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Abstract
While large multilingual automatic speech001
recognition (ASR) models achieve remarkable002
performance, the internal mechanisms of the003
end-to-end pipeline, particularly concerning004
fairness and efficacy across languages, remain005
underexplored. This paper introduces a fine-006
grained analysis of Whisper’s multilingual de-007
coder, examining its sub-token hypotheses dur-008
ing transcription across languages with various009
resource levels. Our method traces the beam010
search path, capturing sub-token guesses and011
their associated probabilities. Results reveal012
that higher resource languages benefit from013
markedly higher likelihood of the correct token014
being top-ranked in candidate guesses, higher015
confidence, lower predictive entropy, and more016
diverse alternative candidates. Lower resource017
languages fare worse on these metrics, but also018
exhibit distinct clustering patterns in sub-token019
usage sometimes influenced by typology in our020
PCA analysis. This sub-token probing uncov-021
ers systematic decoding disparities masked by022
aggregate error rates and points towards tar-023
geted interventions to ameliorate the imbal-024
anced development of speech technology.025

1 Introduction026

Large multilingual Automatic Speech Recogni-027

tion (ASR) models like Whisper (Radford et al.,028

2023) demonstrate impressive capabilities on high-029

resource languages, yet their performance often030

degrades significantly for low-resource languages031

(Javed et al., 2022), alongside persistent concerns032

about fairness across diverse linguistic groups (Zee033

et al., 2024). Aggregate metrics such as Word Error034

Rate (WER) can obscure the nuanced ways these035

models falter internally and may not capture criti-036

cal issues like model hallucination (Koenecke et al.,037

2024). This necessitates a deeper analysis of the038

decoding process itself, with some prior work also039

highlighting the utility of evaluating models at the040

sub-unit level, for instance, in assessing calibration041

(Ballier et al., 2024b).042

This paper posits that a granular, sub-token level 043

investigation of Whisper’s decoder is crucial for a 044

more comprehensive understanding of these perfor- 045

mance variations. In this work, we use the term 046

‘sub-token’ to refer to the sub-word units (e.g., Byte 047

Pair Encoding (BPE) units) that models like Whis- 048

per generate; these are often broadly referred to 049

as ‘tokens’ in relevant literature. Recognizing that 050

tokenization strategies can themselves introduce bi- 051

ases and affect model behavior (Petrov et al., 2023; 052

Ahia et al., 2024), we scrutinize how key charac- 053

teristics of the sub-token generation process sys- 054

tematically differ when processing languages with 055

varying levels of resources in training: specifically, 056

the rank of chosen sub-tokens, model confidence 057

in its predictions, predictive uncertainty (entropy), 058

the diversity of the hypothesis space, and overall 059

sub-token usage patterns. 060

Our analysis empirically demonstrates two pri- 061

mary findings: first, higher resource languages con- 062

sistently benefit from more robust decoding metrics 063

at the sub-token level, including higher prediction 064

confidence and lower predictive entropy. Second, 065

sub-token usage patterns as revealed through Prin- 066

cipal Component Analysis (PCA) indicate poorer 067

handling of tokenization for lower resource lan- 068

guages, but also reveal typologically coherent clus- 069

ters that can transcend simple resource-level dis- 070

tinctions, highlighting the interplay between lin- 071

guistic structure and data availability. These fine- 072

grained insights are valuable for developing tar- 073

geted interventions, such as specialized adapter 074

fine-tuning (Song et al., 2024; Pfeiffer et al., 2021), 075

to improve the equity and efficacy of multilingual 076

ASR systems. 077

2 Background 078

2.1 Whisper and Tokenisation 079

Whisper is an influential foundation encoder- 080

decoder Transformer model (Radford et al., 2023). 081
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It was trained using large-scale weak supervision082

