
A Further Examples of LRM Schemes

Example 5. The classic Stochastic Gradient Langevin Dynamics [57] iterates as

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇̃ 𝑓 (𝑥𝑘 ) +
√︁

2𝛾𝑘+1 𝜉𝑘+1, (SGLD)

where ∇̃ 𝑓 is the gradient of the negative log-likelihood of a random batch of the data. (SGLD) fits
the LRM template by setting 𝑈𝑘+1 B ∇̃ 𝑓 (𝑥𝑘 ) − ∇ 𝑓 (𝑥𝑘 ), and 𝑏𝑘+1 B 0. �

Example 6. The Proximal Langevin Algorithm [9, 46, 59] is defined via

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇ 𝑓 (𝑥𝑘+1) +
√︁

2𝛾𝑘+1 𝜉𝑘+1. (PLA)
This algorithm is implicit, and it is assumed that one can solve (PLA) for 𝑥𝑘+1. By setting 𝑏𝑘+1 B
∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 ) and 𝑈𝑘+1 B 0, we see that this algorithm also follows the LRM template. �

B Additional Related Work

Our paper studies the behavior of a wide range of Langevin-based sampling algorithms proposed in
the literature in the asymptotic setting under minimal assumptions. This allows us to give last-iterate
guarantees in Wasserstein distance. As stressed in Section 1, our goal is not to provide non-asymptotic
rates in this general setting as the problem is inherently NP-Hard. However, given more assumptions
and structures on the potential 𝑓 , there is a plethora of works which prove convergence rates for the
last iterates in Wasserstein distance. In this appendix, we provide additional backgraound for these
works and the methods used in the literature.

A powerful framework for quantifying the global discretization error of a numerical algorithm is the
mean-square analysis framework [40]. This framework furnishes a general recipe for controlling
short and long-term integration errors. For sampling, this framework has been applied to prove
convergence rates for Langevin Monte-Carlo (the Euler-Maruyama discretization of (LD)) in the
strongly-convex setting [32, 34]. Similar to our work, the convergence obtained in these works is
last-iterate and in Wasserstein distance. One of the essential ingredients in the latter work is the
contraction property of the SDE, which is ensured by the strong convexity assumption. This, in turn,
implies strong non-asymptotic convergence guarantees.

It is an interesting future direction to study the combination of the Mean-Squared analysis together
with the Picard process and its applicability to more sophisticated algorithms (such as LRM schemes
with bias and noise), as well as non-convex potentials.

As explained in Section 3, one of the main themes in proving error bounds for sampling is the
natural relation between sampling and optimization in the Wasserstein space. This point of view,
when applied to strongly-convex potentials, has produced numerous non-asymptotic guarantees;
see [14, 18] for a recent account and the references therein. Note that strong convexity is crucial
for the analysis used in the aforementioned work. Moreover, the error bounds for biased and noisy
discretizations do not decrease with the step-size or iteration count; see [18, Theorem 4, Eqn. (14)].
This means that while the bound is non-asymptotic, it does not automatically result in an asymptotic
convergence. Finally, we stress that these approaches are orthogonal to our techniques: We view a
sampling algorithm as a (noisy and biased) discretization of a dynamical system (and not necessarily
a gradient flow), and use tools from dynamical system theory to provide asymptotic convergence
results.

C Proofs for Section 4

C.1 Proof of Theorem 1

In this appendix, we bring the detailed proof of Theorem 1. Recall that we interpolate the iterates of
the LRM scheme {𝑥𝑘 } as

𝑋𝑡 = 𝑥𝑘 + (𝑡 − 𝜏𝑘 ){𝑣(𝑥𝑘 ) + 𝔼[𝑍𝑘+1 |ℱ𝑡 ]} + 𝜎(𝑥𝑘 ) (𝐵𝑡 − 𝐵𝜏𝑘 ). (3)

Moreover, for a fixed 𝑡 > 0, we considered the Brownian motion 𝐵
(𝑡)
𝑠 = 𝐵𝑡+𝑠 − 𝐵𝑡 , and constructed

two important processes: the Langevin flow defined via

dΦ(𝑡)
𝑠 = 𝑣(Φ(𝑡)

𝑠 ) d𝑠 + 𝜎(Φ(𝑡)
𝑠 ) d𝐵 (𝑡)

𝑠 , Φ
(𝑡)
0 = 𝑋𝑡 , (12)
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and the Picard process (6) constructed as

𝑌
(𝑡)
𝑠 = 𝑋𝑡 +

∫ 𝑠

0
𝑣(𝑋𝑡+𝑢) d𝑢 +

∫ 𝑠

0
𝜎(𝑋𝑡+𝑢) d𝐵 (𝑡)

𝑢 . (6)

Let us fix 𝑇 > 0, and for 𝑠 ∈ [0, 𝑇] decompose the distance between the interpolation and the
Langevin flow as

1
2 ‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2 ≤ ‖𝑌 (𝑡)

𝑠 −Φ
(𝑡)
𝑠 ‖2 + ‖𝑋𝑡+𝑠 − 𝑌

(𝑡)
𝑠 ‖2, (7)

where we have used ‖𝑎 + 𝑏‖2 ≤ 2‖𝑎‖2 + 2‖𝑏‖2. We now bound each term of this decomposition.
Notice that due to the synchronous coupling of the processes, the Brownian motion cancels out in the
differences.

The first term controls how close the Picard process is to the Langevin flow, and is bounded in the
following lemma.
Lemma 3. For fixed 𝑡, 𝑇 > 0 and 0 ≤ 𝑠 ≤ 𝑇 , the distance of the Picard process and the Langevin
flow is bounded as

‖𝑌 (𝑡)
𝑠 −Φ

(𝑡)
𝑠 ‖2 ≤ 2(𝑇 + 1)𝐿2

∫ 𝑠

0
‖Φ(𝑡)

𝑢 − 𝑋𝑡+𝑢 ‖2 d𝑢.

Proof. By the auxiliary Lemma 4 below, Lipschitzness of 𝑣, 𝜎, Itô isometry (see, e.g., [62]) and
𝑠 ≤ 𝑇 , we have

𝔼‖𝑌 (𝑡)
𝑠 −Φ

(𝑡)
𝑠 ‖2 = 𝔼

∫ 𝑠

0
𝑣(Φ(𝑡)

𝑢 ) − 𝑣(𝑋𝑡+𝑢) d𝑢 +
∫ 𝑠

0
𝜎(Φ(𝑡)

𝑢 ) − 𝜎(𝑋𝑡+𝑢) d𝐵 (𝑡)
𝑢

2

≤ 2𝑠
∫ 𝑠

0
𝔼

𝑣(Φ(𝑡)
𝑢 ) − 𝑣(𝑋𝑡+𝑢)

2
d𝑢 + 2𝔼

∫ 𝑠

0

𝜎(𝑋𝑡+𝑢) − 𝜎(Φ(𝑡)
𝑢 )

2

𝐹
d𝑢

≤ 2(𝑇 + 1)𝐿2
∫ 𝑠

0
𝔼‖Φ(𝑡)

𝑢 − 𝑋𝑡+𝑢 ‖2 d𝑢. �

For the rest of the proof, we need to define the continuous-time piecewise-constant processes
𝑋 (𝜏𝑘 + 𝑠) = 𝑋𝑘 , 𝛾(𝜏𝑘 + 𝑠) = 𝛾𝑘+1, 𝑍 (𝜏𝑘 + 𝑠) = 𝑍𝑘+1, and 𝑍 (𝜏𝑘 + 𝑠) = 𝔼[𝑍𝑘+1 |ℱ𝜏𝑘+𝑠], for
0 ≤ 𝑠 < 𝛾𝑘+1. Also, let 𝑚(𝑡) = sup{𝑘 ≥ 0 : 𝜏𝑘 ≤ 𝑡} so that 𝜏𝑚(𝑡) ≤ 𝑡 < 𝜏𝑚(𝑡)+1.

