under bandit feedback, Neu et al. (2010) achieves a regret upper bound of Õ(T 2/3)

with known transition, and Shani et al. (2020) achieves Õ(
√
S2AH4K2/3) regret under unknown

transition. Under full-information feedback, Cai et al. (2020) establish the first sublinear regret
guarantee and POWERS in He et al. (2022b) achieves a near-optimal Õ(dH

√
K) regret for adver-

sarial linear mixture MDPs. The second scheme is occupancy-measure-based method (Zimin &
Neu, 2013; Rosenberg & Mansour, 2019a;b; Jin et al., 2020a; Luo et al., 2021; Neu & Olkhovskaya,
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2021; Dai et al., 2022). The policy is updated under the guidance of optimization of occupancy mea-
sure. Guided by this scheme, under known transition, Zimin & Neu (2013) achieves Õ(

√
HSAK)

regret for bandit feedback and near-optimal Õ(H
√
K) regret for full-information feedback. For

unknown transition and bandit feedback, an Õ(HS
√
AK) regret is achieved by Jin et al. (2020a).

Under linear function approximation with bandit feedback, Õ(H
√
dK) regret is achieved achieved

for linear MDPs (Neu & Olkhovskaya, 2021) and Õ(dS2
√
K +

√
HSAK) regret is achieved for

linear mixture MDPs (Zhao et al., 2023). In this work, we use occupancy-measure-based method to
deal with adversarial reward and focus on the setting of linear mixture MDPs1 with full-information
feedback.

3 PRELIMINARIES

We study RL for episodic linear mixture MDPs with adversarial reward. We introduce the definitions
and necessary assumptions as follows.

3.1 MDPS WITH ADVERSARIAL REWARD

We denote a homogeneous, episodic MDP by a tuple M = M(S,A, H, {rk}k∈[K],P), where S is
the state space andA is the action space, H is the length of the episode, rk : S×A → [0, 1/H] is the
reward function at the k-th episode, and P(·|·, ·) is the transition kernel from a state-action pair to
the next state. rk is adversarially chosen by the environment at the beginning of the k-th episode and
revealed to the agent at the end of that episode. A policy π = {πh}Hh=1 is a collection of functions
πh : S → ∆(A).

3.2 VALUE FUNCTION AND REGRET

For (s, a) ∈ S × A, we define the action-value function Qπ
k,h and (state) value function V π

k,h as
follows:

Qπ
k,h(s, a) = rk(s, a) + E

[∑H
h′=h+1r

k(sh′ , ah′)

∣∣∣∣sh = s, ah = a

]
,

V π
k,h(s) = Ea∼πh(·|s)

[
Qπ

k,h(s, a)
]
, V π

k,H+1(s) = 0.

Here in the definition of Qπ
k,h, we use E[·] to denote the expectation over the state-action sequences

(sh, ah, sh+1, ah+1, .., sH , aH), where sh = s, ah = a and sh′+1 ∼ P(·|sh′ , ah′), ah′+1 ∼
πh′+1(·|sh′+1) for all h′ = h, ...H − 1. For simplicity, for any function V : S → R, we denote

[PV ](s, a) = Es′∼P(·|s,a)V (s′), [VV ](s, a) = [PV 2](s, a)−
(
[PV ](s, a)

)2
,

where V 2 is a shorthand for the function whose value at state s is
(
V (s)

)2
. Using this notation, for

policy π, we have the following Bellman equality Qπ
k,h(s, a) = rk(s, a) + [PV π

k,h+1](s, a).
In the online setting, the agent determines a policy πk and start from a fixed state s1 at the beginning
of episode k. Then at each stage h ∈ [H], the agent takes an action ah ∼ πk

h(·|skh) and observes the
next state skh+1 ∼ P(·|skh, akh). For the adversarial reward, the goal of RL is to minimize the expected
regret, which is the expected loss of the algorithm relative to the best-fixed policy in hindsight (Cesa-
Bianchi & Lugosi, 2006). We denote the optimal policy as π∗ = supπ

∑K
k=1 V

π
k,1(s1). Thus the

expected regret can be written as:

Regret(K) =
∑K

k=1

(
V ∗
k,1(s1)− V πk

k,1 (s1)
)
,

where we use V ∗
k,1(·) to denote V π∗

k,1(·), which is the expected total reward in episode k under the
optimal policy.
In this paper, we focus on achieving a horizon-free bound on Regret(K). Two assumptions are
crucial to this end. The first assumption gives a reward shaping reciprocal of the planning horizon
length H so as to offset the dependence on H contributed by reward scaling (Jiang & Agarwal,
2018).
Assumption 3.1 (Dann & Brunskill (2015)). rk(sh, ah) ≤ 1/H,∀h ∈ [H] for any trajectory
{sh, ah}Hh=1 induced by ah ∼ πh(·|sh) and sh+1 ∼ P(·|sh, ah) for any policy π in every episode.

1Due to limited space, we defer previous works on RL with function approximation to Appendix A.
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The intuition behind Assumption 3.1 is the absence of spiky reward in all episodes. The next assump-
tion assumes the transition kernel P enjoys a linear representation w.r.t. a triplet feature mapping.
We define the linear mixture MDPs (Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021; Zhou &
Gu, 2022) as follows.2

Assumption 3.2 (Linear mixture MDP). A MDP M = (S,A, H, {rk}k∈[K],P) is called an episode
B-bounded linear mixture MDP, if there exists a known feature mapping ϕ(s′|s, a) : S ×A×S →
Rd and an unknown vector θ∗ ∈ Rd such that P(s′|s, a) = ⟨ϕ(s′|s, a),θ∗⟩ for any state-action-
next-state triplet (s, a, s′). We assume ∥θ∗∥2 ≤ B and for any bounded function V : S → [0, 1] and
any (s, a) ∈ S ×A, we have ||ϕV (s, a)||2 ≤ 1, where ϕV (s, a) =

∑
s′∈S ϕ(s′|s, a)V (s′).

Linear mixture MDPs have the following key properties. For any function V : S → R and any
state-action pair (s, a) ∈ S × A, the conditional expectation of V over P(·|s, a) is a linear function
of θ∗, i.e., [PV ](s, a) = ⟨ϕV (s, a),θ

∗⟩. Meanwhile, the conditional variance of V over P(s, a) is
quadratic in θ∗, i.e., [VV ](s, a) = ⟨ϕV 2(s, a),θ∗⟩ − [⟨ϕV (s, a),θ

∗⟩]2.

3.3 OCCUPANCY MEASURE

We introduce occupancy measure (Altman, 1999; Jin et al., 2020a) as a proxy of the stochastic policy,
which will be used in our algorithm design. The occupancy measure zπ = {zπh : S × A × S →
[0, 1]}Hh=1 associated with a stochastic policy π and a transition function P is defined as:

zπh (s, a, s
′;P) = E[1{sh = s, ah = a, sh+1 = s′}|π,P].

A reasonable occupancy measure zπ must satisfy the following constraints:∑
s∈S,a∈A,s′∈S

zπh (s, a, s
′) = 1. // Normalization (3.1)

∑
a∈A,y∈S

zπh (s, a, y) =
∑

x∈S,b∈A

zπh−1(x, b, s),∀(s, h) ∈ S × [2 : H]. // Same marginal occupancy

(3.2)

zπ1 (s, a, s
′) = π1(a|s)1 {s = s1}P(s′|s, a),∀(s, a) ∈ S ×A. // Initial distribution (3.3)

Lemma 3.3 (Rosenberg & Mansour (2019a)). If a set of functions zπ = {zπh : S × A × S →
[0, 1]}Hh=1 satisfies (3.1) and (3.2), then it is a valid occupancy measure. This occupancy measure is
associated with the following induced transition function P, and induced policy π:

Ph(s
′|s, a) = zπh (s, a, s

′)∑
s′′∈S zπh (s, a, s

′′)
, πh(a|s) =

∑
s′∈S zπh (s, a, s

′)∑
a′∈A,x∈S zπh (s, a

′, x)
, (3.4)

for all (s, a, s′, h) ∈ S ×A× S × [H].

We use z∗ to denote the occupancy measure induced by the optimal fixed-policy in hindsight, π∗

and the true transition function, P.

4 THE PROPOSED ALGORITHM

In this section, we demonstrate HF-O2PS for learning episodic linear mixture MDPs with adversarial
reward. At a high level, in each episode, HF-O2PS can be divided into two steps. HF-O2PS firstly
updates the policy based on observed data, then uses VTR (Jia et al., 2020; Ayoub et al., 2020)
to learn the transition model. To achieve a horizon-free regret, we use occupancy-measure-guided
mirror descent rather than proximal policy optimization to update the policy, and adopt variance-
uncertainty-aware linear regression and high-order moment estimator . See Section 6 for details.

4.1 OMD ON OCCUPANCY MEASURE

At the beginning of each episode, following Jin et al. (2020a) and Kalagarla et al. (2020), HF-O2PS
uses occupancy measures to update the policy based on the observed data. First we calculate the
occupancy measure of this episode {zkh}Hh=1 based on the occupancy measure {zk−1

h }Hh=1 and the
reward {rk−1

h }Hh=1 of the last episode. To utilize learned information, we hope that the transition
induced by the new occupancy measure is close to our estimation. Given the confidence set of θ∗

2We inevitably only consider finite S and A due to technical reasons (see Section 5 for details).
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Algorithm 1 HF-O2PS
Require: Regularization parameter λ, an upper bound B of the ℓ2-norm of θ∗, confidence radius
{β̂k}k≥1, level M , variance parameters ξ, γ, [M ] = {0, . . . ,M − 1}, learning rate α

1: Set initial occupancy measure
{
z0h(·, ·, ·)

}H
h=1

as uniform distribution and assume r0(·, ·) = 0.
2: For m ∈ [M ], set θ̂1,m ← 0, Σ̃0,H+1,m ← λI, b̃0,H+1,m ← 0. Set V1,H+1(·)← 0, C1 ← {θ :∥∥θ∥∥ ≤ β1}
3: for k = 1, . . . ,K do
4: Set Ck ← {θ :

∥∥Σ̂1/2
k,0 (θ − θ̂k,0)

∥∥
2
≤ β̂k}, Dk as in (4.1)

5: πk ← Algorithm 2(zk−1,Dk, α)
6: for h = 1, . . . ,H do
7: Take action akh ∼ πk

h(·|skh) and receive next state skh+1 ∼ Ph(·|skh, akh)
8: Observe the adversarial reward function rk(·, ·)
9: end for

10: for h = H, . . . , 1 do
11: Set Qk,h(·, ·), Vk,h(·) as in (4.4) and (4.5)
12: end for
13: For m ∈ [M ], set Σ̃k,1,m ← Σ̃k−1,H+1,m

14: for h = 1, . . . ,H do
15: For m ∈ [M ], denote ϕk,h,m = ϕV 2m

k,h+1
(skh, a

k
h).

