A Further Examples of LRM Schemes

Example 5. The classic Stochastic Gradient Langevin Dynamics [57] iterates as

Xiert = Xk = Vir1 VI (k) + V2Yka1 Exar (SGLD)
where V f is the gradient of the negative log-likelihood of a random batch of the data. (SGLD) fits
the LRM template by setting Ug+1 == Vf(xr) — Vf(xr), and byyq = 0. m]
Example 6. The Proximal Langevin Algorithm [9, 46, 59] is defined via

Xierl = Xk = Vit V. (K1) + V2V ka1 Ekes- (PLA)

This algorithm is implicit, and it is assumed that one can solve (PLA) for xi,;. By setting b1 =
V f(xr+1) — Vf(xx) and Ug,p = 0, we see that this algorithm also follows the LRM template. O

B Additional Related Work

Our paper studies the behavior of a wide range of Langevin-based sampling algorithms proposed in
the literature in the asymptotic setting under minimal assumptions. This allows us to give last-iterate
guarantees in Wasserstein distance. As stressed in Section 1, our goal is not to provide non-asymptotic
rates in this general setting as the problem is inherently NP-Hard. However, given more assumptions
and structures on the potential f, there is a plethora of works which prove convergence rates for the
last iterates in Wasserstein distance. In this appendix, we provide additional backgraound for these
works and the methods used in the literature.

A powerful framework for quantifying the global discretization error of a numerical algorithm is the
mean-square analysis framework [40]. This framework furnishes a general recipe for controlling
short and long-term integration errors. For sampling, this framework has been applied to prove
convergence rates for Langevin Monte-Carlo (the Euler-Maruyama discretization of (LD)) in the
strongly-convex setting [32, 34]. Similar to our work, the convergence obtained in these works is
last-iterate and in Wasserstein distance. One of the essential ingredients in the latter work is the
contraction property of the SDE, which is ensured by the strong convexity assumption. This, in turn,
implies strong non-asymptotic convergence guarantees.

It is an interesting future direction to study the combination of the Mean-Squared analysis together
with the Picard process and its applicability to more sophisticated algorithms (such as LRM schemes
with bias and noise), as well as non-convex potentials.

As explained in Section 3, one of the main themes in proving error bounds for sampling is the
natural relation between sampling and optimization in the Wasserstein space. This point of view,
when applied to strongly-convex potentials, has produced numerous non-asymptotic guarantees;
see [14, 18] for a recent account and the references therein. Note that strong convexity is crucial
for the analysis used in the aforementioned work. Moreover, the error bounds for biased and noisy
discretizations do not decrease with the step-size or iteration count; see [18, Theorem 4, Eqn. (14)].
This means that while the bound is non-asymptotic, it does not automatically result in an asymptotic
convergence. Finally, we stress that these approaches are orthogonal to our techniques: We view a
sampling algorithm as a (noisy and biased) discretization of a dynamical system (and not necessarily
a gradient flow), and use tools from dynamical system theory to provide asymptotic convergence
results.

C Proofs for Section 4

C.1 Proof of Theorem 1

In this appendix, we bring the detailed proof of Theorem 1. Recall that we interpolate the iterates of
the LRM scheme {x;} as

X; = xp + (t =) {v(xp) + E[Zgyr | F]} + 0 (xk) (B: — Be,). (3)

Moreover, for a fixed ¢ > 0, we considered the Brownian motion Bﬁt) = B;,s — By, and constructed
two important processes: the Langevin flow defined via

a0 = (@) ds + (@) B, B = X,, (12)
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and the Picard process (6) constructed as
%”;&ﬂ/w&mmw/'ﬂ&mmﬁ\ (6)
0 0

Let us fix 7 > 0, and for s € [0,7] decompose the distance between the interpolation and the
Langevin flow as

$1Xers = @12 < 177 = @7 1P + 1 X - ¥ 1P 0
where we have used ||a + b||> < 2||a||> + 2||b||>. We now bound each term of this decomposition.

Notice that due to the synchronous coupling of the processes, the Brownian motion cancels out in the
differences.

The first term controls how close the Picard process is to the Langevin flow, and is bounded in the
following lemma.