on approximately 680,000 hours of multilingual au-083

dio data, covering a wide array of tasks, including084

speech transcription and translation. This extensive085

pre-training enables strong zero-shot performance.086

A core component of Whisper’s architecture, as087

well as many modern large language and speech088

models, is its tokenization strategy. As detailed by089

Radford et al. (2023), Whisper utilizes two sepa-090

rate Byte Pair Encoding (BPE) vocabularies: one091

derived from the GPT-2 tokenizer (Sennrich et al.,092

2016; Radford et al., 2019) for English-only mod-093

els, and a distinct, refitted vocabulary of the same094

size for multilingual models. This refitting was095

intended to avoid excessive fragmentation on other096

languages since the BPE vocabulary is English only097

(Radford et al., 2023). Our work focuses on the098

behavior of models using this multilingual BPE099

vocabulary, which is shared across all non-English100

languages the model supports. During decoding,101

the model generates a sequence of these sub-tokens,102

typically guided by special tokens like a language103

ID. While sub-word units allow handling large vo-104

cabularies and morphological variations more effec-105

tively than word-level tokenization, and can facil-106

itate cross-lingual transfer (Conneau et al., 2020),107

Radford et al. (2023) themselves acknowledge po-108

tential limitations, particularly for languages dis-109

tant from the Indo-European family which forms110

the bulk of the training data. They note that perfor-111

mance outliers could be due to a lack of transfer112

across languages and that the BPE tokenizer could113

be a poor match for these languages or variations114

in data quality.115

However, the nature of sub-word tokenization,116

especially in a multilingual context, is not with-117

out its challenges. The way texts are segmented118

into tokens can vary significantly across languages,119

potentially leading to disparities in processing effi-120

ciency, context window utilization, and even model121

performance (Petrov et al., 2023). For instance,122

some languages might be systematically broken123

into more tokens than others for equivalent seman-124

tic content, an issue explored in the context of text-125

based LLMs (Petrov et al., 2023; Ács, 2019). Such126

tokenization artifacts can contribute to unfairness,127

as models might inherently find it more complex to128

process or learn representations for languages that129

result in longer token sequences (Ahia et al., 2024).130

While recent research also explores discrete acous-131

tic or semantic tokens for ASR (Guo et al., 2025;132

Cui et al., 2024), the BPE approach as employed 133

in Whisper remains a common paradigm, making 134

the study of its sub-token characteristics critical. 135

2.2 Beam Search Decoding 136

For generating transcriptions, Whisper typically 137

employs beam search decoding. Beam search main- 138

tains a set of k (the beam width) most probable 139

partial hypotheses (sequences of tokens). At each 140

step, it extends these hypotheses with possible next 141

tokens and re-ranks them based on their cumulative 142

probabilities, pruning the set back to k hypothe- 143

ses. This exploration of multiple paths aims to find 144

an overall sequence with a higher likelihood than 145

what might be found through a purely greedy ap- 146

proach. Our analysis focuses on the characteristics 147

observed along the single, final beam path chosen 148

by the model, representing its ultimate transcription 149

output. Probing model predictions, particularly the 150

probability scores assigned by the decoder to cho- 151

sen sub-tokens, provides insights into the model’s 152

decision-making at each step of this generation 153

process. These output probabilities are commonly 154

used as a direct measure of model confidence in 155

the ASR literature (e.g., Jiang, 2005; Ballier et al., 156

2024b,a; Aggarwal et al., 2025). However, it is 157

also well-established that the raw softmax proba- 158

bilities from deep neural networks may not always 159

be well-calibrated and can exhibit overconfidence 160