16: Set {σ̄k,h,m}m∈[M ]
←Algorithm 3({ϕk,h,m, θ̂k,m, Σ̃k,h,m, Σ̂k,m}m∈[M ]

, β̂k, ξ, γ)

17: For m ∈ [M ], set Σ̃k,h+1,m ← Σ̃k,h,m + ϕk,h,mϕ⊤
k,h,m/σ̄2

k,h,m

18: For m ∈ [M ], set b̃k,h+1,m ← b̃k,h,m + ϕk,h,mV 2m

k,h+1(s
k
h+1)/σ̄

2
k,h,m

19: end for
20: For m ∈ [M ], set Σ̂k+1,m ← Σ̃k,H+1,m, b̂k+1,m ← b̃k,H+1,m, θ̂k+1,m ← Σ̂−1

k+1,mb̂k+1,m

21: end for

Algorithm 2 Mirror Descent on Occupancy Measure
Require: the occupancy measure of last iteration zk−1, constraint set Dk, learning rate α

1: for (h, s, a, s′) ∈ [H]× S ×A× S do
2: Set wk

h(s, a, s
′)← zk−1

h (s, a, s′) exp{αrk−1
h (s, a)}

3: Set zk ← argminz∈Dk
DΦ(z, w

k)

4: Set πk
h(a|s)←

∑
x zk

h(s,a,x)∑
a,y zk

h(s,a,y)

5: end for

at the beginning of k-th episode, Ck (Line 4, Algorithm 1), we construct the feasible domain of
occupancy measure Dk such that for all occupancy lies in Dk, the transition it induced lies in the
confidence set Ck.3

Definition 4.1. Given the confidence set Ck of parameter θ∗, we define the feasible occupancy
measure set Dk ⊆ R|S|2|A| as follows:

Dk =
{
zh(·, ·, ·) ∈ R|S|2|A|, h ∈ [H]

∣∣ zh(·, ·, ·) ≥ 0;∑
a,y

zh(s, a, y) =
∑
a,y

zh−1(y, a, s),∀(s, h) ∈ S × [2 : H];

∑
a,s′

z1(s, a, s
′) = 1{s = s1},∀s ∈ S;∀(s, a, h) ∈ S ×A× [H], s.t.

∑
y∈S

zh(s, a, y) > 0,

∃ θ̄s,a,h,k ∈ Ck, s.t.
zh(s, a, ·)∑

y∈S zh(s, a, y)
= ⟨θ̄s,a,h,k,ϕ(·|s, a)⟩

}
. (4.1)

3We detail the intuition behind Definition 4.1 and computational issues of Line 3 in Appendix E.
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Algorithm 3 High-order moment estimator (HOME) (Zhou & Gu, 2022)

Require: Features {ϕk,h,m}m∈[M ]
, vector estimators {θ̂k,m}m∈[M ]

, covariance matrix

{Σ̂k,m}m∈[M ]
and {Σ̃k,h,m}m∈[M ]

, confidence radius β̂k, ξ, γ
1: for m = 0, . . . ,M − 2 do
2: Set [V̄k,mV 2m

k,h+1](s
k
h, a

k
h)←

[〈
ϕk,h,m+1, θ̂k,m+1

〉]
[0,1]
−
[〈
ϕk,h,m, θ̂k,m

〉]2
[0,1]

3: Set Ek,h,m ← min
{
1, 2β̂k

∥∥ϕk,h,m

∥∥
Σ̂−1

k,m

}
+min

{
1, β̂k

∥∥ϕk,h,m+1

∥∥
Σ̂−1

k,m+1

}
4: Set σ̄2

k,h,m ← max
{
[V̄k,mV 2m

k,h+1](s
k
h, a

k
h) + Ek,h,m, ξ2, γ2

∥∥ϕk,h,m

∥∥
Σ̃−1

k,h,m

}
5: end for
6: Set σ̄2

k,h,M−1 ← max
{
1, ξ2, γ2

∥∥ϕk,h,M−1

∥∥
Σ̃−1

k,h,M−1

}
Ensure: {σ̄k,h,m}m∈[M ]

We define the standard mirror map Φ for the probability simplex z and the corresponding Bregman
divergence DΦ as follows:

Φ(z) =

H∑
h=1

∑
s,a,s′

zh(s, a, s
′)(log zh(s, a, s

′)−1), DΦ(x, y) = Φ(x)−Φ(y)−⟨x−y,∇Φ(y)⟩. (4.2)

And the following lemma shows that our mirror map is 1/H-strongly convex.

Lemma 4.2. Φ is 1/H-strongly convex on the space of occupancy measure with respect to
∥∥ · ∥∥

1
,

thus strongly convex on Dk.

The basic idea of updating zk is to minimize the trade-off between the value-loss and the distance
from the occupancy measure of last episode. Formally we have:

zk = arg min
z∈Dk

α⟨zk−1, rk−1⟩+DΦ(z, z
k−1), (4.3)

where α is the learning rate and the inner product is defined as follows:

⟨z, r⟩ =
∑

s,a,s′,h∈S×A×S×[H]

zh(s, a, s
′)r(s, a).

Following Rosenberg & Mansour (2019a), we split (4.3) to the two-step optimization at Line 2 and 3
of Algorithm 2. By Lemma 3.3, we update the policy as follows:

πk
h =

∑
s′ z

k
h(s, a, s

′)∑
a,s′ z

k
h(s, a, s

′)
.

For sake of simplicity, we also define the optimistic expected total reward given by the occupancy
measure V̄k,1(s1) as follows:

V̄k,1(s1) =
∑

h,s,a,a′

zkh(s, a, s
′)r(s, a)

After obtaining πk, HF-O2PS chooses actions akh based on our new policy πk
h and observe the whole

reward function rk at the end of the episode.

4.2 VTR WITH HIGH-ORDER MOMENT ESTIMATION

The second phase of HF-O2PS is to estimate the transition model ⟨θ∗,ϕ⟩ and evaluate the policy
πk. In this step, we construct a variance-uncertainty-aware weighted least square estimator (Zhou
& Gu, 2022) and explicitly estimate higher moments of P (Zhang et al., 2021b; Zhou & Gu, 2022),
which are poly(θ∗) under Assumption 3.2.
Concretely, we first compute the optimistic estimation of Qπk

h (resp. V πk

h ), Qk,h (resp. Vk,h), in a
backward manner. Specifically, HF-O2PS computes the optimistic Qk,h and Vk,h as:

Qk,h(·, ·) =
[
rk(·, ·) +

〈
θ̂k,0,ϕVk,h+1

(·, ·)
〉
+ β̂k

∥∥ϕVk,h+1
(·, ·)

∥∥
Σ̂−1

k,0

]
[0,1]

, (4.4)

Vk,h(·) = Ea∼πk
h(·|·)

[Qk,h(·, a)], (4.5)
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where θ̂k,0 is the 0-th estimator of θ∗, Σ̂k,0 is the covariance matrix and β̂k is the radius of the
confidence set defined as:

β̂k = 12
√
d log(1 + kH/(ξ2dλ)) log(32(1 + log(γ2/ξ)))k2H2/δ)

+ 30 log(32(1 + log(γ2/ξ))k2H2/δ)/γ2 +
√
λB, (4.6)

Then we estimate θ∗ by a weighted regression problem with predictor ϕk,h,0 = ϕVk,h+1
(skh, a

k
h)

against response Vk,h+1(s
k
h+1). Specifically, θ̂k,0 is the solution to the VTR problem:

argmin
θ

λ∥θ∥22 +
k−1∑
j=1

H∑
h=1

[⟨ϕj,h,0,θ⟩ − Vj,h+1(s
j
h+1)]

2/σ̄2
j,h,0,

where the weight σ̄2
j,h,0 is a high-probability upper bound of the conditional variance

[VVj,h+1](s
j
h, a

j
h). In detail, for each k ∈ [K] and a ∈ A, if [VVk,h+1](s

k
h, a

k
h) can be computed for

a function V efficiently, we define

σ̄2
k,h,0 = max{[VVk,h+1](s

k
h, a

k
h), ξ

2, γ2
∥∥ϕk,h,0

∥∥
Σ̃−1

k,h,0

}, (4.7)

where [VVk,h+1](s
k
h, a

k
h) is the variance-aware term and γ2

∥∥ϕk,h,0

∥∥
Σ̃−1

k,h,0

is the uncertainty-aware
term.
However, we choose to replace [VVk,h+1](s

k
h, a

k
h) with [V̄Vk,h+1](s

k
h, a

k
h) + Ek,h,0 in (4.7) since

the true transition P is unknown, and hence the true conditional variance is not exactly available.
Here Ek,h,0 (Line 3 in Algorithm 3) is an error bound such that [V̄Vk,h+1](s

k
h, a

k
h) + Ek,h,0 ≥

[VVk,h+1](s
k
h, a

k
h) with high probability and [V̄Vk,h+1](s

k
h, a

k
h) (Line 2 in Algorithm 3) is designed

as
[⟨ϕk,h,1, θ̂k,1⟩][0,1] − [⟨ϕk,h,0, θ̂k,0⟩]2[0,1],

where ϕk,h,1 = ϕV 2
k,h+1

(skh, a
k
h) and θ̂k,1 is the solution to the σ̄2

k,h,1-weighted regression problem

with predictor ϕk,h,1 against response V 2
k,h+1(s

k
h+1). Similar to the estimating procedure of θ̂k,0,

we set σ̄2
k,h,1 based on [V̄V 2

k,h+1](s
k
h, a

k
h) + Ek,h,1, which is an upper bound of [VV 2

k,h+1](s
k
h, a

k
h)

with high probability. Repeating this process, we recursively estimate the conditional 2m-th moment
of Vk,h+1 by its variance in Algorithm 3, which is dubbed as high-order moment estimator.

5 MAIN RESULTS

5.1 REGRET UPPER BOUND FOR HF-O2PS

We first provide the regret bound for HF-O2PS.
Theorem 5.1. Set M = log2(4KH), ξ =

√
d/(KH), γ = 1/d1/4, λ = d/B2, and α = H/

√
K.

For any δ > 0, with probability at least 1 − (3M + 2)δ, Algorithm 1 yields a regret bounded as
follows:

Regret(K) = Õ
((

d+ log
(
|S|2|A|

) )√
K + d2

)
. (5.1)

Remark 5.2. By omitting the logarithmic terms in (5.1), HF-O2PS achieves a horizon free regret
upper bound Õ(d

√
K + d2). Our regret bound is better than Õ((H + d)

√
K + d2H) obtained by

He et al. (2022b) when H = Ω(log |S|). Additionally, compared with HF-UCRL-VTR+ algorithm
proposed by Zhou & Gu (2022) for episodic linear mixture MDPs with fixed reward, HF-O2PS
provides a robustness against adversarial reward while maintaining its regret upper bounded by
Õ(d
√
K + d2).