Lemma 3. For fixedt,T > 0and 0 < s < T, the distance of the Picard process and the Langevin
flow is bounded as

S
YO WP < 2T+ 112 / 160 = Xl du.
0

Proof. By the auxiliary Lemma 4 below, Lipschitzness of v, o, Itd isometry (see, e.g., [62]) and
s < T, we have
2

Ely - o |? = [EH / o(®) = 0(Xpp) du+ / (@) - o (Xy4u) dBY
0 0

K] 2 s 2
< 2s/ [E||u(q>;’))—v(x,+u) du+2[E/ a(x,ﬂ,)—a(q)f}))L du
0 0
N
<2AT+ 1)L2/ E||D) — X1 |® du. n
0

For the rest of the proof, we need to define the continuous-time piecewise-constant processes
X(te +58) = Xe, Y(k +5) = Viw1, Z(Tk +5) = Ziy1, and Z(1x + 5) = E[Zg41 | Frp4s], for
0 <5 < yr41. Also, let m(t) = sup{k > 0 : 7¢ <t} sothat Ty,(;) <t < Tyy(r)41-

To bound the second term in (7), we have seen that

‘ t+s _ S
Xips — ¥ = / o(X () du ~ / 0(Xiew) i
t 0

t+s S
+ / o (X (u)) dB, - / o (Xis) dBY
t 0

+ AZ (ta S),
where Az (1, s) plays the role of accumulated noise and bias from time ¢ to ¢ + s, and is defined as
k-1
Az(t,s) = Z YierZist + (0 +5 = T)E[Zpa1 | Fras] = (1 = 1) E[Zpa1 | F1], (13)

i=n
with k = m(¢ + s) and n = m(t). We therefore have
2

t+s
EllX,0s - V7|7 < 3E / 0(X,) — (X (u)) du
t

2

+3E +3E[|Az(t, )|

/ " (X - (X)) dB

t+s
< 3S/ E
t
t+s
+3[E/
t

t+s
<3(s+ 1)L2/ Ell X, — X (u)]|> du + 3E||Az (1, 5) || (14)
t

— 2
v(Xy,) — v(X(u))H du

— 2 2
o (X) = o (X)) du+3ENAZ (2. 9)]
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For bounding the term inside the integral, we have
ElI X, = X (@)1 = Ell (1 = T {o(X () + Z(w) } + (X (w)) (Bu = B, )1

< 47 (ENo(X )P + EIZ(0) 1) +27 () Ete{ (X () "o (X (w)))
We have used the fact that
Ellor (X () (Bu = By )IP = E((Bu = Br,y) o (X () "o (X(w) (B = B,
= Etr{ (X (1) "o (X () (Bu = By (Bu = Br,))
= E[E[tr(0(X(1) "o (X)) (Bu = Bry) Bu = Bry) ) | Fr 1]

= (1 = T E| (0 (R () T (X)) |

Notice that since conditional expectation is a projection in L2, we have E||Z(u)]|? < E[|Z(u)]|%.
Using this fact, along with boundedness of o(-) by C, and Lemma 2 we get

E|1X - X < 4702 (Ele(R @) + EIZ0)]2) + 27 () Ete{or (R () (K (w))

< 47 Ello(X )| +87()*0? +47()* O(F () +2Co¥(u) < Cy(u),
for some constant C > 0. Plugging this estimate into (14) after taking expectation yields

1+s
E[IXes - 71| <34 D22C [ 00 du+ 3ENA2 (0.9
t

<3(s+ 1)sL>’C sup y(u)+3E|Az(z,5)|?

uelt,t+s]
<3(T+1)’L*C sup J(u)+3 sup E|Az(t,u)|?
u€e(t,t+T] uel0,T]

Taking supremum over s € [0,7T] and noticing that the right-hand-side is independent of s and
vi — 0, together with Lemma 1 yields

A= sup E[l1Xis - YOI (15)
0<s<T
<3(T+1)’L*C sup y(u)+3 sup E[|Az(t,u)|]
t<u<t+T 0<u<T

— 0 ast— oo,
showing that the Picard process gets arbitrary close to the original interpolation, as t — oo.
Let us return to the decomposition (7). By taking expectation and using (8) and (15) we obtain
E[ s - @] < 204 D2 [ E[ e - 0 1P 24,
0
<24, exp(s(T + 1)L2)

