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Abstract

Adversarial Training (AT) is the de-facto standard for improving robustness against1

adversarial examples. This usually involves a multi-step adversarial attack applied2

on each example during training. In this paper, we explore only constructing3

Adversarial Examples (AEs) on a subset of the training examples. That is, we4

split the training set in two subsets A and B, train models on both (A ∪ B) but5

construct AEs only for examples in A. Starting with A containing only a single6

class, we systematically increase the size of A and consider splitting by class and by7

examples. We observe that: (i) adv. robustness transfers by difficulty and to classes8

in B that have never been adv. attacked during training, (ii) we observe a tendency9

for hard examples to provide better robustness transfer than easy examples, yet find10

this tendency to diminish with increasing complexity of datasets (iii) generating11

AEs on only 50% of training data is sufficient to recover most of the baseline AT12

performance even on ImageNet. We observe similar transfer properties across tasks,13

where generating AEs on only 30% of data can recover baseline robustness on the14

target task. We evaluate our subset analysis on a wide variety of image datasets15

like CIFAR-10, CIFAR-100, ImageNet-200 and show transfer to SVHN, Oxford-16

Flowers-102 and Caltech-256. In contrast to conventional practice, our experiments17

indicate that the utility of computing AEs varies by class and examples and that18

weighting examples from A higher than B provides high transfer performance.19

1 Introduction20

Imperceptible changes in the input can change the output of a well performing model dramatically.21

These so-called Adversarial Examples (AEs) have been the focus of a large body on deep learning22

vulnerabilities of works since its discovery [1]. To date, Adversarial Training (AT) [2, 3] and its23

variants [4–6] is the de-facto state-of-the-art in improving the robustness against AEs. Essentially, AT24

generates adversarial perturbations for all examples seen during training. While adversarial training25

is known to transfer robustness to downstream tasks [7–9] and that robustness is distributed unevenly26

across classes [10, 11], common practice dictates that AT “sees” adversarial examples corresponding27

to the whole training data, including all classes and concepts therein. This is independent of whether28

only adversarial robustness is optimized or a trade-off between robustness and clean performance29

is desired [12]. This also holds for variants that treat individual examples differently [13–15] or30

adaptively select subsets to attack during training to reduce computational overhead [16, 17]. It is31

largely unclear how adversarial robustness is affected when training is limited to seeing adversarial32

examples only on specific subsets of the training data.33

To shed light on this issue, we consider the adversarial training setup depicted in figure 1, called34

Subset Adversarial Training (SAT), where we split the training data into two subsets A and B, train35

the model conventionally on the union (A∪B), but generate AEs only on examples from A (indicated36
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Figure 1: Adversarial robustness transfers among classes. Using Subset Adversarial Training (SAT),
during which only a subset of all training examples (A) are attacked, we show that robust training
even on a single class provides robustness transfer to all other, non adv. trained, classes (B). E.g.,
SAT for A=cat, we observe an robust accuracy of 37.8% on B. Noteworthy is the difference of
transfer utility between classes. I.e. A=car provides very little transfer to B (17.1%). We investigate
this transfer among classes and provide new insights for robustness transfer to downstream tasks.

by the emoji). For example, we can split training data by class, with A = {car} or A = {cat} and37

B = Ac, and investigate how adversarial robustness transfers. Surprisingly, we observe significant38

adversarial robustness on Bval at test time, the degree of which depends on the class(es) in A. Of39

course, A and B can be arbitrary partitions of the training data. For example, we could put only40

“difficult” examples in A during training. At test time, we evaluate overall adversarial robustness41

(since there is no natural split into Aval or Bval). These experiments reveal a rather complex interaction42

of adversarial robustness between classes and examples.43

Our analysis provides a set of contributions revealing a surprising generalizability of robustness44

towards non-adv. trained classes and examples even under scarce training data setups. First, selecting45

subsets of whole classes, we find that SAT provides transfer of adversarial robustness to classes which46

have never been attacked during training. E.g. only generating adversarial examples for class car on47

CIFAR-10, achieves a non-trivial robust accuracy of 17.1% on all remaining CIFAR-10 classes (see48

figure 1, right). Secondly, we observe classes and examples that are hard to classify do generally49

provide better robustness transfer than easier ones. I.e. class cat achieves more than twice the robust50

accuracy on the remaining classes (37.8%) over class car (17.1%). Thirdly, SAT with 50% of51

training data is sufficient to recover the baseline performance with vanilla AT even on hard datasets52

like ImageNet. Lastly, we observe similar transfer properties of SATed models to downstream tasks.53