5.2 HARDNESS RESULTS

We also provide two regret lower bounds. The next theorem gives a regret lower bound of MDPs
with known transition and adversarial reward.
Theorem 5.3. When H = 2H̃ , where H̃ is a positive integer, for any algorithm and any given
nonempty action space A, there exists an MDP satisfying Assumptions 3.1 and 3.2 with d = 1 and
|S| = Θ(|A|H) such that

lim
H̃→∞

lim
K→∞

E[Regret(K)]√
HK log |A|

≥ c1 =
1√
2

and lim
H̃→∞

lim
K→∞

E[Regret(K)]√
K log |S|

≥ c2 =
1

2
√
2
.
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Remark 5.4. Theorem 5.3 indicates that even the estimation error I2 disappears in (6.1), which
means we are in the “learning-free” setting, with infinitely large S, purely the adversarial environ-
ment can introduce a

√
H dependency asymptotically. Therefore, we can only expect a horizon-free

algorithm whose regret upper bound at least depends on log |S|, and K.

The following theorem provides another regret lower bound of learning homogeneous linear mixture
MDPs with adversarial reward.
Theorem 5.5. Let B > 1 and K > max{3d2, (d − 1)/(192(b − 1))}, for any algorithm. there
exists a B-bounded adversarial MDP satisfying Assumption 3.1and 3.2, such that the expected
regret E[Regret(K)] has lower bound d

√
K/(16

√
3).

Remark 5.6. Theorem 5.5 shows that when K is large enough, any algorithm for adversarial MDPs
satisfying Assumption 3.1 and 3.2 has regret at least Ω(d

√
K). Moreover, the regret lower bound

in Theorem 5.5 matches the regret upper bound in Theorem 5.1, which suggests that HF-O2PS is
near-optimal.

6 PROOF OVERVIEW

In this section, we provide the proof sketch of Theorem 5.1 and illustrate the key technical issues.

Proof sketch of Theorem 5.1. First, we have the regret decomposition:

Regret(K) =

K∑
k=1

(
V ∗
k,1(s1)− V̄k,1(s1)

)
︸ ︷︷ ︸

I1

+

K∑
k=1

(
Vk,1(s1)− V πk

1 (s1)
)

︸ ︷︷ ︸
I2

+

K∑
k=1

(
V̄k,1(s1)− Vk,1(s1)

)
︸ ︷︷ ︸

I3

.

(6.1)

Bounding I1. I1 is the regret of policy updating. By the standard regret analysis of OMD, the
regret on probability simplex is bounded by Õ(L

√
K) where L is the upper bound of the gradients

and K is the number of iterations. In MDPs, we have H decisions to make in each episode. There-
fore, policy updating can be seen as conducting mirror descent simultaneously on H simplexes, and
the total regret is the summation of regret on each simplexes. Consequently, the regret upper bound
is roughly Õ(HL̄

√
K), where L̄ is the average upper bound of the gradients over all the simplexes.

In OPPO (Cai et al., 2020) and POWERS (He et al., 2022b), the policy is updated via proximal policy
optimization: πk

h(a|s) ∝ πk−1
h (a|s) exp{αQk−1,h(s, a)}. Hence the gradients is Qk−1,h(s, a),

which, after taking average over h ∈ [H], result in an average L̄ = O(1) and consequently a regret
bound of Õ(H

√
K). To address this issue, we consider using rk as the gradients, which is enabled

by introducing an occupancy measure. By Assumption 3.1, the standard regret analysis of OMD
results in I1 = Õ(

√
K).

Bounding I2. I2 can be further decomposed into three major terms, the sum of bonus, transition
noise and policy noise. Roughly, we have:

I2 =

K∑
k=1

H∑
h=2

[PVk,h(s
k
h−1, a

k
h−1)− Vk,h(s

k
h)]︸ ︷︷ ︸

(ii) transition noise

+

K∑
k=1

H∑
h=2

[Ea∼πk
h(·|s

k
h)
[Qk,h(s

k
h, a)]−Qk,h(s

k
h, a

k
h)]︸ ︷︷ ︸

(iii) policy noise

+

K∑
k=1

H∑
h=1

[Qk,h(s
k
h, a

k
h)− r(skh, a

k
h)− PVk,h+1(s

k
h, a

k
h)]︸ ︷︷ ︸

bonus terms

+Γ,

where Γ is defined as follows, which can be bounded by Õ(
√
K) using Azuma-Hoeffding’s inequal-

ity:

Γ =

K∑
k=1

(
Ea∼πk

1 (·|sk1 )[Qk,1(s
k
1 , a)|sk1 ]−Qk,1(s

k
1 , a

k
1)
)
+

K∑
k=1

( H∑
h=1

r(skh, a
k
h)− V πk

1 (sk1)
)
.

The standard way to bound the bonus term is applying the total variance lemma (Jin et al., 2018,
Lemma C.5) to the total variance of transition noise (He et al., 2022b; Zhou et al., 2021). However,

8
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in our case, a naive adaptation of He et al. (2022b, Lemma 6.4) and total variance lemma results
in an upper bound with

√
KH-dependence. Also, the transition noise and policy noise can only be

bounded using standard concentration inequalities, which results in another
√
KH term.

To shave poly(H) off, we propose to bound the bonus term and transition noise recursively inspired
by Zhou & Gu (2022), equipped with the variance-uncertainty-aware weighting mechanism and
Algorithm 3. One notable challenge is to tackle the randomness in πk(·|·), (iii), to which simply
applying Azuma-Hoeffding’s inequality will yield Õ(

√
KH). We follow the procedure of bounding

(ii) in Zhou & Gu (2022), where the transition noise of order m is first bounded the sum of condi-
tional variance VV 2m

k,h (s
k
h−1, a

k
h−1) using martingale concentration inequality. Then, the key step is

bounding the conditional variance with higher order transition noise as follows:

VV 2m

k,h (s
k
h−1, a

k
h−1) ≤ X(m) + PV 2m+1

k,h (skh−1, a
k
h−1)− V 2m+1

k,h (skh)︸ ︷︷ ︸
transition noise of higher order

+V 2m+1

k,h (skh)−Q2m+1

k,h (skh, a
k
h)︸ ︷︷ ︸

(*)

,

(6.2)

where X(m) only depends on m, the second term of the right hand side is exactly the transition
noise of higher-order Value function. For argmax policy, the martingale difference (*) in (6.2) is 0,
which indicates that the total variance can be bounded by the martingale difference of higher order.
For policy noise which did not appear in (Zhou & Gu, 2022), we first bound (*) by the sum of
conditional variance, each term of which is:

Ea∼πk
h(·|s

k
h)
[Q2m+1

k,h (skh, a)]− E2
a∼πk

h(·|s
k
h)
[Q2m

k,h(s
k
h, a)]

= Ea∼πk
h(·|s

k
h)
[Q2m+1

k,h (skh, a)]−Q2m+1

k,h (skh, a
k
h) +Q2m+1

k,h (skh, a
k
h)− E2

a∼πk
h(·|s

k
h)
[Q2m

k,h(s
k
h, a)].

(6.3)

Because (6.2) always holds whether π is stochastic, combining (6.2) with (6.3), we have the follows:

Ea∼πk
h(·|s

k
h)
[Q2m+1

k,h (skh, a)]− E2
a∼πk

h(·|s
k
h)
[Q2m

k,h(s
k
h, a)] + VV 2m

k,h (s
k
h−1, a

k
h−1)

≤ X(m) + PV 2m+1

k,h (skh−1, a
k
h−1)− V 2m+1

k,h (skh)︸ ︷︷ ︸
(⋆)

+Ea∼πk
h(·|s

k
h)
[Q2m+1

k,h (skh, a)]−Q2m+1

k,h (skh, a
k
h)︸ ︷︷ ︸

(*)

+ V 2m+1

k,h (skh)− E2
a∼πk

h(·|s
k
h)
[Q2m

k,h(s
k
h, a)]︸ ︷︷ ︸

:=(**)≤0

,

which is nearly the same as (6.2) except (**). Therefore if we view the transition noise (⋆) and
policy noise (*) as a single martingale, then it can be bounded by total noise of higher order the
same as (6.2). The rest framework of HOME in Zhou & Gu (2022) can be adapted smoothly and
yields an upper bound Õ(d

√
K + d2).

Bounding I3. I3 is the gap between the optimistic value function derived from occupancy measure
guided policy updating and the other one derived from backward iteration (Line 11 of Algorithm 1).
By Lemma 3.3, for each k ∈ [K], the occupancy measure {zkh}Hh=1 induces a new MDP and policy.
Then zk ∈ Dk implies that the transition still lies in the confidence set, thus can also be bounded by
Qk,h(·, ·) and Vk,h(·). Formally, we have the following lemma:

Lemma 6.1. For all k ∈ [K], let V̄k,1(s1) be the optimistic value function given by occupancy
measure and Vk,1(s1) the value function computed by backward iteration (Line 11). We have
V̄k,1(s1) ≤ Vk,1(s1), and thus I3 ≤ 0.

Finally, combining the upper bounds of all three terms finishes our proof.