<24, exp((T +1)2L?),
where in the last line we have used the Gronwall lemma. Thus,
lim sup [E[||X,+S - @it)Ilz] =0.
1% 5e[0,T]
Recall that the Wasserstein distance between X, and <D£t) is the infimum over all possible couplings

between them, having the correct marginals. As <1>§t) has the same marginal as the Langevin diffusion
started from X, at time s, and the synchronous coupling of the interpolation and the Langevin flow
produces a specific coupling between them, we directly get

1
Wa(Xoos, @1) < E[1Xees = @0 12]

which implies
lim sup Wa(Xy4s, ‘I"gt)) =0,
1= e[0,T]
as desired. "
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C.2 Auxiliary Lemmas

Lemma 1. Suppose Assumptions 1-3 hold. Then, for any fixed T > 0 we have
lim sup E[Az(z,9)]*=0.

[20<s<T

Proof. Define Aj, and Ay the same way as in (13). By Cauchy-Schwarz we have
1A (2, 9117

2
k-1
< (Z Yietllbivill + (1 + 5 = TONE[brst | Fraslll + (2 = Ta) [E[bper | F] II)

i=n
S 2 2 2
< Qynst + )| D5 Vst 1bisaI? + (1 + 5 = TE[brat | Fras] P + (1 = ) [E[bpat | F1IIP ),
i=n
where the last inequality comes from Z{.‘:_nl Viel < S, t+5—Tk < Virl, t—Tn < Vnels and Y1 < Vsl
Noticing that conditional expectation is a contraction in L? and letting k" = m(z + T), we get
2 ‘o 2 2 2
sup E[1A5 (5, 9)II7] < @+ T)| D] vinEllbini >+ sup ¥ EllbjuilI* +Yns1 Ellbpas |
0<s<T i=n n<j<k’'+l
Now, invoking Lemma 2 yields

k-1
sup [E[||Ab(t,s)||2] < C(2+T)(Z 71.2“ + sup 7]2_“ +73;+1)
i=n

0<s<T n<j<k'+l

K1
<C@2+ T)(Z Vi + 273”1)

i=n

SCR+T)(T+2yn41) sup y(t+5s).
0

<s<T
Ast — oo, the last quantity vanishes, since y,, — 0.

For the noise we have

2
k-1
Ay (8, )P < 2D YisrUsa|| +4l(t+5 = ) E[Usr | Foas]II* + 41t = ) E[Upsr | F 1112
i=n
k-1 2
< 2> vinUin + 4y Ukl + 492, U 1

i=n
Taking expectations and then sup, we get

k-1 2

D YistUis

i=n

sup [E[||AU(t, s)||2] <2 sup E

2 2 2 2
+ 4y +4y 00
0<s<T n+l<k<m(t+T)

Since {U;} is a martingale difference sequence, we have that {Z*! Yis1Uis1},.,, is a martingale.
Thus, by the boundedness of the second moments of U;, we get

s 2 2 8,
E = > YinEllUall> < 02 D vi.
i=n

i=n

k=1
D YistUis
i=n

Hence,

k—1 oo
nh_r& sup{[EHZ YirtUil? :n < k < m(1p +T)} < lim 0’227[-2+1 =0.
i=n

n n—oo
1=n
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Lemma 2. Let {x; }ren be the iterates of (LRM) and suppose Assumptions 1-3 hold. Then, E||xk||> =
O(1/yks1). This in turn implies Ellvo(xp)||* = O(1/yis1) and El|brs||* = O(yes)-

Proof. Without loss of generality, suppose v has a stationary point at 0. We repeatedly use the fact
that E||lv(xx)||> < L?E||x||>. Moreover, by Assumption 1 we have (v(x),x) < C,(||x|| + 1), and
llo @7 < Co

Define ay = E||xi||>. We have
a1 = ax = Vi Ello(xe) + Zea I + Yiet Ello () et I + 2yt EQer, 0(xk) + Ziar)
+ 2y, A E (o, 0 (x)Erat) + 273 E (i) + Zier, 0 () Exet)
< 2%} ak + 2V BN Zeat I + ¥ie1 Cor + 2¥i1 Co(Vax + 1) + 2¥ i1 Var VEI| Ziar |12

+29, 2 NCoVEI Zia |2 (16)

By Assumption 3, there is some Cj, > 0 such that E||br.1]|> < Cp (y,zmak + ¥k+1), and we have