(Guo et al., 2017). 161

2.3 Resource Disparity and Fairness in 162

Multilingual ASR 163

A significant challenge in developing truly equi- 164

table multilingual ASR systems is the vast dis- 165

parity in available training resources across lan- 166

guages. While Whisper’s pre-training dataset is 167

exceptionally large, the distribution of data per lan- 168

guage varies by orders of magnitude (Radford et al., 169

2023). This imbalance directly impacts model per- 170

formance, generally leading to superior results for 171

higher resource languages (Javed et al., 2022). Scal- 172

ing models and data (e.g., Tjandra et al. (2023) and 173

Pratap et al. (2024)) can improve overall perfor- 174

mance but does not necessarily resolve fairness is- 175

sues or guarantee equitable performance across all 176

languages and speaker groups (Zee et al., 2024). In 177

fact, Zee et al. (2024) found that larger models can 178

sometimes exhibit greater worst-case performance 179

disparities. 180

The challenges for low resource languages are 181

multifaceted. Beyond raw data quantity, issues in- 182
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clude the representation of diverse scripts (Pfeiffer183

et al., 2021; Muller et al., 2021), the quality of sub-184

token vocabularies for these languages (Downey185

et al., 2023), and the potential for "capacity dilu-186

tion" where a fixed-size model struggles to ade-187

quately represent many languages (Conneau et al.,188

2020). These factors can lead to higher error rates,189

lower model confidence, and increased suscepti-190

bility to issues like hallucination (Koenecke et al.,191

2024) for low resource languages. Prior work often192

evaluates these disparities at the word or utterance193

level (e.g., WER), with dedicated studies bench-194

marking performance on specific low-resource lan-195

guage sets like Pashto, Punjabi, and Urdu (Sehar196

et al., 2025). Our research instead asks: how do197

decoder-level uncertainties and hypothesis charac-198

teristics manifest differently between resource tiers199

even before a full word or sentence is outputted?200

This sub-token perspective is crucial for under-201

standing the foundational biases and uncertainties202

that may contribute to downstream performance203

gaps and for developing targeted interventions.204

3 Data205

To investigate Whisper’s sub-token decoding char-206

acteristics across different linguistic contexts and207

resource availability, we curated a diverse set of208

20 languages. These languages were categorized209

into three tiers, High, Medium, and Low resource210

for better visualization, based on their representa-211

tion in Whisper’s own training data composition212

(Radford et al., 2023). It should be noted that the213

definition does not correspond to actual resource214

levels in the real world beyond Whisper’s training215

dataset. The selected languages are detailed in Ta-216

ble 1. English, while being the most represented217

language in Whisper’s training data, was intention-218

ally excluded from our analysis. Its training data219

volume is disproportionately larger (over 430,000220

hours) compared to the other high resource lan-221

guages analyzed (e.g., German with approximately222

13,000 hours), which would skew the comparative223

analysis across resource tiers and make it less in-224

formative for studying graduated cross-linguistic225

differences.226

To maintain consistency in sub-token analysis227

and simplify cross-linguistic comparisons at the228

sub-token level, our analysis primarily focuses on229

languages that predominantly use the Latin alpha-230

bet. We made an explicit decision to exclude lan-231

guages for which our initial baseline ASR perfor-232

Resource Tier Language Training Hours

High German 13,344
Spanish 11,100
French 9,752

Portuguese 8,573
Turkish 4,333

Medium Italian 2,585
Swedish 2,119

Dutch 2,077
Catalan 1,883
Finnish 1,066

Indonesian 1,014
Hungarian 379
Romanian 356

Norwegian 266

Low Welsh 73
Lithuanian 67

Latvian 65
Azerbaijani 47

Estonian 41
Basque 21

Table 1: Whisper training hours by language, catego-
rized by resource level.