In this setting, exposing the model to only 30% of AEs during training, can recover baseline AT54

performance on the target task.55

2 Related Work56

Since their discovery [1], robustness against adversarial examples has mainly been tackled using57

adversarial training [18, 2, 4]. Among many others, prior work proposed adversarial training variants58

working with example-dependent threat models [19, 13–15], acknowledging that examples can have59

different difficulties. Some works also mine hard examples [16] or progressively prune a portion of60

the training examples throughout training [17, 20]. However, all of these methods generally assume61

access to adversarial examples on the whole training set. That is, while individual examples can62

be dropped during training or are treated depending on difficulty, the model can see adversarial63

perturbations for these examples if deemed necessary. Adversarial training is also known to transfer64

robustness to downstream tasks [8, 9, 7] and adversarially robust representations can be learned65

in a self-supervised fashion [21]. Here, a robust backbone is often adapted to the target task by66

re-training a shallow classifier – sometimes in an adversarial fashion. It is generally not studied67

whether seeing adversarial examples on the whole training set is required for good transfer. This is68

despite evidence that achieving adversarial robustness is easier for some classes/concepts than for69

others [22, 23, 11, 10], also for robustness transfer [24]. Complementing these works, we consider70

only constructing adversarial examples on a pre-defined subset of the training set, not informed by71

the model or training procedure, and study how robustness transfers across examples and tasks.72
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3 Background and Method73

3.1 Adversarial Training (AT)74

It is a well known fact that conventional deep networks are vulnerable to small, often imperceptible,75

changes in the input. As mitigation, AT is a common approach to extend the empirical risk minimiza-76

tion framework [2]. Let (x, y) ∈ Dtrain be a training set of example and label pairs and θ be trainable77

parameters, then AT is defined as:78

min
θ

E(x,y)∈Dtrain

[
max

||δ||2≤ϵ
L(x+ δ, y; θ)

]
, (1)

where δ is a perturbation that maximizes the training loss L and thus training error. The idea being79

that, simultaneously to minimizing the training loss, the loss is also optimized to be stable within a80

small space ϵ around each training example ||δ||2 ≤ ϵ (we consider the L2 norm). This additional81

inner maximization is solved by an iterative loop; conventionally consisting of 7 or more steps. In82

some settings [18, 12, 4], the robust loss is combined with the corresponding loss on clean examples83

in a weighted fashion to control the trade-off between adversarial robustness and clean performance.84

3.2 AT without Perturbing all Training Examples85

Most proposed AT methodologies generate AEs on the whole training set. This being also valid for86

methods which adaptively select subsets [16, 17] during training or more traditional AT in which87

only a subset per batch is adversarially attacked. These methods do not guarantee the exclusion of88

examples, that is, the model is likely to see an AE for every example in the training set. From a broader89

perspective, the necessity to generate AEs exhaustively for all classes appears unfortunate though.90

Ideally, we desire robust models to be scalable, i.e. transfer flexibly from few examples and across91

classes to unseen ones [25]. We propose SAT to investigate to what extent AT provides this utility.92

To formalize, let A be a training subset and B contain the complement: A ⊂ Dtrain, B = Dtrain \A.93

Then SAT applies the inner maximization loop of AT on the subset A only; on B the conventional94

empirical risk is minimized:95

min
θ

E(x,y)∈Dtrain

[
wA1(x,y)∈A max

||δ||2≤ϵ
L(x+ δ, y; θ) + wB1(x,y)∈BL(x, y; θ)

]
, (2)

where 1(x,y)∈A is 1 when the training example is in A and 0 otherwise. wA and wB define optional96

weights, which are by default both set to 1. Note that this is different from balancing robust and clean97

loss as discussed in [18, 12, 4], where the model still encounters adversarial examples on the whole98

training set.99

Loss balancing. The formulation in equation 2 implies an imbalance between left and right loss as100

soon as the training split is not even (|A| ≠ |B|). To counteract, we assign different values to wA and101

wB based on their subset size. E.g., to equalize the loss between both subsets, we assign wB = 1102

and wA = |B|/|A|. We will utilize this loss balancing to improve robustness for transfer learning in103

section 4.3.104

3.3 Training and evaluation recipes105

Consider the depiction of SAT in figure 1. Prior to training, the training set is split into A and B106