EllZest I < 21D I* + 2E|Urar 11> < 2Cp (Y @ + Yies1) + 202, (17)
Moreover, as \/p + g < \/]_7 + \/ﬁ, we have
VEIIZi1 1P < V2Ch (Vi1 Vax + Vyie1) + V20 (18)

Plugging the bounds from (17) and (18) into (16) gives
ags] —ar < 2L27i+1ak + 4Ch7i+1ak + 4Ch7/3<+1 + 4yi+10'2
+¥1+1Co + 2yik41CoVag +2y141C,y
+ 2@)’12(”611( + 2\/@)//3(121@ +2V20 v Vax (19)
= Py¢, ar + QVisiVax + Ry,
where
P =212 +4Cyy?,, +22Cp
0 =2C, + 242C, \yir1 +2V20 + 242y yis1 + 242CCory
R = 4Cpy3,, +4yis10% + Co +2C, +242C, Corypat +27,12\2C 0.

The exact values of P, Q, and R are irrelevant, and we only need upper bounds for them. Assuming
that yx4+1 < 1 for all k, we replace the three quantities by

P =2L%+4Cy +242C),
0 =2C, +242Cp, + 2V20 + 24/2Cp, +24/2C,C» (20)
R =4Cp +40> + Cy +2Cy +24/2C,Cyy +24/2C 0.

Now, define Ay = yi +1%k- The recursion (19) in terms of & becomes

2
Yi+2
it < hie(1+ Py, ) 522 + VIOV + Ryt Vi -
k+1

We now prove that there exists some M > 0 so that iy < My by induction. Suppose it is the case
for k, and we prove it for k + 1. Using the induction hypothesis we get

2
Y
hiet < Myka (14 Py ) 52 4 My 0vi, + Ry Vi,
k+1

2

Yee2 | 7

=M(1+ Pyi+1))’k+1 +VMQ V'}’k+17i+2 + R'}’k+17i+2
+
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For the last to be less than Myy.,, we have to verify

Yk+2
M(1+Pyi,) yk+1 + VMOV Vis2 + Ryeaiyiss < M
+

or equivalently,

Yi+2
Yi+1

M + Pyke1Yis2 — 1| + VMO i1 vis2 + Ryrs1vier < 0.

This is a quadratic equation in VM, and for this inequality to hold, we prove that the leading coefficient
is negative, and the largest root is bounded above by some constant not depending on 7.

Negativity of the leading coefficient is equivalent to

k42
Yi2 + Pyrs1ves2 < 1,
Yi+1

which is implied by our assumption on the step size.

The larger root of the equation is

(~472 7 E PR+ Vi Vi (7kn0® + 4R) = 4Ry ) + Vi yin0
2(1 = yrs1Yk2P = Yis2/Vis1)
- VY1 Y420 + VRY i1 Vi
(1 = Yis1Yis2P = vie2/ Vie+1)
\/m')’kHQ + \/E'Ykﬂ

T (1= yer1Vee2P = yi2/vin)
By our assumption on the step size that

Yk+2
= 4 PYra1Yes2 < 1= Yists
Yi+1
we get that the larger root is smaller than
VY Vin1 @ + YRy
* +7 * =\/yk+1Q+\/E<Q+\/§.
k+1

Letting M := Q + VR gives the desired result.
The second argument of the lemma follows from Assumption 3 and the first result of the lemma. =

Lemma 4. For a vector valued function g € L*>(R;R?), one has

Ky 2 s 2 N
/0 o) du s( /O ||g<u>||du) <s /0 g du.

D Proofs for Section 5

D.1 Proof of Theorem 3

For brevity, let us write % instead of F,,. Opening up ||xzs1 > = |lxk + Yee1{v(xx) + Zrs1 } +
VVka10 (x1) Exs1])? and ignoring every term that is zero-mean under E[- | %], we get

Bkt 121 7l = E| Il + 25t (o, 0(xa) + Ziwr)
3
+ Ve 00k + Zieat 1P + yie llo ()& |17 + 2y 2, (0 (i)t bicat) | ﬁ]
< el + 2701 (G, 000)) + Cor/2) + 272, o) P

+[E

3
2V o 1 Zket I + 2k (ks Zica) + 292, (0 () ks Dian) | ﬁ]
1
< lxell® + 2kt ((xk, v(x0)) + Co/2+yE, Co /4] + 2y (x| 20