mance using Whisper-large-v2 was exceptionally 233

poor (specifically, WER higher than 60%). Pre- 234

liminary qualitative analyses on languages such 235

as Uzbek, Swahili and higher resource Danish re- 236

vealed that the model frequently misrecognized the 237

target language entirely or produced outputs with 238

non-canonical orthography, making a meaningful 239

analysis impractical. 240

For each of the selected languages, we used ap- 241

proximately 10 minutes of speech data randomly 242

sampled from the validated subset in the Common 243

Voice 17.0 dataset (Ardila et al., 2020). 244

4 Methodology 245

4.1 Sub-token Extraction 246

Our methodology involves two key stages: gener- 247

ating hypothesis transcriptions and capturing the 248

decoder’s state at each generation step. For each 249

audio utterance, we first obtain a transcription 250

using Whisper-large-v2 with beam search (beam 251

size=5, temperature=0.2). We provide the cor- 252

rect language ID token in the initial prompt to en- 253

sure transcription in the target language. This pro- 254

cess yields the hypothesis sequence of sub-tokens 255

C = (c1, c2, . . . , cNH
). 256

Once this hypothesis is generated, we re-trace 257

its generation path step-by-step. For each position 258

s in sequence C, we: 259

1. Provide the decoder with the audio features 260
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(encoder output) and the prefix of already cho-261

sen sub-tokens (c1, c2, . . . , cs−1)262

2. Extract the decoder’s full probability distri-263

bution over all possible sub-tokens for step264

s265

3. Record the top-Kcand = 50 sub-token can-266

didates Ts,Kcand
= (ts,1, . . . , ts,Kcand

) along267

with their respective log-probabilities268

This re-tracing procedure captures the decoder’s269

internal state—its ranked candidates and their prob-270

abilities—at each decision point in the transcription271

process. These snapshots form the basis for calcu-272

lating all our analytical metrics and provide insight273

into the model’s decision-making across different274

languages.275

4.2 Metrics276

We compute several metrics by analyzing the277

beam search path of hypotheses generated by278

Whisper. For each utterance, we denote C =279

(c1, c2, . . . , cNH
) as the sequence of NH sub-280

tokens in the hypothesis. At each step s in the281

generation process:282

• cs is the sub-token selected by beam search283

• Ts,Kcand
= (ts,1, ts,2, . . . , ts,Kcand

) repre-284

sents the top-Kcand (50 in our experi-285

ments) sub-token candidates predicted by286

the decoder, with corresponding probabilities287

(ps,1, ps,2, . . . , ps,Kcand
)288

For metrics requiring comparison against ground289

truth, we use the reference transcription G =290

(g′1, g
′
2, . . . , g

′
NR

), tokenized with Whisper’s tok-291

enizer. Metrics are aggregated over all relevant292

items for a given language L, with NHL
denoting293

the total sub-tokens generated across all hypothe-294

ses and NRL
the total sub-tokens in all reference295

transcriptions for language L.296

4.2.1 Average Rank of Correct Sub-token297

This metric assesses how highly the ground truth298

sub-tokens rank among the decoder’s predictions.299

We use Levenshtein alignment to map each ref-300

erence sub-token g′k to a hypothesis sub-token cs301

(or identify it as a deletion). For each reference302

sub-token g′k:303

• If g′k is aligned with hypothesis sub-token cs:304

The rank of g′k is its 1-indexed position in305

Position GT Output Operation Rank

0 ⟨|BOS|⟩ ⟨|BOS|⟩ equal 1
1 Sil S replace 1
2 ah el replace 5
3 lar am replace 7
4 . . . lar replace 4
5 ⟨|EOS|⟩ (deleted) delete K + 1
6 A insert –
7 ley insert –
8 kum insert –
9 . insert –

10 ⟨|EOS|⟩ equal 2

Table 2: Alignment between ground truth (GT) sub-
tokens (“Silahlar. . . ”/“Weapons. . . ”) and model out-
put sub-tokens (“Selamun Aleykum.”/“Peace be upon
you.”).