To bound the second term in (7), we have seen that

𝑋𝑡+𝑠 − 𝑌
(𝑡)
𝑠 =

∫ 𝑡+𝑠

𝑡

𝑣(𝑋 (𝑢)) d𝑢 −
∫ 𝑠

0
𝑣(𝑋𝑡+𝑢) d𝑢

+
∫ 𝑡+𝑠

𝑡

𝜎(𝑋 (𝑢)) d𝐵𝑢 −
∫ 𝑠

0
𝜎(𝑋𝑡+𝑢) d𝐵 (𝑡)

𝑢

+ Δ𝑍 (𝑡, 𝑠),
where Δ𝑍 (𝑡, 𝑠) plays the role of accumulated noise and bias from time 𝑡 to 𝑡 + 𝑠, and is defined as

Δ𝑍 (𝑡, 𝑠) B
𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑍𝑖+1 + (𝑡 + 𝑠 − 𝜏𝑘 )𝔼[𝑍𝑘+1 |ℱ𝑡+𝑠] − (𝑡 − 𝜏𝑛)𝔼[𝑍𝑛+1 |ℱ𝑡 ], (13)

with 𝑘 = 𝑚(𝑡 + 𝑠) and 𝑛 = 𝑚(𝑡). We therefore have

𝔼‖𝑋𝑡+𝑠 − 𝑌
(𝑡)
𝑠 ‖2 ≤ 3𝔼

∫ 𝑡+𝑠

𝑡

𝑣(𝑋𝑢) − 𝑣(𝑋 (𝑢)) d𝑢
2

+ 3𝔼
∫ 𝑡+𝑠

𝑡

𝜎(𝑋𝑢) − 𝜎(𝑋 (𝑢)) d𝐵𝑢

2
+ 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2

≤ 3𝑠
∫ 𝑡+𝑠

𝑡

𝔼

𝑣(𝑋𝑢) − 𝑣(𝑋 (𝑢))
2

d𝑢

+ 3𝔼
∫ 𝑡+𝑠

𝑡

𝜎(𝑋𝑢) − 𝜎(𝑋 (𝑢))
2

𝐹
d𝑢 + 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2

≤ 3(𝑠 + 1)𝐿2
∫ 𝑡+𝑠

𝑡

𝔼‖𝑋𝑢 − 𝑋 (𝑢)‖2 d𝑢 + 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2. (14)
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For bounding the term inside the integral, we have

𝔼‖𝑋𝑢 − 𝑋 (𝑢)‖2 = 𝔼‖(𝑢 − 𝜏𝑚(𝑢) ){𝑣(𝑋 (𝑢)) + 𝑍 (𝑢)} + 𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )‖2

≤ 4𝛾(𝑢)2
(
𝔼‖𝑣(𝑋 (𝑢))‖2 + 𝔼‖𝑍 (𝑢)‖2

)
+ 2𝛾(𝑢) 𝔼 tr

(
𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢))

)
.

We have used the fact that

𝔼‖𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )‖2 = 𝔼
(
(𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )>𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )

)
= 𝔼tr

(
𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) ) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )>

)
= 𝔼

[
𝔼[tr(𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢)) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) ) (𝐵𝑢 − 𝐵𝜏𝑚(𝑢) )>) |ℱ𝜏𝑚(𝑢) ]

]
= (𝑢 − 𝜏𝑚(𝑢) )𝔼

[
tr(𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢)))

]
Notice that since conditional expectation is a projection in 𝐿2, we have 𝔼‖𝑍 (𝑢)‖2 ≤ 𝔼‖𝑍 (𝑢)‖2.
Using this fact, along with boundedness of 𝜎(·) by 𝐶𝜎 , and Lemma 2 we get

𝔼
[
‖𝑋𝑢 − 𝑋 (𝑢)‖2

]
≤ 4𝛾(𝑢)2

(
𝔼‖𝑣(𝑋 (𝑢))‖2 + 𝔼‖𝑍 (𝑢)‖2

)
+ 2𝛾(𝑢) 𝔼 tr

(
𝜎(𝑋 (𝑢))>𝜎(𝑋 (𝑢))

)
≤ 4𝛾(𝑢)2𝔼‖𝑣(𝑋 (𝑢))‖2 + 8𝛾(𝑢)2𝜎2 + 4𝛾(𝑢)2 O(𝛾(𝑢)) + 2𝐶𝜎𝛾(𝑢) ≤ 𝐶𝛾(𝑢),

for some constant 𝐶 > 0. Plugging this estimate into (14) after taking expectation yields

𝔼
[
‖𝑋𝑡+𝑠 − 𝑌

(𝑡)
𝑠 ‖2

]
≤ 3(𝑠 + 1)𝐿2𝐶

∫ 𝑡+𝑠

𝑡

𝛾(𝑢) d𝑢 + 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2

≤ 3(𝑠 + 1)𝑠𝐿2𝐶 sup
𝑢∈[𝑡 ,𝑡+𝑠]

𝛾(𝑢) + 3𝔼‖Δ𝑍 (𝑡, 𝑠)‖2

≤ 3(𝑇 + 1)2𝐿2𝐶 sup
𝑢∈[𝑡 ,𝑡+𝑇 ]

𝛾(𝑢) + 3 sup
𝑢∈[0,𝑇 ]

𝔼‖Δ𝑍 (𝑡, 𝑢)‖2

Taking supremum over 𝑠 ∈ [0, 𝑇] and noticing that the right-hand-side is independent of 𝑠 and
𝛾𝑘 → 0, together with Lemma 1 yields

𝐴𝑡 B sup
0≤𝑠≤𝑇

𝔼
[
‖𝑋𝑡+𝑠 − 𝑌

(𝑡)
𝑠 ‖2

]
(15)

≤ 3(𝑇 + 1)2𝐿2𝐶 sup
𝑡≤𝑢≤𝑡+𝑇

𝛾(𝑢) + 3 sup
0≤𝑢≤𝑇

𝔼
[
‖Δ𝑍 (𝑡, 𝑢)‖2]

→ 0 as 𝑡 → ∞,

showing that the Picard process gets arbitrary close to the original interpolation, as 𝑡 → ∞.

Let us return to the decomposition (7). By taking expectation and using (8) and (15) we obtain

𝔼
[
‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2

]
≤ 2(𝑇 + 1)𝐿2

∫ 𝑠

0
𝔼
[
‖𝑋𝑡+𝑢 −Φ

(𝑡)
𝑢 ‖2

]
d𝑢 + 2𝐴𝑡

≤ 2𝐴𝑡 exp
(
𝑠(𝑇 + 1)𝐿2

)
≤ 2𝐴𝑡 exp((𝑇 + 1)2𝐿2),

where in the last line we have used the Grönwall lemma. Thus,

lim
𝑡→∞

sup
𝑠∈[0,𝑇 ]

𝔼
[
‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2

]
= 0.