3
+E[2y2, 1 Zkat P17k ] + 92 E[ 10kt IIP1Fk ] + 2E (Vi1 (ks bt ) Fr].
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Recalling (5) in Assumption 3, we have for some C > 0

El|Zke > < 20 +2C (37 EloGoo I +yce1) (22)

Without loss of generality, assume y; < 1 and E|jxg]|*> > 1 (so that ([Ellxkllz)2 > E||xx||?) for all .
Then, |lv(xx)||> < L?||xk||?, together with Assumption 4 and the Cauchy-Schwartz inequality on the
last term of (21), implies

1 1
EllxkstI? < Ellxell® = 20y Ellel® + 2yc0 (ﬁ +Co Ey,zﬂc(r) + 2Ly Elle®

+ 2yi+l [20’2 + ZC(LzyiH[EkaH2 + yk+1)]

3
47 (LY Bl + v )

2
+ 271 VO L2972, (Ellxel?)* + yin Ellee |

3
< Ellxel*(1 = Cryker + Cay2,,) + Ca¥ian

for some constants Cy, C, C3 depending on L, C, o, @, B, and d. Since yx — 0, there exist d,B >0
and kg such that, for all k > kg,

Ellxgs1l? < Ellxll*(1 = @yier) + Byket, 1= @yisr > 0.

A simple induction yields

IS Re

sup Ellxg)* < maX{ ,[E”xko”Z}
k
which concludes the proof. [

D.2 Proof of Theorem 4 for Constant Diffusion

Before proceeding, we need a lemma which can be distilled from [20, Proposition 8]:
Lemma 5. Suppose Vf is L-Lipschitz. Fixx € R? andy > 0, let ¥ = x — yV f(x) + \2y&. Then

E

1 L
eXp(E(Vf(X),)Z*' —X)+ Z”f*’ —XHZ)] <(1- ,}/L)—d/ze_%uvf (X)Hz. 23)

Let Xxv1 = Xk — Vit VS (Xk) + V2Vks1 Exs1 50 that Xppr — Xk = Xpat = Xk — Viat (U1 + D).
Conditioned on xg, Ui, U1/<+1 , fl'm, and using the L-Lipschitzness of V f, we get

o3 (GO E A f (i)

1 L
< [ECXP(EWf(Xk),ka —Xp) + Z||xk+1 —xk||2) (24)

1 1
< Eexp {§<Vf(xk),ik+1 —Xk) — z(Vf(xk), Yir1Uks1) (25)

1 L .
- §<Vf(xk),7k+1bk+1> + §||Xk+1 —xill? + Ly Ukt lI* + Lyz, l1brat ||2}-
(26)
Let 6 € (0,1). Since

1 _
_§<Vf(xk)’7k+1Uk+l> <YENVF O +v2 Ukl

1
—5<Vf(xk),7k+1bk+1> < Ve lIVL O + lbrs 1
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we have

e—%f(Xk)[Ee%f(an) (27)

1 L
< Eexp {E(Vf(xk),fkn —Xk) + §||fk+1 - x| (28)

(V0 + VR IV GO+ (LR + 720 )0k 1P + (L92, + 1)||bk+1||2}. 29)

Invoking (11) an denoting ¢’ £ (Ly:,, +1) - ¢, we get

1 L
e 3 (W () < oM - Eexp {5<Vf<xk>,xk+l =) + 5 Kt =P+ yk+1||§k+1||2},
(30)

where,
A 2(VED + 7k + IV Gl

+ (L + 700 U P G31)
4 (VUL P + e €L IP)-
Recalling that \2yi1éxe1 = Fke1 — Xk + a1 V. (xx), we have yea lEga I < I|F — xxl* +
Vi IV ()%, and thus

X X , 1 L
e/ CREE3S (k) < oA Eexp {5<Vf<xk>,fk+1 —xp) + (5 + c')nm —xk||2}, (32)

where A} = Ar +c’y3,,IIVf(xi)||*. Lemma 5 then implies
e—%f(Xk)[Ee%f(XkH) < %k . (1- kaL/)—% (33)

where A7 = A} — ZEL||V £ (xp) |1

We now take the expectation over xg, Ug+1, U, _ . & ,’( 1 (in other words, we are now only conditioning

’
k+1°
on xg). Sete = (1 — yk+1L’)‘% — 1> 0. Since Ug+1, Uy, &}, are sub-Gaussian and since yx — 0,
for k sufficiently large we have