Ts,Kcand
. If g′k is not found within the top- 306

Kcand list, its rank is assigned a penalty value 307

of Kcand + 1. 308

• If g′k is deleted: Its rank is also assigned the 309

penalty value Kcand + 1. 310

The average rank for a language L is the mean
of these individual ranks across all reference sub-
tokens:

Rank(g′)L =
1

NRL

NRL∑
k=1

R(g′k)

A lower average rank indicates that the correct 311

sub-tokens are more frequently found among the 312

model’s top predictions. 313

To illustrate this process, Table 2 shows the align- 314

ment between ground truth and model-generated 315

sub-tokens for a Turkish phrase. The table demon- 316

strates possible alignment operations: equal (where 317

the model correctly identified the token), replace 318

(where the model chose a different token), and 319

delete (where a ground truth token has no corre- 320

sponding model token). 321

For this example, the average rank is calculated 322

as: Rank = 1+1+5+7+4+(K+1)+2
7 = 20+(K+1)

7 = 323

10.14 with K = 50. 324

4.2.2 Confidence 325

Confidence measures the average probability as-
signed to the sub-token cs that was ultimately cho-
sen at each step along the beam search path:

ConfL =
1

NHL

NHL∑
s=1

p(cs|utterance, c<s)
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where p(cs|utterance, c<s) is the probability as-326

signed to cs given the utterance audio input and327

previous tokens.328

4.2.3 Entropy329

Token-level entropy quantifies the uncertainty in
the model’s predictions, calculated over the top-
KH = 50 predicted sub-tokens. After normalizing
the probabilities of these candidates, the entropy
(in bits) at step s is:

Hs = −
KH∑
i=1

p′s,i log2 p
′
s,i

where p′s,i are the renormalized probabilities over330

the top KH candidates. The average entropy H̄L331

for a language is reported as the mean across all332

decoding steps.333

4.2.4 Alternate-candidate Diversity334

This metric evaluates the variety within the set of
predicted candidates using the Type-Token Ratio
(TTR). Specifically, we calculate the TTR of the
non-top-1 candidates within the top-KD = 50 pre-
dictions. For each language, we collect all sub-
tokens that appear as candidates ranked from 2 to
KD across all decoding steps. The diversity is then
computed as:

DiversityL =
|unique non-top-1 tokens in L|
|total non-top-1 tokens in L|

This approach explores the richness of the hy-335

pothesis space beyond the model’s single best336

guess. Our underlying assumption is that lower-337

resourced languages might exhibit less diversity in338

these alternative candidates, potentially reflecting a339

more constrained or less nuanced hypothesis space340

learned by the model due to limited training data.341

A higher TTR indicates a broader range of unique342

alternatives being considered.343

4.2.5 Sub-token PCA344

To visualise cross-lingual patterns in sub-token us-345

age, we build a frequency vector for each language346

from the sub-tokens that appear among the top-347

KPCA = 10 candidates at every decoding step.348

These frequency vectors represent the distribution349

of sub-token IDs from Whisper’s multilingual vo-350

cabulary of 51,865 tokens (Radford et al., 2023).351

Using a wider window (e.g. KPCA = 50) would352

fold in many low-frequency alternates and blur fine-353

grained distinctions, so we fix K at 10 to keep354

language differences salient.355

Figure 1: WER of Whisper on the Common Voice
dataset versus training hours. Higher resource languages
tend to have lower WER (p-value < 0.001).

After standardizing these vectors, we apply Prin- 356

cipal Component Analysis and project the data onto 357

the first two principal components. This allows vi- 358

sualization of language clusters based on sub-token 359

usage patterns, revealing relationships that may cor- 360

relate with linguistic typology or resource levels. 361

5 Results 362

Our analysis of Whisper’s sub-token decoder re- 363

veals systematic variations in its behavior that cor- 364

relate strongly with language resource levels, quan- 365

tified by training hours. As a baseline, Figure 1 re- 366

ports the Word Error Rate (WER) of the languages 367

studied. 368

Consistent with previous findings we observe 369

that WER is generally lower for languages with 370

more training hours (Radford et al., 2023). Our 371

subsequent sub-token level analyses aim to delve 372

deeper into the internal decoding characteristics 373

that might contribute to these performance differ- 374

ences. 375

5.1 Rank of Correct Sub-token 376

The average rank of the correct sub-token corre- 377

lates with language resource levels, as shown in 378

Figure 2. Higher resource languages have their cor- 379

rect sub-tokens ranked higher. This indicates that 380

for higher resource languages, the beam search pre- 381

dominantly follows the locally highest-probability 382

path. Despite the general trend, we do observe 383

some deviations in individual languages. 384
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Figure 2: Average rank of the correct sub-token versus
Whisper training hours. Higher resource languages tend
to have correct tokens ranked higher (closer to 1, p-value
< 0.001).