7 CONCLUSION

In this work, we considered learning homogeneous linear mixture MDPs with adversarial reward.
We proposed a new algorithm based on occupancy measure and high-order moment estimator. We
show that HF-O2PS achieves the near-optimal regret upper bounded Õ(d

√
K + d2). To the best

of our knowledge, our algorithm is the first horizon-free algorithm in this setting. Currently, our
result requires the uniformly bounded reward assumption, i.e., Assumption 3.1. For horizon-free
algorithms require only the total reward in each episode bounded by 1, we leave it as future work.
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cesses under bandit feedback. Advances in Neural Information Processing Systems, 23, 2010.
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A ADDITIONAL RELATED WORKS

Table 1: A comparison of related horizon-free algorithms and algorithms for adversarial linear mix-
ture MDPs

Adversarial ExtraAlgorithm Regret Assumption Reward Requirements

VARLin Homogeneous,
(Zhang et al., 2021b) Õ(d4.5

√
K + d9) ∑

h rh ≤ 1
No -

VARLin2 Homogeneous,
(Kim et al., 2022) Õ(d

√
K + d2) ∑

h rh ≤ 1
No -

HF-UCRL-VTR+ Homogeneous,
(Zhou & Gu, 2022) Õ(d

√
K + d2) ∑

h rh ≤ 1
No -

Lower bound Homogeneous
(Zhou & Gu, 2022) Ω(d

√
K) rh ≤ 1/H

No K ≳ d2

OPPO Inhomogeneous, d ≳ log |A|,
(Cai et al., 2020) Õ(dH2

√
K) ∑

h rh ≤ H
Yes

K ≳ poly(d,H)
POWERS Inhomogeneous, d ≳ log |A|,

(He et al., 2022b) Õ(d
√
H3K) ∑

h rh ≤ H
Yes

K ≳ poly(d,H)
Homogeneous,Ours Theorem 5.1
rh ≤ 1/H

Yes d ≳ log |A|
Open Homogeneous,

Lower Bound At least Ω̃(d
√
K) rh ≤ 1/H

Yes K ≳ d2

RL with linear function approximation To make MDPs with large state space amenable for
provable RL, there has been an explosion of works relying on MDP classes with various linear
structures (Jiang et al., 2017; Sun et al., 2019; Du et al., 2021; Jin et al., 2021). Among different
assumptions made in recent work (Yang & Wang, 2019; Wang et al., 2020b; Jin et al., 2020b; Du
et al., 2019; Zanette et al., 2020; Ayoub et al., 2020; Jia et al., 2020; Weisz et al., 2021; Zhou et al.,
2021; He et al., 2022b; Zhou & Gu, 2022; He et al., 2022a), we consider the linear mixture MDP
setting (Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021; Zhang et al., 2021a; He et al., 2022b),
where the transition kernel is a linear combination of d given models. More specifically, we focus
on the adversarial linear mixture MDP of He et al. (2022b), whose approach is nearly minimax
optimal but insufficient to obtain horizon-free regret, with a refined reward assumption. There is
also a parallel line of work (Jin et al., 2020b; He et al., 2022a) investigating the linear MDP model
of Jin et al. (2020b) with much larger degree of freedom, where the transition function and reward
function are linear in a known state-action feature mapping respectively.

B PROOF OF LEMMAS IN SECTION 4 AN SECTION 6

B.1 PROOF OF LEMMA 4.2

Proof. Say we have two occupancy measures z, w, then we have

DΦ(z||w) =
H∑

h=1

∑
s,a,s′

zh(s, a, s
′) log

zh(s, a, s
′)

wh(s, a, s′)

≥ 1

2

H∑
h=1

( ∑
s,a,s′

∣∣zh(s, a, s′)− wh(s, a, s
′)
∣∣)2

≥ 1

2H

( H∑
h=1

∑
s,a,s′

∣∣zh(s, a, s′)− wh(s, a, s
′)
∣∣)2

=
1

2H

∥∥z − w
∥∥2
1
,

where the first inequality holds due to Pinsker’s inequality and the second inequality holds due to
Cauchy-Schwartz inequality.
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B.2 PROOF OF LEMMA 6.1

Proof of Lemma 6.1. Given a set of occupancy measure, we define the respective transition as the
follows:

p̄kh(s
′|s, a) = ⟨θ̄s,a,h,k,ϕ(s′|s, a)⟩ =

zkh(s, a, s
′)∑

s′ z
k
h(s, a, s

′)
,

∀(s, a, h) ∈ S ×A× [H], s.t.
∑
s′

zkh(s, a, s
′) > 0.

Now let’s consider another MDP M ′
k = (S,A, H, {rh}, {Pk,h,s,a}), where the state space, action

space, length of horizon, reward functions are the same as the true MDP M , and Pk,h,s,a(·|·, ·) =
p̄kh(·|·, ·). However, our new MDP is a tabular one and its transition kernel is different from M .
Consider running first inner loop in our algorithm (line 10 - line 12), since M and M ′

k share the
same reward function, and the other terms also do not depend on true transition, the results running
on the two MDPs should be the same.
For the sake of simplicity, we (recursively) define the value functions on the imaginary MDP M ′

k:

V̄k,H+1(s) = 0,

Q̄k,h(s, a) = rh(s, a) + ⟨θ̄s,a,h,k,ϕV̄k,h+1
(s, a)⟩,

V̄k,h(s) = Ea∼πk
h(a|s)

[Qk,h(s, a)].

Then it is easy to verify that V̄k,1(s1) computed by occupancy measure is the same as the one
computed by the above way. Then, we can prove our theorem by induction. The conclusion trivially
holds for n = H + 1. Suppose the statement holds for n = h + 1, then for n = h, for each (s, a),
since Q̄k,h(s, a) ≤ 1, so if Qk,h(s, a) = 1 then the proof is finished. Otherwise we have:

Qk,h(s, a)− Q̄k,h(s, a) ≥
〈
θ̂k,0,ϕVk,h+1

(·, ·)
〉
+ β̂k

∥∥ϕVk,h+1
(·, ·)

∥∥
Σ̂−1

k,0

−
〈
θ̄s,a,h,k,ϕVk,h+1

(s, a)
〉

=
〈
θ̂k,0 − θ̄s,a,h,k,ϕVk,h+1

(·, ·)
〉
+ β̂k

∥∥ϕVk,h+1
(·, ·)

∥∥
Σ̂−1

k,0

≥ β̂k

∥∥ϕVk,h+1
(·, ·)

∥∥
Σ̂−1

k,0

−
∥∥(θ̂k,0 − θ̄s,a,h,k)

∥∥
Σ̂k,0

∥∥ϕVk,h+1
(·, ·)

∥∥
Σ̂−1

k,0

≥ 0,

where the first inequality holds by the inductive hypothesis, the second inequality holds due to
Cauchy-Schwartz inequality and the third inequality holds due to θ̄s,a,h,k ∈ Ck. By induction, we
finish the proof.

C PROOF OF THE MAIN RESULT

In this section, we are going to provide the proof of Theorem 5.1. First, we define the σ-algebra
generated by the random variables representing the transition noise and the stochastic policy noise.
For k ∈ [K], h ∈ [H], we define Fk,h the σ-algebra of state and actions till stage k and step h, and
Gk,h the state till stage k and step h. That is,

s11, a
1
1, ..., s

1
h, a

1
h, ..., s

1
H , a1H ,

s21, a
2
1, ..., s

2
h, a

2
h, ..., s

2
H , a2H ,

...

sk1 , a
k
1 , ..., s

k
h, a

k
h,

generates Fk,h, and

s11, a
1
1, ..., s

1
h, a

1
h, ..., s

1
H , a1H ,

s21, a
2
1, ..., s

2
h, a

2
h, ..., s

2
H , a2H ,

...

sk1 , a
k
1 , ..., s

k
h,

generates Gk,h. Second, we define Jkh as

Jkhf(s) = Ea∼πk
h(·|s)

[f(s, a)|s], (C.1)

for any (k, h) ∈ [K]× [H] and function f : S ×A → R for simplicity.
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C.1 LEMMAS FOR SELF-CONCENTRATION MARTINGALES

In this section, we provide two results of self-concentration martingales, which are key to our proof.

Lemma C.1 (Lemma B.1, Zhou & Gu 2022). Let {σk, βk}k≥1 be a sequence of non-negative num-
bers, ξ, γ > 0, {xk}k≥1 ⊂ Rd and

∥∥xk

∥∥
2
≤ L. Let {Zk}k≥1 and {σ̄k}k≥1 be inductively defined

in the following way: Z1 = λI,

∀k ≥ 1, σ̄k = max{σk, ξ, γ
∥∥xk

∥∥1/2
Z−1

k

},Zk+1 = Zk + xkx
⊤
k /σ̄

2
k.

Let ι = log(1 +KL2/(dλξ2)). Then we have

K∑
k=1

min
{
1, βk∥xk∥Z−1

k

}
≤ 2dι+ 2 max

k∈[K]
βkγ

2dι+ 2
√
dι

√√√√ K∑
k=1

β2(σ2 + ξ2).

Same as in Zhou & Gu (2022), first we need to prove that the vector θ∗ lies in the series of confidence
sets, which implies the estimation we get via occupancy measure is optimistic and the high-order
moments are close to their true values.

Lemma C.2 (Lemma C.1, Zhou & Gu 2022). Set {β̂k}k≥1 as (4.6), then, with probability at least
1−Mδ, we have for any k ∈ [K], h ∈ [H],m ∈ [M ],∥∥(θ̂k,m − θ∗)∥∥

Σ̂k,m
≤ β̂k,

∣∣[V̄k,mV 2m

k,h+1](s
k
h, a

k
h)− [VV 2m

k,h+1](s
k
h, a

k
h)
∣∣ ≤ Ek,h,m.

Let EC.2 denote the event described by Lemma C.2. The following lemma provides a high-
probability bound of estimation error terms.

Lemma C.3. On the event EC.2, we have for any k ∈ [K], h ∈ [H],

Qk,h(s
k
h, a

k
h)− r(skh, a

k
h)− PVk,h+1(s

k
h, a

k
h) ≤ 2min

{
1, β̂k

∥∥Σ̂−1/2
k,0 ϕk,h,0

∥∥
2

}
.

Proof of Lemma C.3. The proof is almost the same as that of Lemma C.4 in Zhou & Gu (2022),
only to replace Vk,h(s

k
h) with Qk,h(s

k
h, a

k
h).

C.2 RECURSIVE BOUNDS FOR STOCHASTIC POLICY

For any k ∈ [k], h ∈ [H], we define the indicator function Ikh as the following

Ikh := 1
{
∀m ∈ [M ],det(Σ̂

−1/2
k,m )/ det(Σ̃

−1/2
k,h,m) ≤ 4

}
,

where Ikh is obviously Gkh-measurable and monotonically decreasing with respect to h for all k ∈
[K]. For all m ∈ [M ], we also define the following quantities:

Rm =

K∑
k=1

H∑
h=1

Ikh min
{
1, β̂k

∥∥Σ̂−1/2
k,m ϕk,h,m

∥∥
2

}
, (C.2)

Am =

K∑
k=1

H∑
h=1

Ikh

[
PV 2m

k,h+1(s
k
h, a

k
h)− V 2m

k,h+1(s
k
h+1) + Jkh+1Q

2m

k,h+1(s
k
h+1)−Q2m

k,h+1(s
k
h+1, a

k
h+1)

]
,

(C.3)

Sm =

K∑
k=1

H∑
h=1

Ikh

{
VV 2m

k,h+1(s
k
h, a

k
h) + Jkh+1Q

2m+1

k,h+1(s
k
h+1)−

[
Jkh+1Q

2m

k,h+1(s
k
h+1)

]2}
, (C.4)

G =

K∑
k=1

(1− IkH). (C.5)

Finally, for simplicity, we also define

ι = log(1 +KH/(dλξ2)), (C.6)
ζ = 4 log(4 log(KH)/δ). (C.7)
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Remark C.4. Our definition is nearly the same as in Zhou & Gu (2022), despite that in our algo-
rithm we use stochastic policies, which induce an additional term each in Am and Sm, regarding to
the random variable and its conditional variance of the policies noise.