(left). For evaluation (middle), we split the validation set into a corresponding split of Aval and Bval,107

if possible. For Class-subset Adversarial Training (CSAT), this split aligns with the classes on the108

dataset: A and B are all training examples corresponding to two disjoint sets of classes while Aval109

and Bval are the corresponding test examples of these classes. As experimenting with all possible110

splits of classes is infeasible, we motivate splits by class difficulty where we measure difficulty by111

the average entropy of predictions per class – introduced as HC in the next paragraph. In contrast,112

we can also split based on individual example difficulty. We provide empirical support for this113

approach in the experimental section 4. Additionally, example difficulty has been frequently linked to114

proximity between decision boundary and example [26, 13, 15, 16, 27]. The closer the example is115

to the boundary, the harder it is likely to classify. The hypothesis: hard examples provide a larger116
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contribution to training robust models, since they optimize for large margins [13, 14]. We refer to117

this experiment as Example-subset Adversarial Training (ESAT). In contrast to CSAT, however,118

there is no natural split of the test examples into Aval and Bval such that we evaluate robustness on119

the whole test set (i.e., Dval).120

As difficulty metric, we utilize entropy over softmax, which we empirically find to be as suitable121

as alternative metrics (discussed in the supplement, section A.2). Consider a training set example122

x ∈ Dtrain and a classifier f mapping from input space to logit space with N logits. Then the entropy123

of example x is determined by H(f(x)) and of a whole class C ⊂ Dtrain is determined by HC(f) –124

the average over all examples in C:125

H(f(x)) = −
N∑
i=1

σi(f(x)) · log σi(f(x)), HC(f) =
1

|C|
∑
x∈C

H(f(x)),

where σ denotes the softmax function. For our SAT setting, we rank examples prior to adversarial126

training. This requires a classifier pretrained on Dtrain enabling the calculation of the entropy. To127

strictly separate the effects between entropy and AT, we determine the entropy using a non-robust128

classifier trained without AT. Similar to [27], we aggregate the classifier states at multiple epochs129

during training and average the entropies. Let f1, f2, ...fM be snapshots of the classifier from multiple130

epochs during training, where M denotes the number of training epochs. Then the average entropy131

for an example is given by H(x) and for a class by HC(f):132

H(x) =
1

M

M∑
e=1

H(fe(x)), HC =
1

M

M∑
e=1

HC(fe). (3)

4 Experiments133

As aforementioned, common practice performs AT for the whole training set. In the following, we134

explore CSAT and ESAT, which splits the training set in two subsets A and B and only constructs AEs135

for A such that the model never sees AEs for B. We start with single-class CSAT – A contains only136

examples of a single class – and increase the size of A (section 4.1) by utilizing the entropy ranking137

of classes HC (equation 3). ESAT, which splits into example subsets is discussed in section 4.2.138

Both SAT variants reveal complex interactions between classes and examples while indicating that139

few AEs can provide high transfer performance to downstream tasks when weighted appropriately140

(section 4.3).141

Training and evaluation details. Since AT is prone to overfitting [28], it is common practice to stop142

training when robust accuracy on a hold-out set is at its peak. This typically happens after a learning143

rate decay. We adopt this “early stopping” for all our experiments by following the methodology144

in [28] but utilize Auto Attack (AA) to evaluate robust accuracy. Throughout the course of the training,145

we evaluate AA on 10% of the validation data Dval after each learning rate decay and perform final146

evaluation with the model providing the highest robust accuracy. This final evaluation is performed147

on the remaining 90% of validation data. This AA split is fixed throughout experiments to provide148

consistency. If not specified otherwise, we generate adversarial examples during training with PGD-7149

within an L2 epsilon ball of ϵ = 0.5 (all CIFAR variants) or ϵ = 3.0 (all ImageNet variants) – typical150

configurations found in related work. We train all models from scratch and use ResNet-18 [29] for all151

CIFAR-10 and CIFAR-100 [30] experiments and ResNet-50 for all ImageNet-200 experiments. Here,152

ImageNet-200 corresponds to the ImageNet-A subset [31] to render random baseline experiments153

tractable (to reduce training time). This ImageNet-200 dataset, contains 200 classes that retain the154

class variety and breadth of regular ImageNet, but remove classes that are similar to each other155