Figure 3: Average model confidence (probability of cho-
sen sub-token) versus Whisper training hours. Higher-
resource languages generally exhibit higher confidence
(p-value < 0.001).

5.2 Decoder Confidence and Predictive385

Entropy386

Decoder confidence, measured as the average prob-387

ability of the chosen sub-token, shows a strong388

positive correlation with language training hours,389

as shown in Figure 3. High-resource languages390

tend to exhibit higher average confidence values.391

Conversely, predictive entropy, calculated over392

the top-5 predicted sub-tokens, demonstrates a neg-393

ative correlation with training hours, as shown in394

Figure 4. High-resource languages show lower av-395

erage entropy, indicating more peaked and certain396

predictive distributions. This inverse relationship397

between confidence and entropy is expected: when398

the model is more confident in its chosen token,399

its distribution over alternatives is sharper (less en-400

Figure 4: Average predictive token entropy of the top-
50 candidates versus Whisper training hours. Higher
resource languages generally exhibit lower entropy (p-
value < 0.001).

Figure 5: Alternate-candidate diversity (TTR of non-
top-1 candidates in top-50 candidates) versus Whisper
training hours. Higher resource languages tend to have
higher alternate-candidate diversity (p-value < 0.001).

tropic). 401

5.3 Alternate-Candidate Diversity 402

Alternate-candidate diversity, measured as the TTR 403

of non-top-1 candidates within the top-5 predic- 404

tions, exhibits a generally positive correlation with 405

language resource levels, as shown in Figure 5. 406

Higher resource languages tend to populate the up- 407

per range of diversity scores. This suggests that 408

for higher resource languages, the model often con- 409

siders a richer set of unique alternatives beyond 410

its top choice. The overall trend indicates that in- 411

creased training data may lead to a more varied set 412

of hypotheses being considered. 413
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5.4 PCA Clustering of Sub-token Usage414

The PCA visualization of language-specific sub-415

token frequency vectors (from top-10 candidates)416

reveals distinct clustering patterns that reflect both417

typological relationships and resource levels, as418

presented in Figure 6. A prominent observation is419

the separation of language families. Romance lan-420

guages (Spanish, French, Portuguese, Italian, Cata-421

lan, and Romanian) form a relatively cohesive clus-422

ter. Similarly, Turkic languages (Turkish and Azer-423

baijani), North Germanic languages (Swedish and424

Norwegian), Uralic languages (Finnish and Esto-425

nian, and to a lesser extent Hungarian), tend to stay426

clustered closer together and distinctly separated427

from other groups along the principal components.428

The clustering is also interesting as it groups lan-429

guages of varying resource levels together, suggest-430

ing that shared linguistic structures (e.g., common431

morpho-phonological features captured in common432

sub-tokens) could influence sub-token usage pat-433

terns.434

Notably, typologically unrelated lower resource435

languages, such as Welsh, Lithuanian, Latvian,436

and Basque, cluster together despite their signifi-437

cant linguistic differences. This unexpected group-438

ing suggests these languages are handled similarly439

by Whisper’s decoder not because of linguistic440

similarity, but due to their shared status as low-441

resource languages in the training data. Unlike442

high-resource languages that form distinct family-443

based clusters, these unrelated low-resource lan-444

guages appear to share common sub-tokenization445

characteristics that transcend actual linguistic re-446

lationships, indicating deficiencies in the model’s447

sub-token representations where it may be falling448

back to more generic decoding patterns due to in-449

sufficient exposure during training.450

6 Discussion451

Our sub-token probing of Whisper’s decoder un-452

covers systematic variations in its behavior. These453

variations not only correlate strongly with language454

resource levels but are also significantly shaped by455

linguistic typology, offering a more nuanced un-456

derstanding of the model’s internal mechanisms457

beyond aggregate error rates.458

6.1 Resource-Driven Variations in Sub-token459

Decoding460

The analysis consistently reveals that higher re-461

source languages benefit from more favorable de-462

Figure 6: PCA of sub-token usage frequency vectors
(top-10 candidates).

