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Abstract

While large multilingual automatic speech
recognition (ASR) models achieve remarkable
performance, the internal mechanisms of the
end-to-end pipeline, particularly concerning
fairness and efficacy across languages, remain
underexplored. This paper introduces a fine-
grained analysis of Whisper’s multilingual de-
coder, examining its sub-token hypotheses dur-
ing transcription across languages with various
resource levels. Our method traces the beam
search path, capturing sub-token guesses and
their associated probabilities. Results reveal
that higher resource languages benefit from
markedly higher likelihood of the correct token
being top-ranked in candidate guesses, higher
confidence, lower predictive entropy, and more
diverse alternative candidates. Lower resource
languages fare worse on these metrics, but also
exhibit distinct clustering patterns in sub-token
usage sometimes influenced by typology in our
PCA analysis. This sub-token probing uncov-
ers systematic decoding disparities masked by
aggregate error rates and points towards tar-
geted interventions to ameliorate the imbal-
anced development of speech technology.

1 Introduction

Large multilingual Automatic Speech Recogni-
tion (ASR) models like Whisper (Radford et al.,
2023) demonstrate impressive capabilities on high-
resource languages, yet their performance often
degrades significantly for low-resource languages
(Javed et al., 2022), alongside persistent concerns
about fairness across diverse linguistic groups (Zee
etal., 2024). Aggregate metrics such as Word Error
Rate (WER) can obscure the nuanced ways these
models falter internally and may not capture criti-
cal issues like model hallucination (Koenecke et al.,
2024). This necessitates a deeper analysis of the
decoding process itself, with some prior work also
highlighting the utility of evaluating models at the
sub-unit level, for instance, in assessing calibration
(Ballier et al., 2024b).

This paper posits that a granular, sub-token level
investigation of Whisper’s decoder is crucial for a
more comprehensive understanding of these perfor-
mance variations. In this work, we use the term
‘sub-token’ to refer to the sub-word units (e.g., Byte
Pair Encoding (BPE) units) that models like Whis-
per generate; these are often broadly referred to
as ‘tokens’ in relevant literature. Recognizing that
tokenization strategies can themselves introduce bi-
ases and affect model behavior (Petrov et al., 2023;
Ahia et al., 2024), we scrutinize how key charac-
teristics of the sub-token generation process sys-
tematically differ when processing languages with
varying levels of resources in training: specifically,
the rank of chosen sub-tokens, model confidence
in its predictions, predictive uncertainty (entropy),
the diversity of the hypothesis space, and overall
sub-token usage patterns.

Our analysis empirically demonstrates two pri-
mary findings: first, higher resource languages con-
sistently benefit from more robust decoding metrics
at the sub-token level, including higher prediction
confidence and lower predictive entropy. Second,
sub-token usage patterns as revealed through Prin-
cipal Component Analysis (PCA) indicate poorer
handling of tokenization for lower resource lan-
guages, but also reveal typologically coherent clus-
ters that can transcend simple resource-level dis-
tinctions, highlighting the interplay between lin-
guistic structure and data availability. These fine-
grained insights are valuable for developing tar-
geted interventions, such as specialized adapter
fine-tuning (Song et al., 2024; Pfeiffer et al., 2021),
to improve the equity and efficacy of multilingual
ASR systems.

2 Background

2.1 Whisper and Tokenisation

Whisper is an influential foundation encoder-
decoder Transformer model (Radford et al., 2023).



It was trained using large-scale weak supervision
on approximately 680,000 hours of multilingual au-
dio data, covering a wide array of tasks, including
speech transcription and translation. This extensive
pre-training enables strong zero-shot performance.