Recall that the Wasserstein distance between 𝑋𝑡+𝑠 and Φ
(𝑡)
𝑠 is the infimum over all possible couplings

between them, having the correct marginals. As Φ(𝑡)
𝑠 has the same marginal as the Langevin diffusion

started from 𝑋𝑡 at time 𝑠, and the synchronous coupling of the interpolation and the Langevin flow
produces a specific coupling between them, we directly get

𝑊2 (𝑋𝑡+𝑠 ,Φ
(𝑡)
𝑠 ) ≤ 𝔼

[
‖𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 ‖2

] 1
2
,

which implies
lim
𝑡→∞

sup
𝑠∈[0,𝑇 ]

𝑊2 (𝑋𝑡+𝑠 ,Φ
(𝑡)
𝑠 ) = 0,

as desired. �
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C.2 Auxiliary Lemmas

Lemma 1. Suppose Assumptions 1–3 hold. Then, for any fixed 𝑇 > 0 we have

lim
𝑡→∞

sup
0≤𝑠≤𝑇

𝔼‖Δ𝑍 (𝑡, 𝑠)‖2 = 0.

Proof. Define Δ𝑏 and Δ𝑈 the same way as in (13). By Cauchy-Schwarz we have

‖Δ𝑏 (𝑡, 𝑠)‖2

≤
(
𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1‖𝑏𝑖+1‖ + (𝑡 + 𝑠 − 𝜏𝑘 )‖𝔼[𝑏𝑘+1 |ℱ𝑡+𝑠] ‖ + (𝑡 − 𝜏𝑛)‖𝔼[𝑏𝑛+1 |ℱ𝑡 ] ‖
)2

≤ (2𝛾𝑛+1 + 𝑠)
(
𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1‖𝑏𝑖+1‖2 + (𝑡 + 𝑠 − 𝜏𝑘 )‖𝔼[𝑏𝑘+1 |ℱ𝑡+𝑠] ‖2 + (𝑡 − 𝜏𝑛)‖𝔼[𝑏𝑛+1 |ℱ𝑡 ] ‖2

)
,

where the last inequality comes from
∑𝑘−1

𝑖=𝑛
𝛾𝑖+1 ≤ 𝑠, 𝑡+ 𝑠−𝜏𝑘 ≤ 𝛾𝑘+1, 𝑡−𝜏𝑛 ≤ 𝛾𝑛+1, and 𝛾𝑘+1 ≤ 𝛾𝑛+1.

Noticing that conditional expectation is a contraction in 𝐿2 and letting 𝑘 ′ = 𝑚(𝑡 + 𝑇), we get

sup
0≤𝑠≤𝑇

𝔼
[
‖Δ𝑏 (𝑡, 𝑠)‖2] ≤ (2 + 𝑇)

(
𝑘′−1∑︁
𝑖=𝑛

𝛾𝑖+1𝔼‖𝑏𝑖+1‖2 + sup
𝑛≤ 𝑗≤𝑘′+1

𝛾 𝑗+1𝔼‖𝑏 𝑗+1‖2 + 𝛾𝑛+1𝔼‖𝑏𝑛+1‖2

)
Now, invoking Lemma 2 yields

sup
0≤𝑠≤𝑇

𝔼
[
‖Δ𝑏 (𝑡, 𝑠)‖2] ≤ 𝐶 (2 + 𝑇)

(
𝑘′−1∑︁
𝑖=𝑛

𝛾2
𝑖+1 + sup

𝑛≤ 𝑗≤𝑘′+1
𝛾2
𝑗+1 + 𝛾2

𝑛+1

)
≤ 𝐶 (2 + 𝑇)

(
𝑘′−1∑︁
𝑖=𝑛

𝛾2
𝑖+1 + 2𝛾2

𝑛+1

)
≤ 𝐶 (2 + 𝑇) (𝑇 + 2𝛾𝑛+1) sup

0≤𝑠≤𝑇
𝛾(𝑡 + 𝑠).

As 𝑡 → ∞, the last quantity vanishes, since 𝛾𝑛 → 0.

For the noise we have

‖Δ𝑈 (𝑡, 𝑠)‖2 ≤ 2

𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1

2

+ 4‖(𝑡 + 𝑠 − 𝜏𝑘 )𝔼[𝑈𝑘+1 |ℱ𝑡+𝑠] ‖2 + 4‖(𝑡 − 𝜏𝑛)𝔼[𝑈𝑛+1 |ℱ𝑡 ] ‖2

≤ 2

𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1

2

+ 4𝛾2
𝑘+1‖𝑈𝑘+1‖2 + 4𝛾2

𝑛+1‖𝑈𝑛+1‖2.

Taking expectations and then sup, we get

sup
0≤𝑠≤𝑇

𝔼
[
‖Δ𝑈 (𝑡, 𝑠)‖2] ≤ 2 sup

𝑛+1≤𝑘≤𝑚(𝑡+𝑇 )
𝔼

𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1

2

+ 4𝛾2
𝑘+1𝜎

2 + 4𝛾2
𝑛+1𝜎

2.

Since {𝑈𝑖} is a martingale difference sequence, we have that
{∑𝑘−1

𝑖=𝑛
𝛾𝑖+1𝑈𝑖+1

}
𝑘>𝑛

is a martingale.
Thus, by the boundedness of the second moments of 𝑈𝑖 , we get

𝔼

𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1

2

=
𝑘−1∑︁
𝑖=𝑛

𝛾2
𝑖+1𝔼‖𝑈𝑖+1‖2 ≤ 𝜎2

𝑘−1∑︁
𝑖=𝑛

𝛾2
𝑖+1.

Hence,

lim
𝑛→∞

sup

{
𝔼‖

𝑘−1∑︁
𝑖=𝑛

𝛾𝑖+1𝑈𝑖+1‖2 : 𝑛 < 𝑘 ≤ 𝑚(𝜏𝑛 + 𝑇)
}
≤ lim

𝑛→∞
𝜎2

∞∑︁
𝑖=𝑛

𝛾2
𝑖+1 = 0.

�
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Lemma 2. Let {𝑥𝑘 }𝑘∈ℕ be the iterates of (LRM) and suppose Assumptions 1–3 hold. Then, 𝔼‖𝑥𝑘 ‖2 =

O(1/𝛾𝑘+1). This in turn implies 𝔼‖𝑣(𝑥𝑘 )‖2 = O(1/𝛾𝑘+1) and 𝔼‖𝑏𝑘+1‖2 = O(𝛾𝑘+1).

Proof. Without loss of generality, suppose 𝑣 has a stationary point at 0. We repeatedly use the fact
that 𝔼‖𝑣(𝑥𝑘 )‖2 ≤ 𝐿2𝔼‖𝑥𝑘 ‖2. Moreover, by Assumption 1 we have 〈𝑣(𝑥), 𝑥〉 ≤ 𝐶𝑣 (‖𝑥‖ + 1), and
‖𝜎(𝑥)‖2

𝐹
≤ 𝐶𝜎 .