Now we are going to bound all these quantities. Basically, the technique we are using is nearly the
same as in Zhou & Gu (2022). The only difference is that we need to deal with the extra policy noise
resulted by stochastic policy.

Lemma C.5. Let γ, ξ be defined in Algorithm 1, then for m ∈ [M − 1], we have

Rm ≤ min{8dι+ 8β̂Kγ2dι+ 8β̂K

√
dι
√
Sm + 4Rm + 2Rm+1 +KHξ2,KH}. (C.8)

We also have RM−1 ≤ KH .

Proof. For (k, h) such that Ikh = 1, using Lemma D.2, we have

∥∥Σ̂−1/2
k,m ϕk,h,m

∥∥
2
≤
∥∥Σ̃−1/2

k,k,mϕk,h,m

∥∥
2
·

√√√√det(Σ̂−1
k,m)

det(Σ̃−1
k,m)

≤ 4
∥∥Σ̃−1/2

k,k,mϕk,h,m

∥∥
2
.

Substituting the above inequality into (C.2), we have

Rm ≤ 4

K∑
k=1

H∑
h=1

min
{
1, Ikh β̂k

∥∥Σ̃−1/2
k,h,mϕk,h,m

∥∥
2

}
,

where the right hand side can be bounded by Lemma C.1, with βk,h = Ikh β̂k, σ̄k,h = σ̄k,h,m,xk,h =

ϕk,h,m and Zk,h = Σ̃k,h.m. We have

K∑
k=1

H∑
h=1

min
{
1, Ikh β̂k

∥∥Σ̃−1/2
k,h,mϕk,h,m

∥∥
2

}

≤ 2dι+ 2β̂Kγ2dι+ 2β̂K

√
dι

√√√√ K∑
k=1

H∑
h=1

Ikh [V̄V 2m
k,h+1(s

k
h, a

k
h) + Ek,h,m] +KHξ2

≤ 2dι+ 2β̂Kγ2dι+ 2β̂K

√
dι

√√√√ K∑
k=1

H∑
h=1

Ikh [VV 2m
k,h+1(s

k
h, a

k
h) + 2Ek,h,m] +KHξ2

≤ 2dι+ 2β̂Kγ2dι+ 2β̂K

√
dι

√√√√ K∑
k=1

H∑
h=1

IkhVV 2m
k,h+1(s

k
h, a

k
h) + 4Rm + 2Rm+1 +KHξ2. (C.9)

Since we have
K∑

k=1

H∑
h=1

Ikh

[
Jkh+1Q

2m+1

k,h+1(s
k
h+1)−

(
Jkh+1Q

2m

k,h+1(s
k
h+1)

)2] ≥ 0,

which, substituted into (C.4), gives

K∑
k=1

H∑
h=1

IkhVV 2m

k,h+1(s
k
h, a

k
h) ≤ Sm. (C.10)

Therefore by substituting (C.10) into (C.9), we have

Rm ≤ 8dι+ 8β̂Kγ2dι+ 8β̂K

√
dι

√√√√ K∑
k=1

H∑
h=1

IkhVV 2m
k,h+1(s

k
h, a

k
h) + 4Rm + 2Rm+1 +KHξ2

≤ 8dι+ 8β̂Kγ2dι+ 8β̂K

√
dι
√
Sm + 4Rm + 2Rm+1 +KHξ2,

which completes the proof.
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Lemma C.6. On the event EC.2, for all m ∈ [M − 1], we have

Sm ≤ |Am+1|+ 2m+1(K + 2R0) +G.

Proof. The proof follows the proof of Lemma C.6 in Zhou & Gu (2022) and Lemma 25 in Zhang
et al. (2021b). We have

Sm =

K∑
k=1

H∑
h=1

Ikh

{
VV 2m

k,h+1(s
k
h, a

k
h) + Jkh+1Q

2m+1

k,h+1(s
k
h+1)−

[
Jkh+1Q

2m

k,h+1(s
k
h+1)

]2}
=

K∑
k=1

H∑
h=1

Ikh
(
PV 2m+1

k,h+1(s
k
h, a

k
h)−Q2m+1

k,h+1(s
k
h+1, a

k
h+1)

)
+

K∑
k=1

H∑
h=1

Ikh
[
Q2m+1

k,h (skh, a
k
h)− ([PV 2m

k,h+1](s
k
h, a

k
h))

2
]

+
K∑

k=1

H∑
h=1

Ikh [Q
2m+1

k,h+1(s
k
h+1, a

k
h+1)−Q2m+1

k,h (skh, a
k
h)]

+

K∑
k=1

H∑
h=1

Ikh
{
Jkh+1Q

2m+1

k,h+1(s
k
h+1)−

[
Jkh+1Q

2m

k,h+1(s
k
h+1)

]2}
=

K∑
k=1

H∑
h=1

Ikh [PV 2m+1

k,h+1(s
k
h, a

k
h)− V 2m+1

k,h+1(s
k
h+1) + Jkh+1Q

2m+1

k,h+1(s
k
h+1)−Q2m+1

k,h+1(s
k
h+1)]︸ ︷︷ ︸

Am+1

+

K∑
k=1

H∑
h=1

Ikh [Q
2m+1

k,h (skh, a
k
h)− ([PV 2m

k,h+1](s
k
h, a

k
h))

2]

+

K∑
k=1

H∑
h=1

Ikh [Q
2m+1

k,h+1(s
k
h+1, a

k
h+1)−Q2m+1

k,h (skh, a
k
h)]

+

K∑
k=1

H∑
h=1

Ikh
(
V 2m+1

k,h+1(s
k
h+1)− [Jkh+1Q

2m

k,h+1(s
k
h+1)]

2
)
.

The first term here is exactly Am+1, so we have

Sm = Am+1 +

K∑
k=1

H∑
h=1

Ikh
[
Q2m+1

k,h (skh, a
k
h)− ([PV 2m

k,h+1](s
k
h, a

k
h))

2
]

+

K∑
k=1

H∑
h=1

Ikh [Q
2m+1

k,h+1(s
k
h+1, a

k
h+1)−Q2m+1

k,h (skh, a
k
h)]

+

K∑
k=1

H∑
h=1

Ikh
(
V 2m+1

k,h+1(s
k
h+1)− [Jkh+1Q

2m

k,h+1(s
k
h+1)]

2
)

≤ Am+1 +

K∑
k=1

H∑
h=1

Ikh [Q
2m+1

k,h (skh, a
k
h)− ([PV 2m

k,h+1](s
k
h, a

k
h))

2]

+

K∑
k=1

Ikhk
Q2m+1

k,hk+1(s
k
hk+1, a

k
hk+1) +

K∑
k=1

H∑
h=1

Ikh

{
V 2m+1

k,h+1(s
k
h+1)− [Jkh+1Q

2m

k,h+1(s
k
h+1)]

2
}
,

where hk is the largest index satisfying Ikh = 1. If hk < H , we have Ikhk
Q2m+1

k,hk+1(s
k
hk+1, a

k
hk+1) ≤

1 = 1 − IkH and if hk = H , we have Ikhk
Q2m+1

k,hk+1(s
k
hk+1, a

k
hk+1) = 0 = 1 − IkH , so in both
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circumstances we have

Sm ≤ Am +

K∑
k=1

H∑
h=1

Ikh [Q
2m+1

k,h (skh, a
k
h)− ([PV 2m

k,h+1](s
k
h, a

k
h))

2]︸ ︷︷ ︸
(ii)

+

K∑
k=1

(1− IkH)︸ ︷︷ ︸
G

+

K∑
k=1

H∑
h=1

Ikh
[
V 2m+1

k,h+1(s
k
h+1)− [Jkh+1Q

2m

k,h+1(s
k
h+1)]

2
]

︸ ︷︷ ︸
(iv)

. (C.11)

For (ii) in (C.11), we have
K∑

k=1

H∑
h=1

Ikh

[
Q2m+1

k,h (skh, a
k
h)−

(
[PV 2m

k,h+1](s
k
h, a

k
h)
)2]

≤
K∑

k=1

H∑
h=1

Ikh

[
Q2m+1

k,h (skh, a
k
h)−

(
[PVk,h+1](s

k
h, a

k
h)
)2m+1

]

=

K∑
k=1

H∑
h=1

Ikh(Qk,h(s
k
h, a

k
h)− [PVk,h+1](s

k
h, a

k
h))

m∏
i=0

(Q2i

k,h(s
k
h, a

k
h) + ([PVk,h+1](s

k
h, a

k
h))

2i)

≤2m+1
K∑

k=1

H∑
h=1

Ikh
(
rk(skh, a

k
h) + 2min{1, β̂k

∥∥Σ̂−1/2
k,m ϕk,h,0

∥∥
2
}
)

≤2m+1(K + 2R0),

where the first inequality holds by recursively using EX2 ≥ (E2X), the second holds due to As-
sumption 3.1 and the third holds due to Lemma C.3. It remains to bound the last term (iv) in (C.11).
We have

K∑
k=1

H∑
h=1

Ikh
[
V 2m+1

k,h+1(s
k
h+1)− [Jkh+1Q

2m

k,h+1(s
k
h+1)

]2
=

K∑
k=1

H∑
h=1

Ikh
[
(Jkh+1Qk,h+1(s

k
h+1))

2m+1

− [Jkh+1Q
2m

k,h+1(s
k
h+1)

]2
=

K∑
k=1

H∑
h=1

(
(Ea∼πk

h+1(·|Gk,h+1)
[IkhQk,h+1(s

k
h+1, a)|Gk,h+1])

2m+1

− E2
a∼πk

h+1(·|s
k
h+1)

[(IkhQk,h+1(s
k
h+1, a))

2m |skh+1]
)

≤0,
where the first equality holds due to the definition of Vk,h+1(s

k
h+1), the second holds due to Ikh is

Gk,h+1-measurable, and the inequality holds due to EX2 ≥ (E2X). Combining the estimations of
the four terms completes the proof.

Lemma C.7 (Lemma 25, Zhang et al. 2021b). We have P(EC.7) > 1− 2Mδ, where

EC.7 := {∀m ∈ [M ], |Am| ≤ min{
√

2ζSm + ζ, 2KH}}.

Proof. The proof follows the proof of Lemma 25 in Zhang et al. (2021b). First, we definexk,h := Ikh

[
PV 2m

k,h+1(s
k
h, a

k
h)− V 2m

k,h+1(s
k
h+1)

]
,

yk,h := Ikh

[
Jkh+1Q

2m

k,h+1(s
k
h+1)−Q2m

k,h+1(s
k
h+1, a

k
h+1)

] =⇒
{
E[xk,h|Fk,h] = 0,

E[yk,h|Gk,h+1] = 0.