A core component of Whisper’s architecture, as
well as many modern large language and speech
models, is its tokenization strategy. As detailed by
Radford et al. (2023), Whisper utilizes two sepa-
rate Byte Pair Encoding (BPE) vocabularies: one
derived from the GPT-2 tokenizer (Sennrich et al.,
2016; Radford et al., 2019) for English-only mod-
els, and a distinct, refitted vocabulary of the same
size for multilingual models. This refitting was
intended to avoid excessive fragmentation on other
languages since the BPE vocabulary is English only
(Radford et al., 2023). Our work focuses on the
behavior of models using this multilingual BPE
vocabulary, which is shared across all non-English
languages the model supports. During decoding,
the model generates a sequence of these sub-tokens,
typically guided by special tokens like a language
ID. While sub-word units allow handling large vo-
cabularies and morphological variations more effec-
tively than word-level tokenization, and can facil-
itate cross-lingual transfer (Conneau et al., 2020),
Radford et al. (2023) themselves acknowledge po-
tential limitations, particularly for languages dis-
tant from the Indo-European family which forms
the bulk of the training data. They note that perfor-
mance outliers could be due to a lack of transfer
across languages and that the BPE tokenizer could
be a poor match for these languages or variations
in data quality.

However, the nature of sub-word tokenization,
especially in a multilingual context, is not with-
out its challenges. The way texts are segmented
into tokens can vary significantly across languages,
potentially leading to disparities in processing effi-
ciency, context window utilization, and even model
performance (Petrov et al., 2023). For instance,
some languages might be systematically broken
into more tokens than others for equivalent seman-
tic content, an issue explored in the context of text-
based LLMs (Petrov et al., 2023; Acs, 2019). Such
tokenization artifacts can contribute to unfairness,
as models might inherently find it more complex to
process or learn representations for languages that
result in longer token sequences (Ahia et al., 2024).
While recent research also explores discrete acous-
tic or semantic tokens for ASR (Guo et al., 2025;

Cui et al., 2024), the BPE approach as employed
in Whisper remains a common paradigm, making
the study of its sub-token characteristics critical.

2.2 Beam Search Decoding

For generating transcriptions, Whisper typically
employs beam search decoding. Beam search main-
tains a set of k£ (the beam width) most probable
partial hypotheses (sequences of tokens). At each
step, it extends these hypotheses with possible next
tokens and re-ranks them based on their cumulative
probabilities, pruning the set back to k& hypothe-
ses. This exploration of multiple paths aims to find
an overall sequence with a higher likelihood than
what might be found through a purely greedy ap-
proach. Our analysis focuses on the characteristics
observed along the single, final beam path chosen
by the model, representing its ultimate transcription
output. Probing model predictions, particularly the
probability scores assigned by the decoder to cho-
sen sub-tokens, provides insights into the model’s
decision-making at each step of this generation
process. These output probabilities are commonly
used as a direct measure of model confidence in
the ASR literature (e.g., Jiang, 2005; Ballier et al.,
2024b,a; Aggarwal et al., 2025). However, it is
also well-established that the raw softmax proba-
bilities from deep neural networks may not always
be well-calibrated and can exhibit overconfidence
(Guo et al., 2017).

2.3 Resource Disparity and Fairness in
Multilingual ASR

A significant challenge in developing truly equi-
table multilingual ASR systems is the vast dis-
parity in available training resources across lan-
guages. While Whisper’s pre-training dataset is
exceptionally large, the distribution of data per lan-
guage varies by orders of magnitude (Radford et al.,
2023). This imbalance directly impacts model per-
formance, generally leading to superior results for
higher resource languages (Javed et al., 2022). Scal-
ing models and data (e.g., Tjandra et al. (2023) and
Pratap et al. (2024)) can improve overall perfor-
mance but does not necessarily resolve fairness is-
sues or guarantee equitable performance across all
languages and speaker groups (Zee et al., 2024). In
fact, Zee et al. (2024) found that larger models can
sometimes exhibit greater worst-case performance
disparities.

The challenges for low resource languages are
multifaceted. Beyond raw data quantity, issues in-



clude the representation of diverse scripts (Pfeiffer
et al., 2021; Muller et al., 2021), the quality of sub-
token vocabularies for these languages (Downey
et al., 2023), and the potential for "capacity dilu-
tion" where a fixed-size model struggles to ade-
quately represent many languages (Conneau et al.,
2020). These factors can lead to higher error rates,
lower model confidence, and increased suscepti-
bility to issues like hallucination (Koenecke et al.,
2024) for low resource languages. Prior work often
evaluates these disparities at the word or utterance
level (e.g., WER), with dedicated studies bench-
marking performance on specific low-resource lan-
guage sets like Pashto, Punjabi, and Urdu (Sehar
et al., 2025). Our research instead asks: how do
decoder-level uncertainties and hypothesis charac-
teristics manifest differently between resource tiers
even before a full word or sentence is outputted?
This sub-token perspective is crucial for under-
standing the foundational biases and uncertainties
that may contribute to downstream performance
gaps and for developing targeted interventions.