Define 𝑎𝑘 B 𝔼‖𝑥𝑘 ‖2. We have

𝑎𝑘+1 − 𝑎𝑘 = 𝛾2
𝑘+1𝔼‖𝑣(𝑥𝑘 ) + 𝑍𝑘+1‖2 + 𝛾𝑘+1𝔼‖𝜎(𝑥𝑘 )𝜉𝑘+1‖2 + 2𝛾𝑘+1𝔼〈𝑥𝑘 , 𝑣(𝑥𝑘 ) + 𝑍𝑘+1〉

+ 2𝛾1/2
𝑘+1𝔼〈𝑥𝑘 , 𝜎(𝑥𝑘 )𝜉𝑘+1〉 + 2𝛾3/2

𝑘+1𝔼〈𝑣(𝑥𝑘 ) + 𝑍𝑘+1, 𝜎(𝑥𝑘 )𝜉𝑘+1〉

≤ 2𝐿2𝛾2
𝑘+1𝑎𝑘 + 2𝛾2

𝑘+1𝔼‖𝑍𝑘+1‖2 + 𝛾𝑘+1𝐶𝜎 + 2𝛾𝑘+1𝐶𝑣 (
√
𝑎𝑘 + 1) + 2𝛾𝑘+1

√
𝑎𝑘

√︁
𝔼‖𝑍𝑘+1‖2

+ 2𝛾3/2
𝑘+1

√︁
𝐶𝜎

√︁
𝔼‖𝑍𝑘+1‖2 (16)

By Assumption 3, there is some 𝐶𝑏 > 0 such that 𝔼‖𝑏𝑘+1‖2 ≤ 𝐶𝑏 (𝛾2
𝑘+1𝑎𝑘 + 𝛾𝑘+1), and we have

𝔼‖𝑍𝑘+1‖2 ≤ 2𝔼‖𝑏𝑘+1‖2 + 2𝔼‖𝑈𝑘+1‖2 ≤ 2𝐶𝑏 (𝛾2
𝑘+1𝑎𝑘 + 𝛾𝑘+1) + 2𝜎2. (17)

Moreover, as
√
𝑝 + 𝑞 ≤ √

𝑝 + √
𝑞, we have√︁

𝔼‖𝑍𝑘+1‖2 ≤
√︁

2𝐶𝑏 (𝛾𝑘+1
√
𝑎𝑘 +

√
𝛾𝑘+1) +

√
2𝜎. (18)

Plugging the bounds from (17) and (18) into (16) gives

𝑎𝑘+1 − 𝑎𝑘 ≤ 2𝐿2𝛾2
𝑘+1𝑎𝑘 + 4𝐶𝑏𝛾

4
𝑘+1𝑎𝑘 + 4𝐶𝑏𝛾

3
𝑘+1 + 4𝛾2

𝑘+1𝜎
2

+ 𝛾𝑘+1𝐶𝜎 + 2𝛾𝑘+1𝐶𝑣

√
𝑎𝑘 + 2𝛾𝑘+1𝐶𝑣

+ 2
√︁

2𝐶𝑏𝛾
2
𝑘+1𝑎𝑘 + 2

√︁
2𝐶𝑏𝛾

3/2
𝑘+1

√
𝑎𝑘 + 2

√
2𝜎𝛾𝑘+1

√
𝑎𝑘

+ 2
√︁

2𝐶𝑏𝐶𝜎𝛾
5/2
𝑘+1

√
𝑎𝑘 + 2

√︁
2𝐶𝑏𝐶𝜎𝛾

2
𝑘+1 + 2𝛾3/2

𝑘+1

√︁
2𝐶𝜎𝜎

C 𝑃𝛾2
𝑘+1 𝑎𝑘 +𝑄𝛾𝑘+1

√
𝑎𝑘 + 𝑅𝛾𝑘+1,

(19)

where

𝑃 = 2𝐿2 + 4𝐶𝑏𝛾
2
𝑘+1 + 2

√︁
2𝐶𝑏

𝑄 = 2𝐶𝑣 + 2
√︁

2𝐶𝑏

√
𝛾𝑘+1 + 2

√
2𝜎 + 2

√︁
2𝐶𝑏𝛾𝑘+1 + 2

√︁
2𝐶𝑏𝐶𝜎𝛾

3/2
𝑘+1

𝑅 = 4𝐶𝑏𝛾
2
𝑘+1 + 4𝛾𝑘+1𝜎

2 + 𝐶𝜎 + 2𝐶𝑣 + 2
√︁

2𝐶𝑏𝐶𝜎𝛾𝑘+1 + 2𝛾1/2
𝑘+1

√︁
2𝐶𝜎𝜎.

The exact values of 𝑃, 𝑄, and 𝑅 are irrelevant, and we only need upper bounds for them. Assuming
that 𝛾𝑘+1 < 1 for all 𝑘 , we replace the three quantities by

𝑃 = 2𝐿2 + 4𝐶𝑏 + 2
√︁

2𝐶𝑏

𝑄 = 2𝐶𝑣 + 2
√︁

2𝐶𝑏 + 2
√

2𝜎 + 2
√︁

2𝐶𝑏 + 2
√︁

2𝐶𝑏𝐶𝜎

𝑅 = 4𝐶𝑏 + 4𝜎2 + 𝐶𝜎 + 2𝐶𝑣 + 2
√︁

2𝐶𝑏𝐶𝜎 + 2
√︁

2𝐶𝜎𝜎.

(20)

Now, define ℎ𝑘 = 𝛾2
𝑘+1𝑎𝑘 . The recursion (19) in terms of ℎ𝑘 becomes

ℎ𝑘+1 ≤ ℎ𝑘 (1 + 𝑃𝛾2
𝑘+1)

𝛾2
𝑘+2

𝛾2
𝑘+1

+
√︁
ℎ𝑘𝑄𝛾2

𝑘+2 + 𝑅𝛾𝑘+1𝛾
2
𝑘+2.

We now prove that there exists some 𝑀 > 0 so that ℎ𝑘 ≤ 𝑀𝛾𝑘+1 by induction. Suppose it is the case
for 𝑘 , and we prove it for 𝑘 + 1. Using the induction hypothesis we get

ℎ𝑘+1 ≤ 𝑀𝛾𝑘+1 (1 + 𝑃𝛾2
𝑘+1)

𝛾2
𝑘+2

𝛾2
𝑘+1

+
√︁
𝑀𝛾𝑘+1𝑄𝛾2

𝑘+2 + 𝑅𝛾𝑘+1𝛾
2
𝑘+2

= 𝑀 (1 + 𝑃𝛾2
𝑘+1)

𝛾2
𝑘+2

𝛾𝑘+1
+
√
𝑀𝑄

√
𝛾𝑘+1𝛾

2
𝑘+2 + 𝑅𝛾𝑘+1𝛾

2
𝑘+2
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For the last to be less than 𝑀𝛾𝑘+2, we have to verify

𝑀 (1 + 𝑃𝛾2
𝑘+1)

𝛾𝑘+2
𝛾𝑘+1

+
√
𝑀𝑄

√
𝛾𝑘+1𝛾𝑘+2 + 𝑅𝛾𝑘+1𝛾𝑘+2 ≤ 𝑀

or equivalently,

𝑀

(
𝛾𝑘+2
𝛾𝑘+1

+ 𝑃𝛾𝑘+1𝛾𝑘+2 − 1
)
+
√
𝑀𝑄

√
𝛾𝑘+1𝛾𝑘+2 + 𝑅𝛾𝑘+1𝛾𝑘+2 ≤ 0.

This is a quadratic equation in
√
𝑀 , and for this inequality to hold, we prove that the leading coefficient

is negative, and the largest root is bounded above by some constant not depending on 𝑛.