coding characteristics. Specifically, the model ex- 463

hibits higher average confidence in its chosen sub- 464

tokens for higher resource languages, and their pre- 465

dictive distributions are marked by lower entropy, 466

indicating greater certainty in its predictions. Fur- 467

thermore, the correct sub-token is more frequently 468

highly ranked among the candidates considered 469

during beam search for these languages. These 470

advantages can be attributed to the extensive expo- 471

sure to diverse linguistic phenomena afforded by 472

larger training datasets (Radford et al., 2023). Such 473

exposure likely enables the formation of more ro- 474

bust and well-calibrated sub-token representations. 475

The generally higher alternate-candidate diversity 476

observed for higher resource languages also sug- 477

gests that increased training data allows the model 478

to consider a richer and more varied set of plausi- 479

ble alternatives during the decoding process, poten- 480

tially contributing to improved overall transcription 481

accuracy. 482

6.2 The Influence of Linguistic Typology on 483

Sub-token Usage 484

Beyond the sheer volume of training data, the PCA 485

of sub-token usage (Figure 6) illustrates the influ- 486

ence of linguistic structure on the model’s internal 487

representations. The distinct typological clusters, 488

such as those observed for Romance languages and 489

Turkic languages, underscores that shared morpho- 490

syntactic or phonological features can drive similar 491

sub-token utilization patterns. 492

The clustering is particularly interesting as it 493

groups higher resource languages together with 494

lower resource languages. This finding suggests 495

that inherent linguistic properties (e.g. an agglu- 496

7



tinative morphology which might lead to a com-497

monality in frequent, meaningful sub-tokens) can498

shape the model’s representational space. Such499

structural similarities may partially mitigate the500

disadvantages associated with data scarcity for cer-501

tain lower-resource languages when they belong to502

typologically related families. This suggests that503

typological relatedness can be a signifcant factor504

in conditioning sub-token representations and may505

influence the efficacy of cross-lingual transfer.506

Notably, typologically unrelated lower resource507

languages, such as Welsh, Lithuanian, Latvian,508

and Basque, cluster together despite their signifi-509

cant linguistic differences. This unexpected group-510

ing suggests these languages are handled similarly511

by Whisper’s decoder not because of linguistic512

similarity, but due to their shared status as low-513

resource languages in the training data. Unlike514

high-resource languages that form distinct family-515

based clusters, these unrelated low-resource lan-516

guages appear to share common sub-tokenization517

characteristics that transcend actual linguistic re-518

lationships, indicating deficiencies in the model’s519

sub-token representations where it may be falling520

back to more generic decoding patterns due to in-521

sufficient exposure during training.522

6.3 Sub-token Prediction Accuracy versus523

Global Performance524

An intriguing aspect of our findings is the observed525

incongruity between local sub-token prediction and526

global Word Error Rate (WER) for particular lan-527

guages. For instance, languages like Estonian and528

Azerbaijani, despite demonstrating remarkably low529

average ranks for their gold sub-tokens (signifying530

that the correct orthographic units are included as531

high-probability candidates by the acoustic model532

at a local, per-step level) do not invariably achieve533

the lowest overall WERs in our analyzed set.534

This phenomenon highlights the inherent com-535

plexities of the end-to-end ASR decoding pipeline.536

While the model may possess robust local "knowl-537

edge" of correct sub-units, the ultimate transcrip-538

tion quality is a cumulative function of global se-539

quence optimization during beam search, the effec-540

tive mitigation of cascading errors arising from any541

single misstep, and the nuanced handling of intri-542

cate linguistic features that span multiple tokens.543

Consequently, for such languages, interventions544

aimed solely at further refining local sub-token pre-545