3 Data

To investigate Whisper’s sub-token decoding char-
acteristics across different linguistic contexts and
resource availability, we curated a diverse set of
20 languages. These languages were categorized
into three tiers, High, Medium, and Low resource
for better visualization, based on their representa-
tion in Whisper’s own training data composition
(Radford et al., 2023). It should be noted that the
definition does not correspond to actual resource
levels in the real world beyond Whisper’s training
dataset. The selected languages are detailed in Ta-
ble 1. English, while being the most represented
language in Whisper’s training data, was intention-
ally excluded from our analysis. Its training data
volume is disproportionately larger (over 430,000
hours) compared to the other high resource lan-
guages analyzed (e.g., German with approximately
13,000 hours), which would skew the comparative
analysis across resource tiers and make it less in-
formative for studying graduated cross-linguistic
differences.

To maintain consistency in sub-token analysis
and simplify cross-linguistic comparisons at the
sub-token level, our analysis primarily focuses on
languages that predominantly use the Latin alpha-
bet. We made an explicit decision to exclude lan-
guages for which our initial baseline ASR perfor-

Resource Tier =~ Language Training Hours
High German 13,344
Spanish 11,100

French 9,752

Portuguese 8,573

Turkish 4,333

Medium Italian 2,585
Swedish 2,119

Dutch 2,077

Catalan 1,883

Finnish 1,066

Indonesian 1,014

Hungarian 379

Romanian 356

Norwegian 266

Low Welsh 73
Lithuanian 67

Latvian 65

Azerbaijani 47

Estonian 41

Basque 21

Table 1: Whisper training hours by language, catego-
rized by resource level.

mance using Whisper-large-v2 was exceptionally
poor (specifically, WER higher than 60%). Pre-
liminary qualitative analyses on languages such
as Uzbek, Swabhili and higher resource Danish re-
vealed that the model frequently misrecognized the
target language entirely or produced outputs with
non-canonical orthography, making a meaningful
analysis impractical.

For each of the selected languages, we used ap-
proximately 10 minutes of speech data randomly
sampled from the validated subset in the Common
Voice 17.0 dataset (Ardila et al., 2020).

4 Methodology

4.1 Sub-token Extraction

Our methodology involves two key stages: gener-
ating hypothesis transcriptions and capturing the
decoder’s state at each generation step. For each
audio utterance, we first obtain a transcription
using Whisper-large-v2 with beam search (beam
size=5, temperature=0.2). We provide the cor-
rect language ID token in the initial prompt to en-
sure transcription in the target language. This pro-
cess yields the hypothesis sequence of sub-tokens
C = (c1,c2,...,cNy).

Once this hypothesis is generated, we re-trace
its generation path step-by-step. For each position
s in sequence C', we:

1. Provide the decoder with the audio features



(encoder output) and the prefix of already cho-
sen sub-tokens (c1,ca, ..., Cs—1)

2. Extract the decoder’s full probability distri-
bution over all possible sub-tokens for step
s

3. Record the top-K.qn,q = 50 sub-token can-
didates Ts g, , = (ts1,...,ts K.,,,) along
with their respective log-probabilities

This re-tracing procedure captures the decoder’s
internal state—its ranked candidates and their prob-
abilities—at each decision point in the transcription
process. These snapshots form the basis for calcu-
lating all our analytical metrics and provide insight
into the model’s decision-making across different
languages.