Negativity of the leading coefficient is equivalent to
𝛾𝑘+2
𝛾𝑘+1

+ 𝑃𝛾𝑘+1𝛾𝑘+2 < 1,

which is implied by our assumption on the step size.

The larger root of the equation is(
−4𝛾2

𝑘+1𝛾
2
𝑘+2𝑃𝑅 + 𝛾𝑘+1𝛾𝑘+2 (𝛾𝑘+2𝑄

2 + 4𝑅) − 4𝑅𝛾2
𝑘+2

)1/2 + √
𝛾𝑘+1𝛾𝑘+2𝑄

2(1 − 𝛾𝑘+1𝛾𝑘+2𝑃 − 𝛾𝑘+2/𝛾𝑘+1)

<

√
𝛾𝑘+1𝛾𝑘+2𝑄 +

√
𝑅𝛾𝑘+1𝛾𝑘+2

(1 − 𝛾𝑘+1𝛾𝑘+2𝑃 − 𝛾𝑘+2/𝛾𝑘+1)

≤
√
𝛾𝑘+1𝛾𝑘+1𝑄 +

√
𝑅𝛾𝑘+1

(1 − 𝛾𝑘+1𝛾𝑘+2𝑃 − 𝛾𝑘+2/𝛾𝑘+1)
.

By our assumption on the step size that
𝛾𝑘+2
𝛾𝑘+1

+ 𝑃𝛾𝑘+1𝛾𝑘+2 < 1 − 𝛾𝑘+1,

we get that the larger root is smaller than
√
𝛾𝑘+1𝛾𝑘+1𝑄 +

√
𝑅𝛾𝑘+1

𝛾𝑘+1
=
√
𝛾𝑘+1𝑄 +

√
𝑅 < 𝑄 +

√
𝑅.

Letting 𝑀 := 𝑄 +
√
𝑅 gives the desired result.

The second argument of the lemma follows from Assumption 3 and the first result of the lemma. �

Lemma 4. For a vector valued function 𝑔 ∈ 𝐿2 (ℝ;ℝ𝑑), one has∫ 𝑠

0
𝑔(𝑢) 𝑑𝑢

2
≤

(∫ 𝑠

0
‖𝑔(𝑢)‖ 𝑑𝑢

)2
≤ 𝑠

∫ 𝑠

0
‖𝑔(𝑢)‖2 𝑑𝑢.

D Proofs for Section 5

D.1 Proof of Theorem 3

For brevity, let us write ℱ𝑘 instead of ℱ𝜏𝑘 . Opening up ‖𝑥𝑘+1‖2 = ‖𝑥𝑘 + 𝛾𝑘+1{𝑣(𝑥𝑘 ) + 𝑍𝑘+1} +√
𝛾𝑘+1𝜎(𝑥𝑘 ) 𝜉𝑘+1‖2 and ignoring every term that is zero-mean under 𝔼[· |ℱ𝑘 ], we get

𝔼[‖𝑥𝑘+1‖2 | F𝑘 ] = 𝔼
[
‖𝑥𝑘 ‖2 + 2𝛾𝑘+1〈𝑥𝑘 , 𝑣(𝑥𝑘 ) + 𝑍𝑘+1〉

+ 𝛾2
𝑘+1‖𝑣(𝑥𝑘 ) + 𝑍𝑘+1‖2 + 𝛾𝑘+1‖𝜎(𝑥𝑘 )𝜉𝑘+1‖2 + 2𝛾

3
2
𝑘+1〈𝜎(𝑥𝑘 )𝜉𝑘+1, 𝑏𝑘+1〉

��F𝑘

]
≤ ‖𝑥𝑘 ‖2 + 2𝛾𝑘+1 (〈𝑥𝑘 , 𝑣(𝑥𝑘 )〉 + 𝐶𝜎/2) + 2𝛾2

𝑘+1‖𝑣(𝑥𝑘 )‖
2

+ 𝔼

[
2𝛾2

𝑘+1‖𝑍𝑘+1‖2 + 2𝛾𝑘+1〈𝑥𝑘 , 𝑍𝑘+1〉 + 2𝛾
3
2
𝑘+1〈𝜎(𝑥𝑘 )𝜉𝑘+1, 𝑏𝑘+1〉

��F𝑘

]
≤ ‖𝑥𝑘 ‖2 + 2𝛾𝑘+1

(
〈𝑥𝑘 , 𝑣(𝑥𝑘 )〉 + 𝐶𝜎/2 + 𝛾

1
2
𝑘+1𝐶𝜎/4

)
+ 2𝛾2

𝑘+1‖𝑣(𝑥𝑘 )‖
2 (21)

+ 𝔼
[
2𝛾2

𝑘+1‖𝑍𝑘+1‖2 |F𝑘

]
+ 𝛾

3
2
𝑘+1𝔼

[
‖𝑏𝑘+1‖2 |F𝑘

]
+ 2𝔼[𝛾𝑘+1〈𝑥𝑘 , 𝑏𝑘+1〉|F𝑘 ] .
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Recalling (5) in Assumption 3, we have for some 𝐶 > 0

𝔼‖𝑍𝑘+1‖2 ≤ 2𝜎2 + 2𝐶
(
𝛾2
𝑘+1𝔼‖𝑣(𝑥𝑘 )‖

2 + 𝛾𝑘+1

)
(22)

Without loss of generality, assume 𝛾𝑘 ≤ 1 and 𝔼‖𝑥𝑘 ‖2 ≥ 1 (so that
(
𝔼‖𝑥𝑘 ‖2)2 ≥ 𝔼‖𝑥𝑘 ‖2) for all 𝑘 .

Then, ‖𝑣(𝑥𝑘 )‖2 ≤ 𝐿2‖𝑥𝑘 ‖2, together with Assumption 4 and the Cauchy-Schwartz inequality on the
last term of (21), implies

𝔼‖𝑥𝑘+1‖2 ≤ 𝔼‖𝑥𝑘 ‖2 − 2𝛼𝛾𝑘+1𝔼‖𝑥𝑘 ‖2 + 2𝛾𝑘+1

(
𝛽 + 𝐶𝜎 + 1

2
𝛾

1
2
𝑘+1𝐶𝜎

)
+ 2𝐿2𝛾2

𝑘+1𝔼‖𝑥𝑘 ‖
2

+ 2𝛾2
𝑘+1

[
2𝜎2 + 2𝐶

(
𝐿2𝛾2

𝑘+1𝔼‖𝑥𝑘 ‖
2 + 𝛾𝑘+1

)]
+ 𝛾

3
2
𝑘+1𝐶

(
𝐿2𝛾2

𝑘+1𝔼‖𝑥𝑘 ‖
2 + 𝛾𝑘+1

)
+ 2𝛾𝑘+1

√
𝐶

√︃
𝐿2𝛾2

𝑘+1
(
𝔼‖𝑥𝑘 ‖2)2 + 𝛾𝑘+1𝔼‖𝑥𝑘 ‖2

≤ 𝔼‖𝑥𝑘 ‖2 (1 − 𝐶1𝛾𝑘+1 + 𝐶2𝛾
3
2
𝑘+1) + 𝐶3𝛾𝑘+1

for some constants 𝐶1, 𝐶2, 𝐶3 depending on 𝐿, 𝐶, 𝜎, 𝛼, 𝛽, and 𝑑. Since 𝛾𝑘 → 0, there exist �̃�, 𝛽 > 0
and 𝑘0 such that, for all 𝑘 ≥ 𝑘0,

𝔼‖𝑥𝑘+1‖2 ≤ 𝔼‖𝑥𝑘 ‖2 (1 − �̃�𝛾𝑘+1) + 𝛽𝛾𝑘+1, 1 − �̃�𝛾𝑘+1 > 0.