Obviously, {x1,1, y1,1, ..., xk,h, yk,h} forms a martingale difference sequence, whose conditional
second-order moments are

E[x2
k,h|Fk,h] = Ikh [VV 2m

k,h+1(s
k
h, a

k
h)],

E[y2k,h|Gk,h+1] = Ikh
[
Jkh+1Q

2m+1

k,h+1(s
k
h+1)−

(
Jkh+1Q

2m

k,h+1(s
k
h+1)

)2]
.
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Summing these terms over [K]× [H] yields

K∑
k=1

H∑
h=1

(E[x2
k,h|Fk,h] + E[y2k,h|Gk,h+1]) = Sm. (C.12)

Therefore, by Lemma D.3, for each m ∈ [M ], with probability at least 1− δ, we have

Am ≤
√
2ζSm + ζ.

Taking union bound over m ∈ [M ], and also using the fact that |xk,h|, |yk,h| ≤ 1 completes the
proof.

Lemma C.8 (Lemma C.8, Zhou & Gu 2022). Let G be defined in (C.5), then we have G ≤Mdι/2.

Finally wer provide the high-probability bounds of two remained martingales, both of which are
direct application of Lemma D.1.

Lemma C.9. With probability at least 1− δ, we have

K∑
k=1

(
H∑

h=1

(r(skh, a
k
h)− V πk

1 (sk1)

)
≤
√

2K log(1/δ).

Lemma C.10. With probability at least 1− δ, we have

K∑
k=1

(
Jk1Qk,1(s

k
1)−Qk,1(s

k
1 , a

k
1)
)
≤
√
2K log(1/δ).

We use EC.9 and EC.10 to denote the event described by the corresponding lemmas.

C.3 PROOF OF THEOREM 5.1

Now we can proof our main result. First we are going to provide two theorems. The first theorem
provides a horizon-free regret analysis of high-order moment estimator.

Theorem C.11. Set M = log(4KH)/ log 2, for any δ > 0, on event EC.2 ∩ EC.7 ∩ EC.9 ∩ EC.10,
we have

Regret(K) ≤ 2432max{32β̂2
Kdι, ζ}+ 192(dι+ β̂Kγ2dι+ β̂K

√
dι
√
Mdι/2 +KHα2)

+Mdι/2 + 24(
√

ζMdι+ ζ) + [2
√
2 log(1/δ) + 32max{8β̂K

√
dι,
√
2ζ}]
√
2K,

where ι, ζ are defined in (C.6) and (C.7). Moreover, setting ξ =
√

d/(KH), γ = 1/d1/4 and
λ = d/B2 yields a bound I2 = Õ(d

√
K + d2) with high probability.
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Proof. All the following proofs are under the event EC.2 ∩ EC.7 ∩ EC.9 ∩ EC.10. First, we have the
composition for I2, for all k, we define Qk,H+1(s, a) = 0.

K∑
k=1

Vk,1(s
k
1) =

K∑
k=1

(
Jk1Qk,1(s

k
1)−Qk,1(s

k
1 , a

k
1)
)

+

K∑
k=1

H∑
h=1

(
Qk,h(s

k
h, a

k
h)−Qk+1,h+1(s

k
h+1, a

k
h+1)

)
=

K∑
k=1

(
Jk1Qk,1(s

k
1)−Qk,1(s

k
1 , a

k
1)
)

+

K∑
k=1

H∑
h=1

Ikh
(
Qk,h(s

k
h, a

k
h)−Qk+1,h+1(s

k
h+1, a

k
h+1)

)
+

K∑
k=1

H∑
h=1

(1− Ikh)
(
Qk,h(s

k
h, a

k
h)−Qk+1,h+1(s

k
h+1, a

k
h+1)

)
≤

K∑
k=1

(
Jk1Qk,1(s

k
1)−Qk,1(s

k
1 , a

k
1)
)
+

K∑
k=1

(1− Ikhk
)Qk,hk

(skhk
, akhk

)

+

K∑
k=1

H∑
h=1

Ikh
(
Qk,h(s

k
h, a

k
h)−Qk+1,h+1(s

k
h+1, a

k
h+1)

)
,

(C.13)

where hk is the smallest number such that Ikhk
= 0. Then for the second term we have

K∑
k=1

H∑
h=1

Ikh
(
Qk,h(s

k
h, a

k
h)−Qk+1,h+1(s

k
h+1, a

k
h+1)

)
=

K∑
k=1

H∑
h=1

Ikh [r(s
k
h, a

k
h)] +

K∑
k=1

H∑
h=1

Ikh [Qk,h(s
k
h, a

k
h)− r(skh, a

k
h)− PVk,h+1(s

k
h, a

k
h)]

+

K∑
k=1

H∑
h=1

Ikh [PVk,h+1(s
k
h, a

k
h)− Vk,h+1(s

k
h+1) + Jkh+1Q(skh+1)−Qk,h+1(s

k
h+1, a

k
h+1)]

≤
K∑

k=1

H∑
h=1

r(skh, a
k
h) +

K∑
k=1

H∑
h=1

Ikh [Qk,h(s
k
h, a

k
h)− r(skh, a

k
h)− PVk,h+1(s

k
h, a

k
h)] +A0.

Substituting the inequality above to (C.13), we have:
K∑

k=1

(
Vk,1(s

k
1)− V πk

1 (sk1)
)

≤
K∑

k=1

(
Jk1Qk,1(s

k
1)−Qk,1(s

k
1 , a

k
1)
)
+

K∑
k=1

(1− IkH) +

K∑
k=1

( H∑
h=1

(r(skh, a
k
h)− V πk

1 (sk1)
)

+

K∑
k=1

H∑
h=1

Ikh [Qk,h(s
k
h, a

k
h)− r(skh, a

k
h)− PVk,h+1(s

k
h, a

k
h)] +A0

≤ 2
√
2K log(1/δ) +G+ 2R0 +A0,

where the second inequality holds due to Lemma C.10, Lemma C.9 and Lemma C.3.
Thus, we only need to bound 2R0 +A0. We have

|Am| ≤
√
2ζSm + ζ

≤
√
2ζ(|Am+1|+G+ 2m+1(K + 2R0) + ζ

≤
√
2ζ
√
|Am+1|+ 2m+1(K + 2R0) +

√
2ζG+ ζ,
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where the first inequality holds due to Lemma C.7, the second inequality holds due to Lemma C.6
and the third holds due to

√
a+ b ≤

√
a+
√
b. We also have:

Rm ≤ 8dι+ 8β̂Kγ2dι+ 8β̂K

√
dι
√
Sm + 4Rm + 2Rm+1 +KHα2

≤ 8β̂K

√
dι
√
|Am+1|+G+ 2m+1(K + 2R0) + 4Rm + 2Rm+1 +KHα2

+ 8dι+ 8β̂Kγ2dι

≤ 8β̂K

√
dι
√
|Am+1|+ 2m+1(K + 2R0) + 4Rm + 2Rm+1

+ 8dι+ 8β̂Kγ2dι+ 8β̂K

√
dι
√

G+KHα2,

where the first inequality holds due to Lemma C.5, the second holds due to Lemma C.6 and we
denote Ic = 8dι+8β̂Kγ2dι+8β̂K

√
dι
√
G+KHα2+

√
2ζG+ζ. Combining the two estimations

we have

|Am|+ 2Rm ≤ 2Ic +
√
2max{8β̂K

√
dι,
√
2ζ}√

5|Am+1|+ 5 · 2m+1(K + 2R0) + 16Rm + 8Rm+1

≤ 2Ic + 4max{8β̂K

√
dι,
√

2ζ}√
|Am+1|+ 2Rm+1 + |Am|+ 2Rm + 2m+1(K + 2R0 + |A0|),

where the first inequality holds due to
√
a +
√
b ≤

√
2(a+ b). Then by Lemma D.4, with am =

2|Am|+Rm ≤ 4KH and M = log(4KH)/ log 2, we have:

|A0|+ 2R0 ≤ 22 · 16max{64β̂K

2
dι, 2ζ}+ 12Ic

+ 16max{8β̂K

√
dι,
√
2ζ}
√
2(K + 2R0 + |A0|)

≤ 704max{32β̂K

2
dι, ζ}

+ 12(8dι+ 8β̂Kγ2dι+ 8β̂K

√
dι
√
G+KHα2 +

√
2ζG+ ζ)

+ 16max{8β̂K

√
dι,
√
2ζ}
√
2K + 16

√
2max{8β̂K

√
dι,
√
2ζ}
√

2R0 + |A0|.

By the fact that x ≤ a
√
x+ b⇒ x ≤ 2a2 + 2b, we have

|A0|+ 2R0 ≤ 2432max{32β̂K

2
dι, ζ}

+ 24(8dι+ 8β̂Kγ2dι+ 8β̂K

√
dι
√
G+KHα2 +

√
2ζG+ ζ)

+ 32max{8β̂K

√
dι,
√
2ζ}
√
2K.

Bounding G by Lemma C.8, we have

K∑
k=1

(
Vk,1(s

k
1)− V πk

1 (sk1)
)
≤ 2
√

2K log(1/δ) +G+ 2R0 +A0

≤ 2432max{32β̂K

2
dι, ζ}+ 192(dι+ β̂Kγ2dι+ β̂K

√
dι
√
Mdι/2 +KHα2)

+Mdι/2 + 24(
√
ζMdι+ ζ) + [2

√
2 log(1/δ) + 32max{8β̂K

√
dι,
√

2ζ}]
√
2K,

which completes the proof.

Theorem C.12. On the event EC.2, we have
K∑

k=1

(V ∗
k,1(s1)− V̄k,1(s1)) ≤

H log
∣∣S∣∣2∣∣A∣∣
α

+
Kα

2H
.

Proof. This follows the standard regret analysis of online mirror descent. The only difference from
standard arguments is that we need to deal with the changing convex set. We include the adapted
proof for completeness. For sake of brevity, we denote fk(z) =

∑
h,s,a,s′ zh(s, a, s

′)rk(s, a), then
we have

fk(z
∗) = V ∗

k,1(s1), fk(z
k) = V̄k,1(s1), ∇fk(·) = (rkh(s, a))s,a,s′,h,
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where z∗ is the occupancy measure induced by π∗ and true transition. Since we have that for all
k ∈ [1 : K], θ∗ ∈ Ck, we know that z∗ ∈ Dk for all k. Then we have

fk(z
∗)− fk(z

k) = ∇fk(zk)⊤(z∗ − zk)

= α−1(∇Φ(wk+1)−∇Φ(zk))⊤(zk − z∗)

= α−1(DΦ(z
∗||zk) +DΦ(z

k||wk+1)−DΦ(x
∗||wk+1)),

where the equities hold due to the update rule of mirror descent. Because Dk+1 is convex and
z∗ ∈ Dk+1, we have the first order optimality for zk+1:

(∇Φ(zk+1)−∇Φ(wk+1))⊤(zk+1 − z∗) ≤ 0,

which can be written equivalently as the generalized Pythagorean inequality:

DΦ(z
∗||wk+1) ≥ DΦ(z

∗||zk+1) +DΦ(z
k+1||wk+1).. (C.14)

Combining the two expression, we have

fk(z
∗)−fk(z

k) ≤ α−1(DΦ(z
∗||zk)−DΦ(z

∗||zk+1))+α−1(DΦ(z
k||wk+1)−DΦ(z

k+1||wk+1)).