4.2 Metrics

We compute several metrics by analyzing the
beam search path of hypotheses generated by
Whisper. For each utterance, we denote C' =
(c1,¢2,...,¢cn,) as the sequence of Ny sub-
tokens in the hypothesis. At each step s in the
generation process:

* ¢, is the sub-token selected by beam search

TS Kona (ts1:ts2y- s ts Koyny) TEPIE-
sents the top-K .qng (50 in our experi-
ments) sub-token candidates predicted by
the decoder, with corresponding probabilities

(Ps,15Ps,25 - -+ s P8, Kopna)

For metrics requiring comparison against ground
truth, we use the reference transcription G =
(91,955 - - -+ g, )» tokenized with Whisper’s tok-
enizer. Metrics are aggregated over all relevant
items for a given language L, with Ny, denoting
the total sub-tokens generated across all hypothe-
ses and N, the total sub-tokens in all reference
transcriptions for language L.

4.2.1 Average Rank of Correct Sub-token

This metric assesses how highly the ground truth
sub-tokens rank among the decoder’s predictions.
We use Levenshtein alignment to map each ref-
erence sub-token g to a hypothesis sub-token ¢,
(or identify it as a deletion). For each reference
sub-token g} :

* If g} is aligned with hypothesis sub-token c:
The rank of g is its 1-indexed position in

Position GT Output  Operation Rank
0 (IBOSI)  (IBOSI) equal 1
1 Sil S replace 1
2 ah el replace 5
3 lar am replace 7
4 e lar replace 4
5 (IEOSI)  (deleted) delete K+1
6 A insert -
7 ley insert -
8 kum insert -
9 . insert -
10 (IEOSI) equal

Table 2: Alignment between ground truth (GT) sub-
tokens (“Silahlar...”/“Weapons...”) and model out-
put sub-tokens (“Selamun Aleykum.”/“Peace be upon

you.”).

Ts K., If g; is not found within the top-
K qng list, its rank is assigned a penalty value
of Keqna + 1.

* If g is deleted: Its rank is also assigned the
penalty value K ,5,q + 1.

The average rank for a language L is the mean
of these individual ranks across all reference sub-
tokens:

A lower average rank indicates that the correct
sub-tokens are more frequently found among the
model’s top predictions.

To illustrate this process, Table 2 shows the align-
ment between ground truth and model-generated
sub-tokens for a Turkish phrase. The table demon-
strates possible alignment operations: equal (where
the model correctly identified the token), replace
(where the model chose a different token), and
delete (where a ground truth token has no corre-
sponding model token).

For this example, the average rank is calculated
as: Rank — 1+1+5+7+471+(K+1)+2 _ 20+(§<+1) _

10.14 with K = 50.

4.2.2 Confidence

Confidence measures the average probability as-
signed to the sub-token c; that was ultimately cho-
sen at each step along the beam search path:

Nu,

— 1
Confy, = N Z p(cs|utterance, c )

L s=1



where p(cs|utterance, c<) is the probability as-
signed to cs given the utterance audio input and
previous tokens.

4.2.3 Entropy

Token-level entropy quantifies the uncertainty in
the model’s predictions, calculated over the top-
K = 50 predicted sub-tokens. After normalizing
the probabilities of these candidates, the entropy
(in bits) at step s is:

Ky
Hs = — ZP;z logy Pl ;
i—1

where p ; are the renormalized probabilities over
the top Ky candidates. The average entropy H,
for a language is reported as the mean across all
decoding steps.

4.2.4 Alternate-candidate Diversity

This metric evaluates the variety within the set of
predicted candidates using the Type-Token Ratio
(TTR). Specifically, we calculate the TTR of the
non-top-1 candidates within the top-Kp = 50 pre-
dictions. For each language, we collect all sub-
tokens that appear as candidates ranked from 2 to
Kp across all decoding steps. The diversity is then
computed as:

|unique non-top-1 tokens in L|

Diversity, = |total non-top-1 tokens in L|

This approach explores the richness of the hy-
pothesis space beyond the model’s single best
guess. Our underlying assumption is that lower-
resourced languages might exhibit less diversity in
these alternative candidates, potentially reflecting a
more constrained or less nuanced hypothesis space
learned by the model due to limited training data.
A higher TTR indicates a broader range of unique
alternatives being considered.