EA; <(l+€)- exp[(—)/lzl + yi;f + yiﬂ + c’y,i1 + c’yiH)HVf(xk)Hz] (34)
<(l+e€) e SV ol (35)
To summarize, we have shown that, conditioned on xy,
e GO, (kn) < (1 =y L)~ 5 e IVF 0 I? (36)
A simple induction a la [20, Lemma 1 & Proposition 8] then concludes the proof. [

D.3 Proof of Theorem 4 for Mirror Langevin

Here, we bring the proof of Theorem 4 for the case of Example 4 and without noise. The proof for
the noisy case is the same as in Appendix D.2.

Define
X =x—yVfo Ve (x) +2y(Vie () ™)'/,

where ¢ is a standard Gaussian random variable. Let U(x) = f(V¢*(x)). For a fixed x, we have

Ee3UN-3U(x) _

L - €1
s | (30060 - vt - 15F Jae
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Notice that we have

£ = (V2 () 2 (x* —x 49V f 0 Ve (1))

2y
dé = (2y) ™4 \Jdet V2¢* (x) dx*

Thus, the integral, after the change of variable from ¢ to x* becomes

which implies

& [ (506 = 300 - T ) Pt x ey T Vo R 3)

with C = (47y)?/2y/det V2¢*(x)~!. Now we use the smoothness of f:
U(x™) =U(x) = f(Vg"(x)) = f(V§"(x))
‘ L
< (V2o () VF (V4 (x)),x" —x) + §I|x+ - x|I?
On the other hand, we have
(V2" (x)) 2 (x* = x +yV f 0 Yo" (x)) 17
= [(V2¢* () 2 (x* = )P + 2 1(V26" () PV £ (V" ()17
+2y(V2* () Vf V' (x),x* —x)

Notice that in (37), the colored terms cancel out, and what we are left with is

Ee3U(xM)=3U(x)
1 L 1
<z / exp(Zux*—xnz— 176" @) 20 =0l = (V9" () 2V £ (V9 ()P | ie*
Y

As, by our assumption, V2¢* is bounded from above and below, we get the exact form as in Lemma 5.
The rest of the proof is the same as in Appendix D.2. [

D.4 Proof of Proposition 1

In this section, we prove that Examples 1-6 satisfy our bias conditions, which, as we have seen in
Section 5, implies Proposition 1. For brevity, we write % for , .

§ Proof for Example 1. For randomized mid-point method, by replacing v f(xr) and v S (xks1/2)
with Vf(xx) + U, and V f(xg41/2) + U+ respectively, we have

Xi1/2 = Xk = Vir1 @t {VF (1) + Ul } + V2V @rs1é4 45
Xier1 = Xk = Vir AV (re1/2) + Uar } + V2yr1€x41,

where {ay } are i.i.d. and uniformly distributed in [0, 1], {Ux} and {U, } are noises in evaluating V f
at the corresponding points, and &, £; are independent standard Gaussians.

Notice that the Lipschitzness of V f, and the fact that a; < 1 implies that the bias term by :=
Vf(xk+1/2) — Vf(xx) satisfies

E[l1bkatlI* | Fil < L2E[llxkerjo — xicll® | F]
< L (12 ELIVS () + Up P 5] + 2v1cnd)
<2075, IVF o) IP +2L%77,, 02 + 2L dy g
= OVEalIVF O + Yasr).-

23



§ Proof for Example 2. Recall that the new algorithm Optimistic Randomized Mid-Point Method
has the iterates

Xk+1/2 = Xk = Virl Xkl ﬁf(xk_%) + V2V 1 @ki1€ 44
Xpat = Xk = Vit V(X1 2) + V2Vke1 Enst,s

where {ax}, &, &;, and ﬁf are the same as in (RMM), and the noise and bias are Up,; =
Vf(xre1/2) = Vf(xre1/2) and byyy = V f(xps1/2) = Vf(xr). We have