A simple induction yields

sup
𝑘

𝔼‖𝑥𝑘 ‖2 ≤ max
{
𝛽

�̃�
,𝔼‖𝑥𝑘0 ‖2

}
which concludes the proof. �

D.2 Proof of Theorem 4 for Constant Diffusion

Before proceeding, we need a lemma which can be distilled from [20, Proposition 8]:

Lemma 5. Suppose ∇ 𝑓 is 𝐿-Lipschitz. Fix 𝑥 ∈ ℝ𝑑 and 𝛾 > 0, let 𝑥+ = 𝑥 − 𝛾∇ 𝑓 (𝑥) +
√︁

2𝛾𝜉. Then

𝔼

[
exp

(
1
2
〈∇ 𝑓 (𝑥), 𝑥+ − 𝑥〉 + 𝐿

4
‖𝑥+ − 𝑥‖2

)]
≤ (1 − 𝛾𝐿)−𝑑/2𝑒−

𝛾

4 ‖∇ 𝑓 (𝑥) ‖2
. (23)

Let 𝑥𝑘+1 B 𝑥𝑘 − 𝛾𝑘+1∇ 𝑓 (𝑥𝑘 ) +
√︁

2𝛾𝑘+1 𝜉𝑘+1 so that 𝑥𝑘+1 − 𝑥𝑘 = 𝑥𝑘+1 − 𝑥𝑘 − 𝛾𝑘+1 (𝑈𝑘+1 + 𝑏𝑘+1).
Conditioned on 𝑥𝑘 ,𝑈𝑘+1,𝑈

′
𝑘+1, 𝜉

′
𝑘+1, and using the 𝐿-Lipschitzness of ∇ 𝑓 , we get

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1)

≤ 𝔼 exp
(
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 +

𝐿

4
‖𝑥𝑘+1 − 𝑥𝑘 ‖2

)
(24)

≤ 𝔼 exp

{
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 −

1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝛾𝑘+1𝑈𝑘+1〉 (25)

− 1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝛾𝑘+1𝑏𝑘+1〉 +

𝐿

2
‖𝑥𝑘+1 − 𝑥𝑘 ‖2 + 𝐿𝛾2

𝑘+1‖𝑈𝑘+1‖2 + 𝐿𝛾2
𝑘+1‖𝑏𝑘+1‖2

}
.

(26)

Let 𝛿 ∈ (0, 1). Since

−1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝛾𝑘+1𝑈𝑘+1〉 ≤ 𝛾2−𝛿

𝑘+1 ‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾 𝛿
𝑘+1‖𝑈𝑘+1‖2,

−1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝛾𝑘+1𝑏𝑘+1〉 ≤ 𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + ‖𝑏𝑘+1‖2,
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we have

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) (27)

≤ 𝔼 exp

{
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 +

𝐿

2
‖𝑥𝑘+1 − 𝑥𝑘 ‖2 (28)

+
(
𝛾2−𝛿
𝑘+1 + 𝛾2

𝑘+1

)
‖∇ 𝑓 (𝑥𝑘 )‖2 +

(
𝐿𝛾2

𝑘+1 + 𝛾 𝛿
𝑘+1

)
‖𝑈𝑘+1‖2 +

(
𝐿𝛾2

𝑘+1 + 1
)
‖𝑏𝑘+1‖2

}
. (29)

Invoking (11) an denoting 𝑐′ ,
(
𝐿𝛾2

𝑘+1 + 1
)
· 𝑐, we get

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) ≤ 𝑒𝐴𝑘 · 𝔼 exp

{
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 +

𝐿

2
‖𝑥𝑘+1 − 𝑥𝑘 ‖2 + 𝑐′ · 𝛾𝑘+1‖𝜉𝑘+1‖2

}
,

(30)

where,
𝐴𝑘 ,

(
𝛾2−𝛿
𝑘+1 + 𝛾2

𝑘+1 + 𝑐′𝛾2
𝑘+1

)
‖∇ 𝑓 (𝑥𝑘 )‖2

+
(
𝐿𝛾2

𝑘+1 + 𝛾 𝛿
𝑘+1

)
‖𝑈𝑘+1‖2

+ 𝑐′
(
𝛾2
𝑘+1‖𝑈

′
𝑘+1‖

2 + 𝛾𝑘+1‖𝜉 ′𝑘+1‖
2
)
.

(31)

Recalling that
√︁

2𝛾𝑘+1𝜉𝑘+1 = 𝑥𝑘+1 − 𝑥𝑘 + 𝛾𝑘+1∇ 𝑓 (𝑥𝑘 ), we have 𝛾𝑘+1‖𝜉𝑘+1‖2 ≤ ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 +
𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2, and thus

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) ≤ 𝑒𝐴

′
𝑘 · 𝔼 exp

{
1
2
〈∇ 𝑓 (𝑥𝑘 ), 𝑥𝑘+1 − 𝑥𝑘〉 +

(
𝐿

2
+ 𝑐′

)
‖𝑥𝑘+1 − 𝑥𝑘 ‖2

}
, (32)

where 𝐴′
𝑘
= 𝐴𝑘 + 𝑐′𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2. Lemma 5 then implies

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) ≤ 𝑒𝐴

′′
𝑘 · (1 − 𝛾𝑘+1𝐿

′)− 𝑑
2 (33)

where 𝐴′′
𝑘
= 𝐴′

𝑘
− 𝛾𝑘+1

4 ‖∇ 𝑓 (𝑥𝑘 )‖2.

We now take the expectation over 𝑥𝑘 ,𝑈𝑘+1,𝑈
′
𝑘+1, 𝜉

′
𝑘+1 (in other words, we are now only conditioning

on 𝑥𝑘 ). Set 𝜖 , (1 − 𝛾𝑘+1𝐿
′)− 1

2 − 1 > 0. Since 𝑈𝑘+1,𝑈
′
𝑘+1, 𝜉

′
𝑘+1 are sub-Gaussian and since 𝛾𝑘 → 0,

for 𝑘 sufficiently large we have

𝔼𝐴′′
𝑘 ≤ (1 + 𝜖) · exp

[(
−𝛾𝑘+1

4
+ 𝛾2−𝛿

𝑘+1 + 𝛾2
𝑘+1 + 𝑐′𝛾2

𝑘+1 + 𝑐′𝛾2
𝑘+1

)
‖∇ 𝑓 (𝑥𝑘 )‖2

]
(34)

≤ (1 + 𝜖) · 𝑒−
𝛾𝑘+1

8 ‖∇ 𝑓 (𝑥𝑘 ) ‖2
. (35)

To summarize, we have shown that, conditioned on 𝑥𝑘 ,

𝑒−
1
2 𝑓 (𝑥𝑘 )𝔼𝑒

1
2 𝑓 (𝑥𝑘+1) ≤ (1 − 𝛾𝑘+1𝐿

′)− 𝑑+1
2 𝑒−

𝛾𝑘+1
8 ‖∇ 𝑓 (𝑥𝑘 ) ‖2

. (36)

A simple induction à la [20, Lemma 1 & Proposition 8] then concludes the proof. �

D.3 Proof of Theorem 4 for Mirror Langevin

Here, we bring the proof of Theorem 4 for the case of Example 4 and without noise. The proof for
the noisy case is the same as in Appendix D.2.