4.2.5 Sub-token PCA

To visualise cross-lingual patterns in sub-token us-
age, we build a frequency vector for each language
from the sub-tokens that appear among the top-
Kpca = 10 candidates at every decoding step.
These frequency vectors represent the distribution
of sub-token IDs from Whisper’s multilingual vo-
cabulary of 51,865 tokens (Radford et al., 2023).
Using a wider window (e.g. Kpca = 50) would
fold in many low-frequency alternates and blur fine-
grained distinctions, so we fix K at 10 to keep
language differences salient.
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Figure 1: WER of Whisper on the Common Voice
dataset versus training hours. Higher resource languages
tend to have lower WER (p-value < 0.001).

After standardizing these vectors, we apply Prin-
cipal Component Analysis and project the data onto
the first two principal components. This allows vi-
sualization of language clusters based on sub-token
usage patterns, revealing relationships that may cor-
relate with linguistic typology or resource levels.

5 Results

Our analysis of Whisper’s sub-token decoder re-
veals systematic variations in its behavior that cor-
relate strongly with language resource levels, quan-
tified by training hours. As a baseline, Figure 1 re-
ports the Word Error Rate (WER) of the languages
studied.

Consistent with previous findings we observe
that WER is generally lower for languages with
more training hours (Radford et al., 2023). Our
subsequent sub-token level analyses aim to delve
deeper into the internal decoding characteristics
that might contribute to these performance differ-
ences.

5.1 Rank of Correct Sub-token

The average rank of the correct sub-token corre-
lates with language resource levels, as shown in
Figure 2. Higher resource languages have their cor-
rect sub-tokens ranked higher. This indicates that
for higher resource languages, the beam search pre-
dominantly follows the locally highest-probability
path. Despite the general trend, we do observe
some deviations in individual languages.
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Figure 2: Average rank of the correct sub-token versus
Whisper training hours. Higher resource languages tend
to have correct tokens ranked higher (closer to 1, p-value
<0.001).
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Figure 3: Average model confidence (probability of cho-
sen sub-token) versus Whisper training hours. Higher-
resource languages generally exhibit higher confidence
(p-value < 0.001).

5.2 Decoder Confidence and Predictive
Entropy

Decoder confidence, measured as the average prob-
ability of the chosen sub-token, shows a strong
positive correlation with language training hours,
as shown in Figure 3. High-resource languages
tend to exhibit higher average confidence values.
Conversely, predictive entropy, calculated over
the top-5 predicted sub-tokens, demonstrates a neg-
ative correlation with training hours, as shown in
Figure 4. High-resource languages show lower av-
erage entropy, indicating more peaked and certain
predictive distributions. This inverse relationship
between confidence and entropy is expected: when
the model is more confident in its chosen token,
its distribution over alternatives is sharper (less en-
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Figure 4: Average predictive token entropy of the top-
50 candidates versus Whisper training hours. Higher
resource languages generally exhibit lower entropy (p-
value < 0.001).
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Figure 5: Alternate-candidate diversity (TTR of non-
top-1 candidates in top-50 candidates) versus Whisper
training hours. Higher resource languages tend to have
higher alternate-candidate diversity (p-value < 0.001).

tropic).

5.3 Alternate-Candidate Diversity

Alternate-candidate diversity, measured as the TTR
of non-top-1 candidates within the top-5 predic-
tions, exhibits a generally positive correlation with
language resource levels, as shown in Figure 5.
Higher resource languages tend to populate the up-
per range of diversity scores. This suggests that
for higher resource languages, the model often con-
siders a richer set of unique alternatives beyond
its top choice. The overall trend indicates that in-
creased training data may lead to a more varied set
of hypotheses being considered.



5.4 PCA Clustering of Sub-token Usage

The PCA visualization of language-specific sub-
token frequency vectors (from top-10 candidates)
reveals distinct clustering patterns that reflect both
typological relationships and resource levels, as
presented in Figure 6. A prominent observation is
the separation of language families. Romance lan-
guages (Spanish, French, Portuguese, Italian, Cata-
lan, and Romanian) form a relatively cohesive clus-
ter. Similarly, Turkic languages (Turkish and Azer-
baijani), North Germanic languages (Swedish and
Norwegian), Uralic languages (Finnish and Esto-
nian, and to a lesser extent Hungarian), tend to stay
clustered closer together and distinctly separated
from other groups along the principal components.
The clustering is also interesting as it groups lan-
guages of varying resource levels together, suggest-
ing that shared linguistic structures (e.g., common
morpho-phonological features captured in common
sub-tokens) could influence sub-token usage pat-
terns.