For the second term, we have

DΦ(z
k||wk+1)−DΦ(z

k+1||wk+1)

= Φ(zk)− Φ(zk+1)−∇Φ(wk+1)⊤(zk − zk+1)

≤ (∇Φ(zk)−∇Φ(wk+1)⊤(zk − zk+1)− 1

2H

∥∥zk − zk+1
∥∥2
1

= α∇f⊤
k (zk − zk+1)− 1

2H

∥∥zk − zk+1
∥∥2
1

≤ α

H

∥∥zk − zk+1
∥∥
1
− 1

2H

∥∥zk − zk+1
∥∥2
1

≤ α2

2H
,

where the first inequality holds due to Lemma 4.2, the second inequality holds due to rk(·, ·) ≤ 1/H ,
and the third inequality holds due to quadratic inequality.
Summing up over k, we have

K∑
k=1

(fk(z
∗)− fk(z

k)) ≤ α−1(DΦ(z
∗||z1)−DΦ(z

∗||zK+1)) +
αK

2H

≤ DΦ(z
∗||z1)
α

+
Kα

2H

≤ DΦ(z
∗||w1)

α
+

Kα

2H

≤
H log

∣∣S∣∣2∣∣A∣∣
α

+
Kα

2H
,

where the third inequality holds due to extended Pythagorean’s inequality (C.14) and the forth holds
since w1

h = z0h is an uniform distribution on S ×A× S.

Now we are able to prove our main result.

Proof of Theorem 5.1. First we have the following regret decomposition
K∑

k=1

(
V ∗
k,1(s1)− V πk

1 (s1)
)
=

K∑
k=1

(
V ∗
k,1(s1)− V̄k,1(s1) + V̄k,1(s1)− Vk,1(s1) + Vk,1(s1)− V πk

1 (s1)
)

≤
K∑

k=1

(
V ∗
k,1(s1)− V̄k,1(s1)

)
︸ ︷︷ ︸

I1

+

K∑
k=1

(
Vk,1(s1)− V πk

1 (s1)
)

︸ ︷︷ ︸
I2

,
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where the inequality holds due to Lemma 6.1. Picking ξ =
√

d/(KH), γ = 1/d1/4 and λ = d/B2,
by Theorem C.11, we know that I2 = Õ(d

√
K + d2) on event EC.2 ∩ EC.7 ∩ EC.9 ∩ EC.10. By

Theorem C.12, we have

I1 ≤
H log

∣∣S∣∣2∣∣A∣∣
α

+
Kα

2H
.

Setting α = H/
√
K, combining the two terms and taking the union bound of event EC.2 ∩ EC.7 ∩

EC.9 ∩ EC.10 completes the proof.

C.4 PROOF OF THEOREMS 5.3

Proof of Theorem 5.3. The major idea is to cast learning a special MDP with finite S,A and deter-
ministic (and known) transition, which can be represented as a complete |A|-way tree, as prediction
with expert advice and leverage the asymptotic lower bound (Cesa-Bianchi & Lugosi, 2006, Theo-
rem 3.7) to manifest a

√
HK log |A| or

√
K log |S| dependence in the lower bound. Our two-stage

reduction begins with a hard-to-learn MDP M1 with its total reward in each episode bounded by 1.
The hard instance M1(S,A, H, {rkh},P) is purely deterministic, where H is even, i.e., ∀a ∈
A, s, s′ ∈ P(s′|s, a) is either 0 or 1. The transition dynamics forms a complete |A|-way tree
with each node corresponding to a state and each edge directed to leaves corresponding to the
transition after an action. Let S[l,m] denote the m-th state (node) in the l-th layer of the tree,
∀l ∈ [H + 1],m ∈

[
|A|l

]
and let A[l,m, n] denote the only action (edge) from S[l,m] to

S[l + 1, (m − 1)|A| + n], ∀l ∈ [H],m ∈
[
|A|l

]
, n ∈ [|A|]. The agent is forced to start from

sk1 := S[1, 1] in every episode k ∈ [K] so it will always end up in a leaf state, which is denoted by
skH+1 := S[H+1,m0] for some m0 ∈

[
|A|H

]
. To align with prediction with expert advice, we con-

strain rkh(·, ·) := 0,∀h ∈ [H − 1] and rkH(·, ·) ∈ [0, 1], which implies the agent can not receive any
positive reward until it is moving towards the last layer of the MDP (tree). Under these constraints,
We allow rk to change arbitrarily across episodes.4 Notice that unlike the common reward design in
the hard instance constructions for obtaining information-theoretic lower bounds, which are usually
to illustrate the difficulty of parameter estimation, we do not assign specific numeric values to rkh in
order to expose the impact of the adversarial environment.
All the |A|H rewards towards leaves in M1, rkH(·, ·), form an array of experts and any given
policy πk =

{
πk
h(·|·)Hh=1

}
actually induces a probability simplex (of state-reaching after taking

the action akH−1) over these experts in episode k, which can be represented by a weight vector
wk ∈ ∆

([
|A|H

])
. Clearly, V πk

k,1 (s
k
1) =

〈
wk, r

k
H

〉
, where we abuse rkH to denote the reward vector

rkH ∈ [0, 1]|A|H towards leaves corresponding to wk. With hindsight, π∗ = supπ
∑K

k=1 V
π
k,1(s

k
1), by

which the optimal weight vector w∗ is induced. In such a deterministic MDP, π∗ may not be unique
but the corresponding w∗ can have a restricted support set over the |A|H experts, which we re-index
as rkH [i]. To be more rigorous, let W = suppw∗ :=

{
i ∈
[
|A|H

]
: w∗[i] ̸= 0

}
, then obviously

W = argmaxi
∑K

k=1 r
k
H [i]. Thus, ∀i ∈ W,

∑K
k=1 V

∗
k,1(s

k
1) =

∑K
k=1

〈
w∗, r

k
H

〉
=
∑K

k=1 r
k
H [i] =

maxj
∑K

k=1 r
k
H [j] and

Regret(K) :=

K∑
k=1

V ∗
k,1(s

k
1)− V πk

k,1 (s
k
1) = max

i∈[|A|H ]

K∑
k=1

rkH [i]−
〈
wk, r

k
H

〉
. (C.15)

(C.15) reveals the connection between learning in M1 with its |S| = Θ(|A|H) and prediction with
expert advice with |A|H experts and K rounds. Each expert has its reward bounded in [0, 1]. The first
stage of this reduction accounts for the overhead incurred by the adversary under full-information
feedback. For any algorithm, there is a well-known asymptotic lower bound for Regret(K):
Lemma C.13. For any algorithm and any given nonempty action space A, there exists an episodic
MDP (with the corresponding A) satisfying Assumption 3.2 such that its expected regret satisfies

lim
H→∞

lim
K→∞

Regret(K)√
(HK/2) log |A|

≥ 1,

4Here in the constructions of this proof, we allow the reward function to be time-inhomogeneous because
although in Assumption 3.1 we set the reward to be time-homogeneous for the simplicity of notation, all the
arguments in the proof of our regret upper bound can naturally be applicable to the time-inhomogenous case.
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if the total reward in each episode is bounded in [0, 1].

Proof of Lemma C.13. See the proof of Cesa-Bianchi & Lugosi (2006, Theorem 3.7) for details.
The only work left is to verify Assumption 3.2. Let d = 1, θ = 1 and the deterministic transition
kernel P in M1 be the only basic model in the linear mixture MDP, then we can see that the M1 we
construct indeed satisfies Assumption 3.2.

We bridge the gap between the reward design in Lemma C.13 and Assumption 3.1 in Theorem 5.3
via the second stage of this reduction.
When H is even, Lemma C.13 also holds for M̄1 := M1(S,A, H/2, {r̄kh},P) with H replaced
by H/2, where the S, A, and P from M1 are restricted to the first H/2 time steps in M̄1 and
r̄kH/2(·, ·) ∈ [0, 1] and the agent gets no reward in all the first H/2 − 1 time steps by construc-
tion. We can equivalently transform M̄1 into a MDP M2 satisfying Assumption 3.1 with plan-
ning horizon H as follows. We replace every node S [H/2 + 1, ·] in the (H/2 + 1)-th layer of
M̄1 by a (H/2 + 1)-layer complete |A|-way tree, and further assign the transition kernel of M1

to this extended M̄1. To obtain M2, a refined reward design is to assign zero reward for actions
(edges) conducted in states in the first H/2 layers and we assign each edge (action) in this sub-
tree with a reward r̄kH/2 (S [H/2,m] ,A [H/2,m, n]) /H ∈ [0, 1/H] for any subtree rooted in
S [H/2 + 1, (m− 1)|A|+ n]. Such a construction yields M2(S,A, H, {r̃kh},P), learning in which
can similarly be reduced to the standard prediction with expert advice with |A|H/2 experts and K
rounds. Therefore, Lemma C.13 also holds for M2 with H replaced by H/2, yet the properties of
the reward assignment in M2 is strictly strong than Assumption 3.1 in that all the actions conducted
from states in the same subtree rooted in the (H/2 + 1)-th layer causes the same reward.
Our goal is to claim a lower bound for a M3.1(S,A, H, {r̂kh},P), which shares the same S, A, and
P with M1 but has its reward assignment generally satisfying Assumption 3.1, i.e. all actions taken
from all states cause a reward r̂kh ∈ [0, 1/H]. Since M2 is strictly a special case of M3.1, which
implies that the asymptotic lower bound for M3.1 can not be lower than that in Lemma C.13 up to a
constant factor

√
2. Also, it is obvious that |S| = Θ(|A|H) in a complete |A|-way tree with H + 1

layers.

C.5 PROOF OF THEOREM 5.5

Proof of Theorem 5.5. The proof is almost identical to the proof of Theorem 5.4 in Zhou & Gu
(2022). Consider the MDP M ′ = (S,A, H, r′,P) constructed in Theorem 5.4, Zhou & Gu (2022).
Now we consider a linear mixture MDP with adversarial reward M ′ = (S,A, H, {rk}k∈[K],P),
where all the elements except reward function is inherited from M ′. Now we define rk(·, ·) = r′(·, ·)
for all k ∈ [K]. It is easy to verify that M satisfy Assumption 3.1 and Assumption 3.2.
Since the adversarial reward functions are fixed, we know that the optimal hind-sight policy of M
is the optimal policy of M ′. Thus, the adversarial MDP will degenerate to a non-adversarial MDP.
The adversarial regret of algorithm on M will also be identical to the non-adversarial regret on M ′.
By Theorem 5.4 in Zhou & Gu 2022, we know that when K > max{3d2, (d − 1)/(192(b − 1))},
for any algorithm, there exists a B-bounded homogeneous linear mixture MDPs with adversarial
rewards such that the expected regret E[Regret(K)] is lower bounded by d

√
K/(16

√
3).