(e.g. fine-grained dog types). We use all training and validation examples from ImageNet [32] that156

correspond to this subset classes. All training details can be found in the supplement, section A.1.157

4.1 Class subset splits158

We start by investigating the interactions between individual classes in A using CSAT on CIFAR-10,159

followed by an investigation on increasing the number of classes. Single-class subsets (CSAT). We160

train all possible, single class CSAT runs (10) and evaluate robust accuracies on the adv. trained161

class (A) and the non-adv. trained classes (B). The results are shown in figure 2, left. Each rows162
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Figure 2: CSAT on a single CIFAR-10 class A (blue), we observe non-trivial transfer to the non-adv.
trained classes B (green). Classes considered hard in CIFAR-10 (cat) offer best generalization
(+37.8% gain on non-adv. trained), while easy classes offer the worst (car, +17.1% gained). Note
that without AT, robust accuracy is close to 0% for all classes (orange). Right: same as left, but robust
accuracy is evaluated per class (along columns). Here, we observe an unexpected transfer property:
hard classes provide better transfer to seemingly unrelated classes (cat → truck: 53%) than related
classes (car → truck: 35%).

represents a different training run. Note that the baseline robust accuracy, trained without AT achieves163

practically 0% (indicated by red line). Most importantly, we observe non-trivial robustness gains for164

all classes that have never been attack during training (B-sets). That is, irrespective of the chosen165

class, we gain at least 17.1% robust accuracy (A=car) on the remaining classes and can gain up to166

37.8% robust accuracy when A=cat. These robustness gains are unexpectedly good, given many167

features of the non-adv. trained classes can be assumed to not be trained robustly.168
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Figure 3: The hardest
classes (blue) have the high-
est entropy (green).

To investigate this phenomenon further, we analyze robust gains for169

each individual class and present robust accuracies in the matrix in170

figure 2, right, where training runs are listed in rows and robust accura-171

cies per class are listed in columns. Blue cells denote the adv. trained172

class and green cells denote non-adv. trained classes. While we see173

some expected transfer properties, e.g. CSAT on car provides greater174

robust accuracy on the related class truck (46%) than unrelated animal175

classes bird, cat, deer, dog (between 5% and 16%), the reverse is not176

straight-forward. CSAT on bird provides 56% robust accuracy on the177

seemingly unrelated class truck, 10%-points more than CSAT on car.178

More generally, animal classes provide stronger robustness throughout179

all classes than inanimate classes. We observe, that these classes are180

also harder to classify and have a higher entropy HC as shown in figure 3.181

Many-class subsets (CSAT). To increase the number of classes in A while maintaining a minimal182

computational complexity, we utilize the average class entropy HC proposed in equation 3 to inform183

us which ranking to select from. To improve clarity, we begin with a reduced set of experiments184

on CIFAR-10 before transitioning to larger datasets. We utilize the observed correlation between185

class difficulty, average class entropy and robustness transfer HC to rank classes and construct 4186

adv. trained subsets. Ranked by class entropy HC , we select 4 subsets showing in figure 4, left. As187

observed before, cat and dog are hardest and thus first chosen to be in subset A. Truck and car on188

the other hand are easiest and thus last. To gauge the utility of this ranking, we provide a robust and189

clean accuracy comparison with a random baseline in figure 4, center and right. I.e., for each subset190

A we select 10 random subsets and report mean and std. deviation (red line and shaded area). Similar191

to the single-class setup, we observe subsets of the hardest classes to consistently outperform the192

random baseline (upper middle plot), up until a subset size of |A| = 8, when it draws even. Also193

note that the robust accuracy on Bval is improved across all splits, thus providing support that harder194

classes – as initially observed on animate vs inanimate classes – offer greater robustness transfer.195
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Figure 4: Ranking CIFAR10 classes by difficulty (using entropy as proxy), we perform CSAT with an
increasing size of adv. trained classes in A. Class splits used for training (A and B) are stated on the
left. The resulting robust and clean accuracies on the validation set is shown on the right, separated
into performance on Bval and all. Compared with a random baseline of random class ranking (red),
we find the ranking by difficulty to have consistently better transfer to non-adv. trained classes (B).
Overall, this results in an improved robust accuracy on average over all classes.