Notably, typologically unrelated lower resource
languages, such as Welsh, Lithuanian, Latvian,
and Basque, cluster together despite their signifi-
cant linguistic differences. This unexpected group-
ing suggests these languages are handled similarly
by Whisper’s decoder not because of linguistic
similarity, but due to their shared status as low-
resource languages in the training data. Unlike
high-resource languages that form distinct family-
based clusters, these unrelated low-resource lan-
guages appear to share common sub-tokenization
characteristics that transcend actual linguistic re-
lationships, indicating deficiencies in the model’s
sub-token representations where it may be falling
back to more generic decoding patterns due to in-
sufficient exposure during training.

6 Discussion

Our sub-token probing of Whisper’s decoder un-
covers systematic variations in its behavior. These
variations not only correlate strongly with language
resource levels but are also significantly shaped by
linguistic typology, offering a more nuanced un-
derstanding of the model’s internal mechanisms
beyond aggregate error rates.

6.1 Resource-Driven Variations in Sub-token
Decoding

The analysis consistently reveals that higher re-
source languages benefit from more favorable de-
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Figure 6: PCA of sub-token usage frequency vectors
(top-10 candidates).

coding characteristics. Specifically, the model ex-
hibits higher average confidence in its chosen sub-
tokens for higher resource languages, and their pre-
dictive distributions are marked by lower entropy,
indicating greater certainty in its predictions. Fur-
thermore, the correct sub-token is more frequently
highly ranked among the candidates considered
during beam search for these languages. These
advantages can be attributed to the extensive expo-
sure to diverse linguistic phenomena afforded by
larger training datasets (Radford et al., 2023). Such
exposure likely enables the formation of more ro-
bust and well-calibrated sub-token representations.
The generally higher alternate-candidate diversity
observed for higher resource languages also sug-
gests that increased training data allows the model
to consider a richer and more varied set of plausi-
ble alternatives during the decoding process, poten-
tially contributing to improved overall transcription
accuracy.

6.2 The Influence of Linguistic Typology on
Sub-token Usage

Beyond the sheer volume of training data, the PCA
of sub-token usage (Figure 6) illustrates the influ-
ence of linguistic structure on the model’s internal
representations. The distinct typological clusters,
such as those observed for Romance languages and
Turkic languages, underscores that shared morpho-
syntactic or phonological features can drive similar
sub-token utilization patterns.

The clustering is particularly interesting as it
groups higher resource languages together with
lower resource languages. This finding suggests
that inherent linguistic properties (e.g. an agglu-



tinative morphology which might lead to a com-
monality in frequent, meaningful sub-tokens) can
shape the model’s representational space. Such
structural similarities may partially mitigate the
disadvantages associated with data scarcity for cer-
tain lower-resource languages when they belong to
typologically related families. This suggests that
typological relatedness can be a signifcant factor
in conditioning sub-token representations and may
influence the efficacy of cross-lingual transfer.

Notably, typologically unrelated lower resource
languages, such as Welsh, Lithuanian, Latvian,
and Basque, cluster together despite their signifi-
cant linguistic differences. This unexpected group-
ing suggests these languages are handled similarly
by Whisper’s decoder not because of linguistic
similarity, but due to their shared status as low-
resource languages in the training data. Unlike
high-resource languages that form distinct family-
based clusters, these unrelated low-resource lan-
guages appear to share common sub-tokenization
characteristics that transcend actual linguistic re-
lationships, indicating deficiencies in the model’s
sub-token representations where it may be falling
back to more generic decoding patterns due to in-
sufficient exposure during training.