D AUXILIARY LEMMAS

Lemma D.1 (Azuma-Hoeffding inequality, Azuma 1967). Let M > 0 be a constant. Let {xi}ni=1 be
a stochastic process, Gi = σ(x1, . . . , xi) be the σ-algebra of x1, . . . , xi. Suppose E[xi|Gi−1] = 0,
|xi| ≤M almost surely. Then, for any 0 < δ < 1, we have

P
( n∑

i=1

xi ≤M
√

2n log(1/δ)

)
> 1− δ.

Lemma D.2 (Lemma 12, Abbasi-Yadkori et al. 2011). Suppose A,B ∈ Rd×d are two positive
definite matrices satisfying A ⪰ B, then for any x ∈ Rd, ∥x∥A ≤ ∥x∥B ·

√
det(A)/ det(B).
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Lemma D.3 (Lemma 11, Zhang et al. 2021b). Let M > 0 be a constant. Let {xi}ni=1 be a stochastic
process, Gi = σ(x1, . . . , xi) be the σ-algebra of x1, . . . , xi. Suppose E[xi|Gi−1] = 0, |xi| ≤ M
and E[x2

i |Gi−1] <∞ almost surely. Then, for any δ, ϵ > 0, we have

P
(∣∣∣∣ n∑

i=1

xi

∣∣∣∣ ≤ 2

√√√√2 log(1/δ)

n∑
i=1

E[x2
i |Gi−1] + 2

√
log(1/δ)ϵ+ 2M log(1/δ)

)
> 1− 2(log(M2n/ϵ2) + 1)δ.

Lemma D.4 (Lemma 12, Zhang et al. 2021b). Let λ1, λ2, λ4 > 0, λ3 ≥ 1 and
κ = max{log2 λ1, 1}. Let a1, . . . , aκ be non-negative real numbers such that ai ≤
min{λ1, λ2

√
ai + ai+1 + 2i+1λ3 + λ4} for any 1 ≤ i ≤ κ. Let aκ+1 = λ1. Then we have

a1 ≤ 22λ2
2 + 6λ4 + 4λ2

√
2λ3.

E INTUITION BEHIND DEFINITION 4.1 AND COMPUTATIONAL ISSUES OF
LINE 3 IN ALGORITHM 2

The second and the third constraints in Definition 4.1 follows (3.2) and (3.1), which implies that
the total probability of every zh, i.e.,

∑
s,a,s′∈S×A×S zh(s, a, s

′), is 1. The last constraint under
linear function approximation basicly induces an imagined transition function from ϕ(·|·, ·). At first
glance, it is not obvious whether a Bregman projection step ontoDk (Line 3 of Algorithm 2) is com-
putationally efficient. Despite such a projection cannot be formulated as a linear program, we can
showDk to be an intersection of convex sets of explicit linear or quadratic forms, on which the Breg-
man projection onto convex sets problem can be implemented by Dysktra’s algorithm efficiently. A
detailed discussion is given as follows.
First we provide an closed-form expression of the only implicit constraint in Definition 4.1.
Lemma E.1. For every (s, a, h) ∈ S ×A× [H], let zh,s,a denote the vector of occupancy measure
zh(s, a, ·) and Bs,a ∈ R|S|×d denote the matrix generated by stacking ϕ(·|s, a)⊤, i.e.

zh,s,a = zh(s, a, ·) :=

 zh(s, a, s(1))
...

zh(s, a, s(||S|)

 ,Bs,a :=

 ϕ(s(1)|s, a)⊤
...

ϕ(s(|S|)|s, a)⊤

 , (E.1)

where {(1), . . . , (|S|)} is a indices set5 of all states, then the only constraint including explicitly
θ̄s,a,h,k in Definition 4.1 is equivalent to the following closed-form:

∥∥(Bs,aΣ
−1/2
k,0 )†(zh,s,a − ∥zh,s,a∥1Bs,aθ̂k,0)

∥∥
2
≤ ∥zh,s,a∥1β̂k,∀(s, a, h) ∈ S ×A× [H] (E.2)

Proof. Given (s, a, h) ∈ S×A×[H], if
∑

s′∈S zh(s, a, s
′) = 0, then obviously it satisfy (E.2). Now

we consider the case that
∑

s′∈S zh(s, a, s
′) > 0, then we denote p to be the normalized vector, i.e.

ph(s, a, r) = zh(s, a, r)/
∑

s′∈S zh(s, a, s
′). Then, our new constraint is equivalent to∥∥(Bs,aΣ

−1/2
k,0 )†(p−Bs,aθ̂k,0)

∥∥
2
≤ β̂k (E.3)

and our original constraint becomes:
∃ θ̄ ∈ Ck, s.t.,p = Bs,aθ̄

which is equivalent to

∃ θ̄ ∈ Ck, s.t.,p−Bs,aθ̂k,0 = Bs,aΣ
1/2
k,0 [Σ

−1/2
k,0 (θ̄ − θ̂k,0)].

By definition of our confidence set, we know that θ̄ ∈ Ck means
∥∥Σ−1/2

k,0 (θ̄− θ̂k,0)
∥∥
2
≤ β̂k, so this

is the same as that the following function has a solution with norm less than β̂k. In other word, this
means that the solution with the least norm has a norm no bigger than β̂k:

p−Bs,aθ̂k,0 = Bs,aΣ
1/2
k,0x, (E.4)

5In this paper, si means the i-th state visited in an episode, while s(i), i = 1, . . . , |S| is irrelevant to the
episodic learning setting and only denotes the indexing order when we refer to the wildcard · ∈ S in a vectorized
notation.
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Algorithm 4 Dykstra algorithm with Bregman projections
Require: ϵ > 0, Φ, as defined in (4.2), which is strictly convex; N closed convex sets C1, . . . , CN ,

corresponding to the decomposition in (E.5), C := ∩iCi ̸= ∅; x0 ← wk, where wk is defined
in line 3 of Algorithm 2; q−(N−1) := . . . := q−1 := q0 := 0 ∈ R|S|2|A|H serves as an auxiliary
initialization.

1: repeat
2: xn ← (Pn ◦ ∇Φ∗) (∇f(xn−1) + qn−N );
3: qn ← ∇f(xn−1) + qn−N −∇f(xn);
4: until ||xn − xn−1||TV ≤ ϵ

where x is the unknown variable. The least norm solution of (E.4) is (Bs,aΣ
−1/2
k,0 )†(p−Bs,aθ̂k,0),

which should have a norm no bigger than β̂k, and thus yields (E.3). Therefore, we conclude that the
two constraints are equivalent.

By Definition 4.1 and Lemma E.1,Dk can essentially be reformulated as the joint of several “easier”
closed convex sets:

Dk =
{
zh(·, ·, ·) ∈ R|S|2|A|, h ∈ [H]

∣∣∑
s,a

zh(s, a, s
′) =

∑
a,s′′

zh(s
′, a, s′′),∀h ∈ [2 : H]

}⋂{
zh(·, ·, ·) ∈ R|S|2|A|, h ∈ [H]

∣∣∑
a,s′

z1(s, a, s
′) = 1{s = s1}

}⋂{
zh(·, ·, ·) ∈ R|S|2|A|, h ∈ [H]

∣∣
zh(·, ·, ·) ≥ 0

}⋂(
⋂

(s,a,h)∈S×A×[H]

{
zh′(·, ·, ·) ∈ R|S|2|A|, h′ ∈ [H]

∣∣
∥∥(Bs,aΣ

−1/2
k )†(zh,s,a − ∥zh,s,a∥1Bs,aθ̂k,0)

∥∥
2
≤ ∥zh,s,a∥1β̂k,

})
.

(E.5)

Therefore, the best approximation problem w.r.t Bregman divergence6 step, i.e. line 3 in Algorithm
2 can be cast to the projection onto convex sets under Bregman divergence (POCS (Bauschke &
Borwein, 1996)) problem. Since Dk is the intersection of several hyperplanes, halfspaces, and el-
lipsoids7, onto which (Bregman) projections are hopefully easier to conduct, the Dykstra algorithm
with Bregman projections (Censor & Reich, 1998), which is verified to be convergent for general
closed convex constraints (Bauschke & Lewis, 2000), can be utilized.
For the implementation of line 2 in Algorithm 4, a specialized scheme employing the Dykstra algo-
rithm with Bregman projections may invoke the projected gradient descent algorithm to deal with
the information projection subproblems onto hyperplanes and halfspaces, both of which are blessed
with closed-form Euclidean projection formulas (see Lemma E.3); and invoke Frank-Wolfe to ad-
dress the information projection subproblems onto ellipsoids, which only requires an efficient imple-
mentation of a linear optimization problem over the quadratic constraint, in that linear optimization
over an ellipsoid has a closed-form formula (see Lemma E.4).

Remark E.2. The number of variables in line 3 of Algorithm 2 is of order O(|S|2|A|), while its
dual problem can not be much easier. The inequality constraints in (E.5) must be conducted for
each (s, a, h), i.e. the unknown transition kernel incurs at least |S||A|H dual variables in the dual
problem.

6In our case, it is just the information projection(Cover, 1999)
7Rigorously speaking, (E.2) can be relaxed to an elliptical constraint, because we only concern about zh,s,a

with ||zh,s,a||1 ̸= 0. For (h, s, a) whose ||zh,s,a||1 = 0, its induced transition kernel Ph(·|s, a) can be any
eligible unit simplex, which doesn’t need to follow (3.4) in Lemma 3.3.
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Lemma E.3. If A ∈ Rm×n is of full row rank, b ∈ Rm, c ∈ Rn\{0}, d ∈ R, the orthogonal
(Euclidean) projections of x ∈ Rn onto {x : Ax = b} and {x : c⊤x ≤ d} are unique respectively,
and have closed-form solutions as follows:

x−A⊤(AA⊤)−1(Ax− b) = argmin
y:Ay=b

||y − x||2

x− [c⊤x− d]+
||c||22

c = argmin
y:c⊤y=d

||y − x||2

Lemma E.4. If A ≻ 0, then linear optimization over an ellipsoid defined by A ∈ Sn++ and x ∈ Rn:

max
y

c⊤y

s.t. ||y − x||A−1 ≤ 1,

has the unique solution with closed-form expression:

y = x+
Ac√
c⊤Ac

.
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