For our experiments on larger datasets like CIFAR-100 and ImageNet-200, we additionally evaluate196

a third ranking strategy. Beside selecting at random and selecting the hardest first, we additionally197

compare with selecting the easiest (inverting the entropy ranking). We construct 9 subsets per type of198

ranking (instead of 4) and report robust accuracies for selecting the easiest classes as well. Results are199

presented in three columns in figure 5; one dataset per column. As before, we show robust accuracies200

on the tested dataset (upper row) and robust accuracies on Bval (lower row). For CIFAR-10, we201

calculate mean and std. dev. over 10 runs, for CIFAR-100 over 5 runs and for ImageNet-200 over202

3 runs. Selecting hardest first (highest entropy) is marked as a solid line and easiest first (lowest203

entropy) as a dashed line. First and foremost, we observe that irrespective of the dataset and the204

size of A, we see robustness transfer to Bval. This transfer remains greatest with classes we consider205

hard, while easy classes provide the least. Nonetheless, we see diminishing returns of such an206

informed ranking when dataset complexity is increased. E.g. the gap between dashed and solid line207

on ImageNet-200 is small and random class selection is on-par with the best. The results are similar208

on CIFAR-100, as shown in figure 5, middle). Based on these results, entropy ranking and selecting209

classes provides only slight improvements in general. Importantly though, we continue to see the210

tendency of increased robustness transfer to Bval, which we will come back to in section 4.3.211

O
n
B

va
l

O
n

w
ho

le
da

ta
se

t

CIFAR-10

40

60

R
ob

.
ac

cu
ra

cy

1 2 3 4 5 6 7 8 9 10

Number of adv. trained classes (|A|)

0

25

50

75

R
ob

.
ac

cu
ra

cy

CSAT-hardest first

CSAT-easiest first

CSAT-random

one std. dev.

full AT

no AT

CIFAR-100

20

30

40

R
ob

.
ac

cu
ra

cy

10 20 30 40 50 60 70 80 90 100

Number of adv. trained classes (|A|)

0

20

40

60

R
ob

.
ac

cu
ra

cy

CSAT-hardest first

CSAT-easiest first

CSAT-random

one std. dev.

full AT

no AT

ImageNet-200

20

40

R
ob

.
ac

cu
ra

cy

20 40 60 80 100 120 140 160 180 200

Number of adv. trained classes (|A|)

0

20

40

60

R
ob

.
ac

cu
ra

cy

CSAT-hardest first

CSAT-easiest first

CSAT-random

one std. dev.

full AT

no AT

Figure 5: Class-subset Adversarial Training (CSAT) produces non-trivial robustness on classes that
have never been attacked during training (Bval). Along the x-axes we increase the class subset size of
A on which AEs are constructed and compare three different class-selection strategies: select hardest
first (solid lines), select easiest first (dashed line) and select at random (red). On average, random
selection performs as well as informed ranking (upper row), while the robustness transfer to Bval is
best for the hardest classes (lower row). AT on a single class provides already much greater robust
accuracies than without AT (orange).
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4.2 Example subset splits (ESAT)212

Considering that splits along classes are inefficient in terms of reaching the full potential of adversarial213

robustness, we investigate ranking examples across the whole dataset (ESAT). We follow with the214

same setup as before but rank examples – and not classes – by entropy H. Since it is not feasible to215

construct corresponding rankings on the validation set, we cannot gauge robustness transfer to Bval.216

Instead, we will test transfer performance to downstream tasks in section 4.3. We consequently report217

robust accuracy and clean accuracy on the whole validation set in figure 6.218

Firstly, note that the increase in robust accuracy is more rapid than with CSAT w.r.t. the size of219

A. AT only on 50% of training data (25k examples on CIFAR and 112k on ImageNet-200) and the220

resulting average robust accuracy is very close to the baseline AT performance (gray line). Secondly,221

note that gap between hard (solid line) and easy example selection (dashed line) has substantially222

widened. In practice, it is therefore possible to accidentally select poor performing subsets, although223

the chance appears to be low given the narrow variance of random rankings (red). To some extent,224

this observation supports the hypothesis that examples far from the decision border (the easiest to225

classify) provide the least contribution to robustness gains. This is also supported by the reverse226

gap in clean accuracy (bottom row in figure 6). That is, easiest-first-selection results in higher clean227

accuracies than hardest-first, while robust accuracies are much lower. In contrast however, we observe228