Ellbr|I? | Fi] = ELNVSf (xks1/2) = V. (i) 1P | Fa]
< L?E[lIxgs1/2 = x| Fil
= LZ[E[||—)’k+1ak+1€f(xk_%) + 2y @ € 1P | Fi]
< 2Ly ELIV S (oo DI Fad + 202,02 + 4L dypenr.
Similar to the proof for Example 6, notice that ||Vf(xk_%)||2 < 2||Vf(xk_%) - VFx? +
2||Vf(xi)lI>. As yx — 0, one can assume that 2L%y2 | < 1, and we get
E[lbkat | Fil < ALy IV S )P +4L%yE, 02 + 8L2d vk = Oy IV f () 17 + yaan),

as desired. [ ]
§ Proof for Example 3. The iterates of stochastic Runge-Kutta Langevin algorithm is as follows:
i = 31+ 2yt | (124 1/V6) et +€1, V12|
o = 5k = ket {9 (50) + U} 4321t [ (1/2 = 1/V6) & + €, VT2

Xjexl = Xp — Yk; (VF(h1) +Vf(h2)) + Vir1Urs1 + V2¥ks1 Eksts

where &4y and &, are independent standard Gaussian random variables independent of xy, and
Ukyr and U ,’( .1 are noise in the evaluation of f.

Observe that

bisi = %(Vf(hl) — Vf(xi)) + %(Vf(hz) = VF(xp)).
‘We have
E[IVf(h1) = Vfxll* | Fl <2L%d(1/4+1/6 +1/12)yks1 = O(yis1),
and
ELIVF(h) = V)P | i) < 28272 IV F (i) IP 4 297,002 +2d(1/4 = 1/6+1/12) 11 )
= O(VE IV F (i1 + Yis).-
We thus have
1 1
E[llbrsl*| F2] < SELIVS () = VEOI? | Fl + SELIVf(h2) - VI | Frl

= 0V IVF O +Yks1)
as desired. [ |

A

§ Proof for Example 4. Suppose ¢ is a Legendre function [52] for R¢, and consider the iterates

Xiert = Xk = Vit V(" (x0)) + V27001 (V29" (x) ™) i,
where ¢” is the Fenchel dual of ¢, that is, ¢ (x) = sup,cga ({(x, y) — ¢(y)). Also recall that [52]

Vo(Vo*(x) =x, V2¢"(Vo(x))™' = V2¢(x), VxeR<

Letv = -V f o V¢* and o = (V2¢*)~'/2. First, we mention what our assumptions imply on f:
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* The Lipschitzness of v corresponds to a similar condition in [31, A2]:
IVf(x) =Vl < LIVe(x) - Vo (y)ll
* The Lipschitzness of o in Frobenius norm corresponds to modified self-concordance in [31, Al]:
IV2¢()"2 = V2o () 2llp < LIVOX) = Vo).

* Boundedness of ¢ in Hilbert-Schmidt norm implies
o], <.

* Dissipativity and weak-dissipativity of v corresponds to the conditions below, respectively:
(Vo(x), V() 2 all VoW 2 =B (Vo(x), VF()) = ol Vo ()[|™* - B.

If f and ¢ satisfy the conditions above, then the mirror Langevin algorithm Example 4 fits into the
(LRM) scheme.

Remark. Note that this version of Mirror Langevin cannot handle the case where e~/ is supported
on a compact domain; in that case, the Hessian of ¢ has to blow up near the boundary, and will
not satisfy our boundedness assumption. The version of mirror Langevin we consider in this paper,
though, can be thought as an adaptive conditioning method for densities supported on R?. This
setting has also been studied in the literature, see [55].

§ Proof for Example 6. The iterates of (PLA) follow

Xir1 = Xk — Vet V. (Xpr1) + V2V Eks1- (PLA)

We mentioned that the bias term is bg+; = Vf(xx+1) — Vf(xx). Now it remains to prove that it
satisfies the conditions (5) and (11). We have

E[lIbxe1ll* 1 Fel = ELNVS (xint) = VI | Fal
< L2E[|lcksr — x| Fa]

= L*E[||~yxs1 Vf (cka1) + V2¥ks1 Exst 1P | Fi]
< 2Ly} ENVF ) I1P | F] + L% dygenn .

Now, notice that ||V f(xes) 1> < 2Vf (xkr1) = VL i) I + 2lV.f (xi)I>. As yx — 0, one can
assume that 2L%y; | < 3, and we get

1
Ellbenll® | Fel < SELbeall® | Fl + IV F il +4L2dyan,
which implies

ELbkall® | Fal < 4L29; IV f (2P +8L2dyrs = Oy IV f (ki) 1P +yiean),s

as desired. [ ]
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