diction accuracy might yield diminishing returns546

on WER improvement. Strategies that enhance 547

the model’s capacity for global context modeling 548

or its specific handling of overarching linguistic 549

complexities may prove more fruitful. 550

6.4 Practical Implications 551

The above analysis offer several avenues for tar- 552

geted interventions. The identification of language- 553

specific weaknesses, such as a consistent tendency 554

for correct sub-tokens to be ranked lower or for 555

predictive distributions to exhibit high entropy in 556

low resource languages, can directly inform the 557

design of language-specific adapters or more so- 558

phisticated parameter-efficient fine-tuning strate- 559

gies (Song et al., 2024; Pfeiffer et al., 2021). Fur- 560

thermore, decoder-internal metrics, including dy- 561

namic measures of confidence and entropy, could 562

potentially serve as valuable signals for adaptive 563

adjustments to decoding algorithms. Finally, the 564

sub-token usage patterns unveiled by PCA and the 565

diversity metric may illuminate critical deficiencies 566

in current vocabulary coverage and suggest novel 567

data augmentation techniques. 568

7 Conclusion 569

This study introduces a fine-grained sub-token 570

probing framework for Whisper’s decoder, reveal- 571

ing systematic disparities in how the model pro- 572

cesses languages across resource levels. Higher 573

resource languages consistently benefit from more 574

favorable decoding characteristics: correct tokens 575

more frequently top-ranked, higher confidence, 576

lower entropy, and more diverse alternative candi- 577

dates. Our PCA analysis of sub-token usage further 578

demonstrates that linguistic typology significantly 579

influences these representations, with related lan- 580

guages clustering together regardless of resource 581

tier, while unrelated low-resource languages un- 582

expectedly cluster due to similar sub-tokenization 583

patterns rather than linguistic similarity. These 584

insights, often masked by aggregate metrics like 585

WER, highlight how resource disparities manifest 586

within the decoder’s internal mechanisms and point 587

toward targeted interventions such as language- 588

specific adapters, dynamic decoding strategies, and 589

focused data augmentation to promote more equi- 590

table multilingual ASR development. 591

Limitations 592

Although we tried to present a comprehensive anal- 593

ysis, our study has several limitations. First, we fo- 594
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cused primarily on languages using the Latin script,595

excluding many writing systems and potentially596

missing script-specific tokenization effects. Addi-597

tionally, our 10-minute samples per language pro-598

vide only a snapshot that may not capture the full599

phonological diversity or domain variation present600

in natural speech.601

Our methodology for extracting and evaluat-602

ing sub-token performance also relies on assump-603

tions about alignment between hypothesis and refer-604

ence transcriptions that may not perfectly represent605

ground truth. While we analyze the chosen beam606

search path, we do not directly probe Whisper’s607

internal beam search heuristics or alternate paths,608

which might offer additional insights into model609

decision-making. Finally, our resource-level cat-610

egorization is based solely on Whisper’s training611

hours rather than real-world language resources.612

Furthermore, our analysis is inherently depen-613

dent on the quality and accuracy of the labels pro-614

vided within the Whisper training dataset. As noted615

by Radford et al. (2023) themselves, there can616

be instances of labeling errors within this large617

dataset (e.g., some English audio being mislabeled618

as Welsh). Similar mislabelings for other languages619

could exist and potentially influence the model’s620

learned representations and, consequently, our ob-621

servations, particularly for languages where such622

noisy data might constitute a non-negligible portion623

of their training subset.624

Future work should extend this analysis to more625

scripts, longer and more diverse audio samples, and626

explore how sub-token behavior correlates with627

specific linguistic features across typologically di-628

verse languages.629
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