6.3 Sub-token Prediction Accuracy versus
Global Performance

An intriguing aspect of our findings is the observed
incongruity between local sub-token prediction and
global Word Error Rate (WER) for particular lan-
guages. For instance, languages like Estonian and
Azerbaijani, despite demonstrating remarkably low
average ranks for their gold sub-tokens (signifying
that the correct orthographic units are included as
high-probability candidates by the acoustic model
at a local, per-step level) do not invariably achieve
the lowest overall WERSs in our analyzed set.

This phenomenon highlights the inherent com-
plexities of the end-to-end ASR decoding pipeline.
While the model may possess robust local "knowl-
edge" of correct sub-units, the ultimate transcrip-
tion quality is a cumulative function of global se-
quence optimization during beam search, the effec-
tive mitigation of cascading errors arising from any
single misstep, and the nuanced handling of intri-
cate linguistic features that span multiple tokens.
Consequently, for such languages, interventions
aimed solely at further refining local sub-token pre-
diction accuracy might yield diminishing returns

on WER improvement. Strategies that enhance
the model’s capacity for global context modeling
or its specific handling of overarching linguistic
complexities may prove more fruitful.

6.4 Practical Implications

The above analysis offer several avenues for tar-
geted interventions. The identification of language-
specific weaknesses, such as a consistent tendency
for correct sub-tokens to be ranked lower or for
predictive distributions to exhibit high entropy in
low resource languages, can directly inform the
design of language-specific adapters or more so-
phisticated parameter-efficient fine-tuning strate-
gies (Song et al., 2024; Pfeiffer et al., 2021). Fur-
thermore, decoder-internal metrics, including dy-
namic measures of confidence and entropy, could
potentially serve as valuable signals for adaptive
adjustments to decoding algorithms. Finally, the
sub-token usage patterns unveiled by PCA and the
diversity metric may illuminate critical deficiencies
in current vocabulary coverage and suggest novel
data augmentation techniques.

7 Conclusion

This study introduces a fine-grained sub-token
probing framework for Whisper’s decoder, reveal-
ing systematic disparities in how the model pro-
cesses languages across resource levels. Higher
resource languages consistently benefit from more
favorable decoding characteristics: correct tokens
more frequently top-ranked, higher confidence,
lower entropy, and more diverse alternative candi-
dates. Our PCA analysis of sub-token usage further
demonstrates that linguistic typology significantly
influences these representations, with related lan-
guages clustering together regardless of resource
tier, while unrelated low-resource languages un-
expectedly cluster due to similar sub-tokenization
patterns rather than linguistic similarity. These
insights, often masked by aggregate metrics like
WER, highlight how resource disparities manifest
within the decoder’s internal mechanisms and point
toward targeted interventions such as language-
specific adapters, dynamic decoding strategies, and
focused data augmentation to promote more equi-
table multilingual ASR development.

Limitations

Although we tried to present a comprehensive anal-
ysis, our study has several limitations. First, we fo-



cused primarily on languages using the Latin script,
excluding many writing systems and potentially
missing script-specific tokenization effects. Addi-
tionally, our 10-minute samples per language pro-
vide only a snapshot that may not capture the full
phonological diversity or domain variation present
in natural speech.

Our methodology for extracting and evaluat-
ing sub-token performance also relies on assump-
tions about alignment between hypothesis and refer-
ence transcriptions that may not perfectly represent
ground truth. While we analyze the chosen beam
search path, we do not directly probe Whisper’s
internal beam search heuristics or alternate paths,
which might offer additional insights into model
decision-making. Finally, our resource-level cat-
egorization is based solely on Whisper’s training
hours rather than real-world language resources.

Furthermore, our analysis is inherently depen-
dent on the quality and accuracy of the labels pro-
vided within the Whisper training dataset. As noted
by Radford et al. (2023) themselves, there can
be instances of labeling errors within this large
dataset (e.g., some English audio being mislabeled
as Welsh). Similar mislabelings for other languages
could exist and potentially influence the model’s
learned representations and, consequently, our ob-
servations, particularly for languages where such
noisy data might constitute a non-negligible portion
of their training subset.

Future work should extend this analysis to more
scripts, longer and more diverse audio samples, and
explore how sub-token behavior correlates with
specific linguistic features across typologically di-
verse languages.
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