Define
𝑥+ = 𝑥 − 𝛾∇ 𝑓 ◦ ∇𝜙∗ (𝑥) +

√︁
2𝛾(∇2𝜙∗ (𝑥)−1)1/2𝜉,

where 𝜉 is a standard Gaussian random variable. Let 𝑈 (𝑥) = 𝑓 (∇𝜙∗ (𝑥)). For a fixed 𝑥, we have

𝔼𝑒
1
2𝑈 (𝑥+)− 1

2𝑈 (𝑥) =
1

(2𝜋)𝑑/2

∫
exp

(
1
2
𝑈 (𝑥+) − 1

2
𝑈 (𝑥) − ‖𝜉‖2

2

)
𝑑𝜉
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Notice that we have

𝜉 =
1√︁
2𝛾

(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥 + 𝛾∇ 𝑓 ◦ ∇𝜙∗ (𝑥)
)

which implies

𝑑𝜉 = (
√︁

2𝛾)−𝑑
√︃

det∇2𝜙∗ (𝑥) 𝑑𝑥+

Thus, the integral, after the change of variable from 𝜉 to 𝑥+ becomes

1
𝐶

∫
exp

(
1
2
𝑈 (𝑥+) − 1

2
𝑈 (𝑥) − 1

4𝛾
‖(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥 + 𝛾∇ 𝑓 ◦ ∇𝜙∗ (𝑥)

)
‖2

)
𝑑𝑥+ (37)

with 𝐶 = (4𝜋𝛾)𝑑/2
√︁

det∇2𝜙∗ (𝑥)−1. Now we use the smoothness of 𝑓 :

𝑈 (𝑥+) −𝑈 (𝑥) = 𝑓 (∇𝜙∗ (𝑥+)) − 𝑓 (∇𝜙∗ (𝑥))

≤ 〈∇2𝜙∗ (𝑥)∇ 𝑓 (∇𝜙∗ (𝑥)), 𝑥+ − 𝑥〉 + 𝐿

2
‖𝑥+ − 𝑥‖2

On the other hand, we have

‖(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥 + 𝛾∇ 𝑓 ◦ ∇𝜙∗ (𝑥)
)
‖2

= ‖(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥)‖2 + 𝛾2‖(∇2𝜙∗ (𝑥))1/2∇ 𝑓 (∇𝜙∗ (𝑥))‖2

+ 2𝛾〈∇2𝜙∗ (𝑥)∇ 𝑓∇𝜙∗ (𝑥), 𝑥+ − 𝑥〉

Notice that in (37), the colored terms cancel out, and what we are left with is

𝔼𝑒
1
2𝑈 (𝑥+)− 1

2𝑈 (𝑥)

≤ 1
𝐶

∫
exp

(
𝐿

4
‖𝑥+ − 𝑥‖2 − 1

4𝛾
‖(∇2𝜙∗ (𝑥))1/2 (𝑥+ − 𝑥)‖2 − 𝛾

4
‖(∇2𝜙∗ (𝑥))1/2∇ 𝑓 (∇𝜙∗ (𝑥))‖2

)
𝑑𝑥+

As, by our assumption, ∇2𝜙∗ is bounded from above and below, we get the exact form as in Lemma 5.
The rest of the proof is the same as in Appendix D.2. �

D.4 Proof of Proposition 1

In this section, we prove that Examples 1–6 satisfy our bias conditions, which, as we have seen in
Section 5, implies Proposition 1. For brevity, we write ℱ𝑘 for ℱ𝜏𝑘 .

§ Proof for Example 1. For randomized mid-point method, by replacing ∇̃ 𝑓 (𝑥𝑘 ) and ∇̃ 𝑓 (𝑥𝑘+1/2)
with ∇ 𝑓 (𝑥𝑘 ) +𝑈 ′

𝑘+1 and ∇ 𝑓 (𝑥𝑘+1/2) +𝑈𝑘+1 respectively, we have

𝑥𝑘+1/2 = 𝑥𝑘 − 𝛾𝑘+1𝛼𝑘+1{∇ 𝑓 (𝑥𝑘 ) +𝑈 ′
𝑘+1} +

√︁
2𝛾𝑘+1𝛼𝑘+1𝜉

′
𝑘+1,

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1{∇ 𝑓 (𝑥𝑘+1/2) +𝑈𝑘+1} +
√︁

2𝛾𝑘+1𝜉𝑘+1,

where {𝛼𝑘 } are i.i.d. and uniformly distributed in [0, 1], {𝑈𝑘 } and {𝑈 ′
𝑘
} are noises in evaluating ∇ 𝑓

at the corresponding points, and 𝜉𝑘 , 𝜉
′
𝑘

are independent standard Gaussians.

Notice that the Lipschitzness of ∇ 𝑓 , and the fact that 𝛼𝑘 ≤ 1 implies that the bias term 𝑏𝑘+1 B
∇ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘 ) satisfies

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] ≤ 𝐿2𝔼[‖𝑥𝑘+1/2 − 𝑥𝑘 ‖2 |ℱ𝑘 ]

≤ 𝐿2
(
𝛾2
𝑘+1𝔼[‖∇ 𝑓 (𝑥𝑘 ) +𝑈 ′

𝑘+1‖
2 |ℱ𝑘 ] + 2𝛾𝑘+1𝑑

)
≤ 2𝐿2𝛾2

𝑘+1 ‖∇ 𝑓 (𝑥𝑘 )‖2 + 2𝐿2𝛾2
𝑘+1𝜎

2 + 2𝐿2𝑑𝛾𝑘+1

= O(𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1).
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§ Proof for Example 2. Recall that the new algorithm Optimistic Randomized Mid-Point Method
has the iterates

𝑥𝑘+1/2 = 𝑥𝑘 − 𝛾𝑘+1𝛼𝑘+1∇̃ 𝑓 (𝑥𝑘− 1
2
) +

√︁
2𝛾𝑘+1𝛼𝑘+1𝜉

′
𝑘+1,

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇̃ 𝑓 (𝑥𝑘+1/2) +
√︁

2𝛾𝑘+1 𝜉𝑘+1,

where {𝛼𝑘 }, 𝜉𝑘 , 𝜉
′
𝑘
, and ∇̃ 𝑓 are the same as in (RMM), and the noise and bias are 𝑈𝑘+1 B

∇̃ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘+1/2) and 𝑏𝑘+1 B ∇ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘 ). We have

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] = 𝔼[‖∇ 𝑓 (𝑥𝑘+1/2) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ]
≤ 𝐿2𝔼[‖𝑥𝑘+1/2 − 𝑥𝑘 ‖2 |ℱ𝑘 ]
= 𝐿2𝔼[‖−𝛾𝑘+1𝛼𝑘+1∇̃ 𝑓 (𝑥𝑘− 1

2
) +

√︁
2𝛾𝑘+1𝛼𝑘+1𝜉

′
𝑘+1‖

2 |ℱ𝑘 ]

≤ 2𝐿2𝛾2
𝑘+1𝔼[‖∇ 𝑓 (𝑥𝑘− 1

2
)‖ |ℱ𝑘 ] + 2𝐿2𝛾2

𝑘+1𝜎
2 + 4𝐿2𝑑𝛾𝑘+1.

Similar to the proof for Example 6, notice that ‖∇ 𝑓 (𝑥𝑘− 1
2
)‖2 ≤ 2‖∇ 𝑓 (𝑥𝑘− 1

2
) − ∇ 𝑓 (𝑥𝑘 )‖2 +

2‖∇ 𝑓 (𝑥𝑘 )‖2. As 𝛾𝑘 → 0, one can assume that 2𝐿2𝛾2
𝑘+1 < 1

2 , and we get

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] ≤ 4𝐿2𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 4𝐿2𝛾2

𝑘+1𝜎
2 + 8𝐿2𝑑𝛾𝑘+1 = O(𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1),
as desired. �

§ Proof for Example 3. The iterates of stochastic Runge-Kutta Langevin algorithm is as follows:

ℎ1 = 𝑥𝑘 +
√︁

2𝛾𝑘+1

[
(1/2 + 1/

√
6) 𝜉𝑘+1 + 𝜉 ′𝑘+1/

√
12

]
ℎ2 = 𝑥𝑘 − 𝛾𝑘+1{∇ 𝑓 (𝑥𝑘 ) +𝑈 ′

𝑘+1} +
√︁

2𝛾𝑘+1

[
(1/2 − 1/

√
6) 𝜉𝑘+1 + 𝜉 ′𝑘+1/

√
12

]
𝑥𝑘+1 = 𝑥𝑘 −

𝛾𝑘+1
2

(∇ 𝑓 (ℎ1) + ∇ 𝑓 (ℎ2)) + 𝛾𝑘+1𝑈𝑘+1 +
√︁

2𝛾𝑘+1 𝜉𝑘+1,

where 𝜉𝑘+1 and 𝜉 ′
𝑘+1 are independent standard Gaussian random variables independent of 𝑥𝑘 , and

𝑈𝑘+1 and 𝑈 ′
𝑘+1 are noise in the evaluation of 𝑓 .

Observe that

𝑏𝑘+1 =
1
2
(∇ 𝑓 (ℎ1) − ∇ 𝑓 (𝑥𝑘 )) +

1
2
(∇ 𝑓 (ℎ2) − ∇ 𝑓 (𝑥𝑘 )).

We have

𝔼[‖∇ 𝑓 (ℎ1) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ] ≤ 2𝐿2𝑑 (1/4 + 1/6 + 1/12)𝛾𝑘+1 = O(𝛾𝑘+1),
and

𝔼[‖∇ 𝑓 (ℎ2) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ] ≤ 2𝐿2
(
𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 2𝛾2

𝑘+1𝜎
2 + 2𝑑 (1/4 − 1/6 + 1/12)𝛾𝑘+1

)
= O(𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1).
We thus have

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑡 ] ≤
1
2
𝔼[‖∇ 𝑓 (ℎ1) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ] +

1
2
𝔼[‖∇ 𝑓 (ℎ2) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ]

= O(𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1),

as desired. �

§ Proof for Example 4. Suppose 𝜙 is a Legendre function [52] for ℝ𝑑 , and consider the iterates

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇ 𝑓 (∇𝜙∗ (𝑥𝑘 )) +
√︁

2𝛾𝑘+1 (∇2𝜙∗ (𝑥𝑘 )−1)1/2 𝜉𝑘+1,

where 𝜙∗ is the Fenchel dual of 𝜙, that is, 𝜙∗ (𝑥) = sup𝑦∈ℝ𝑑 (〈𝑥, 𝑦〉 − 𝜙(𝑦)). Also recall that [52]

∇𝜙(∇𝜙∗ (𝑥)) = 𝑥, ∇2𝜙∗ (∇𝜙(𝑥))−1 = ∇2𝜙(𝑥), ∀𝑥 ∈ ℝ𝑑 .

Let 𝑣 = −∇ 𝑓 ◦ ∇𝜙∗ and 𝜎 = (∇2𝜙∗)−1/2. First, we mention what our assumptions imply on 𝑓 :
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• The Lipschitzness of 𝑣 corresponds to a similar condition in [31, A2]:

‖∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)‖ ≤ 𝐿‖∇𝜙(𝑥) − ∇𝜙(𝑦)‖

• The Lipschitzness of 𝜎 in Frobenius norm corresponds to modified self-concordance in [31, A1]:

‖∇2𝜙(𝑥)1/2 − ∇2𝜙(𝑦)1/2‖𝐹 ≤ 𝐿‖∇𝜙(𝑥) − ∇𝜙(𝑦)‖.

• Boundedness of 𝜎 in Hilbert-Schmidt norm implies∇2𝜙(𝑥)−1/2

𝐹
≤ 𝐶𝜎 .

• Dissipativity and weak-dissipativity of 𝑣 corresponds to the conditions below, respectively:

〈∇𝜙(𝑥),∇ 𝑓 (𝑥)〉 ≥ 𝛼‖∇𝜙(𝑥)‖2 − 𝛽, 〈∇𝜙(𝑥),∇ 𝑓 (𝑥)〉 ≥ 𝛼‖∇𝜙(𝑥)‖1+𝜅 − 𝛽.

If 𝑓 and 𝜙 satisfy the conditions above, then the mirror Langevin algorithm Example 4 fits into the
(LRM) scheme.
Remark. Note that this version of Mirror Langevin cannot handle the case where 𝑒− 𝑓 is supported
on a compact domain; in that case, the Hessian of 𝜙 has to blow up near the boundary, and will
not satisfy our boundedness assumption. The version of mirror Langevin we consider in this paper,
though, can be thought as an adaptive conditioning method for densities supported on ℝ𝑑 . This
setting has also been studied in the literature, see [55].

§ Proof for Example 6. The iterates of (PLA) follow

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘+1∇ 𝑓 (𝑥𝑘+1) +
√︁

2𝛾𝑘+1 𝜉𝑘+1. (PLA)

We mentioned that the bias term is 𝑏𝑘+1 = ∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 ). Now it remains to prove that it
satisfies the conditions (5) and (11). We have

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] = 𝔼[‖∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 )‖2 |ℱ𝑘 ]
≤ 𝐿2𝔼[‖𝑥𝑘+1 − 𝑥𝑘 ‖2 |ℱ𝑘 ]
= 𝐿2𝔼[‖−𝛾𝑘+1∇ 𝑓 (𝑥𝑘+1) +

√︁
2𝛾𝑘+1 𝜉𝑘+1‖2 |ℱ𝑘 ]

≤ 2𝐿2𝛾2
𝑘+1𝔼[‖∇ 𝑓 (𝑥𝑘+1)‖2 |ℱ𝑘 ] + 4𝐿2𝑑𝛾𝑘+1.

Now, notice that ‖∇ 𝑓 (𝑥𝑘+1)‖2 ≤ 2‖∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 )‖2 + 2‖∇ 𝑓 (𝑥𝑘 )‖2. As 𝛾𝑘 → 0, one can
assume that 2𝐿2𝛾2

𝑘+1 < 1
2 , and we get

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] ≤
1
2
𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] + ‖∇ 𝑓 (𝑥𝑘 )‖2 + 4𝐿2𝑑𝛾𝑘+1,

which implies

𝔼[‖𝑏𝑘+1‖2 |ℱ𝑘 ] ≤ 4𝐿2𝛾2
𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 8𝐿2𝑑𝛾𝑘+1 = O(𝛾2

𝑘+1‖∇ 𝑓 (𝑥𝑘 )‖2 + 𝛾𝑘+1),

as desired. �
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