random rankings (red) to achieve similar performances to hard rankings (solid lines) on all datasets229

and subset sizes. This is somewhat unexpected, especially on small sizes of A (e.g. 5k). Given230

the results, we conjecture that the proximity to the decision boundary plays a subordinate role to231

increasing robustness. Instead, it is plausible to assume that diversity in the training data has a large232

impact on learning robust features, also indicated by [33].233
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Figure 6: Example-subset Adversarial Training (ESAT) on CIFAR datasets and ImageNet-200,
provide quick convergence to a full AT baseline (gray line and dot) with increasing size of A. We
report robust accuracy (upper row) and clean accuracy (lower row) and observe similar characteristics
as with CSAT (figure 5). I.e., selecting the hardest examples first (solid line) provide higher rob.
accuracy than easy ones (dashed line), although the gap substantially widens. Random example
selection (red) provides competitive performance on average. Across all datasets, we see the common
clean accuracy decrease while robust accuracy increases [34].

4.3 Transfer to downstream tasks234

Previous experiments on ESAT could not provide explicit robust accuracies on the non-adv. trained235

subset Bval since training and testing splits do not align naturally – recall the evaluation recipe outlined236

in section 3.3. In order to test transfer performance regardless, we make use of the fixed-feature237

task transfer setting proposed in [7]. The recipe just slightly changes: split the data into A and B as238

usual and perform SAT. Fix all features, replace the last classification layer with a 1-hidden layered239

classifier and finetune only the new classifier on the target task. Importantly, neither training nor240

validation set for the target task are split. We consider CIFAR-100 and ImageNet-200 and transfer241

to CIFAR-10, SVHN, Caltech-256 [35] and Flowers102 [36]. We call SAT trained for transfer242

Source-task Subset Adversarial Training (S-SAT), to emphasize that the subset training is performed243

on the source-task dataset.244

In this section, we consider models that have “seen” only a fraction of AEs on the source task and245

investigate the robustness transfer capabilities to tasks on which they have not explicitly adversarially246
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Figure 7: Impact of cross-entropy weighting on robustness transfer. For subset AT, we test different
weighting strategies for sets A and B given they are of unequal size. We observe that vanilla cross-
entropy (circle) offers the worst robustness transfer to CIFAR-10 (right). The best transfer (plus)
is provided when loss weights are chosen such that training is overemphasized on A, indicated by
dropping robust accuracies on B (compare left and center).

trained on. We find unexpectedly strong transfer performances for models that have both low clean247

and robust accuracy, only by putting more weight on the AEs.248

Loss balancing improves robustness transfer. In contrast to the previously explored setting, we249

observe the transfer setting to benefit from loss balancing. Recall equation 2 in section 3.2 in which250

wA and wB can be assigned different values to balance the loss when |A| ≠ |B|. We show that the251

vanilla configuration wA = wB = 1 transfers robustness to downstream tasks poorly, that balancing252

the loss with wB = 1, wA = |B|/|A| lacks transfer performance for small |B| and that weighting253

examples from A higher results in improved robustness transfer. We present results for all three254

weightings in figure 7. The figure is organized in three columns, all reporting robust accuracy. The255

first column reports the robust accuracy on subset Aval, the second on subset Bval and the third reports256

the robust accuracy on the downstream task. Here, we train on CIFAR-100 and transfer to CIFAR-10.257

The vanilla loss is indicated by circles and a solid line, the balanced loss wA = |B|/|A| by squares258

and a dotted line and the loss overemphasizing A by a plus and a dashed line.259

First and foremost, note that the robustness transfer for the vanilla configuration is substantially worse260

than both alternatives (robust accuracy in top right). Transfer improves with use of loss balancing, e.g.261

for |A| = 10, robust accuracy improves from 8% to 30%, but does not converge to the baseline AT262

performance (gray line). This is an unwanted side effect of equalizing the weight between A and B.263

When A is much smaller than B, less weight is assigned to the AEs constructed for A and robustness264

reduces. Note, this effect can also be seen on Aval (top left in figure). Instead, we find it beneficial265

to overemphasize on the AEs (plus with dashed line). This configuration assigns wA = 2|B|/|A| for266

|A| = 10 and increases the weight to wA = 10|B|/|A| for |A| = 90. This results in improved robust267

accuray on Aval, but low robust and clean accuracy on Bval. Interestingly, while the generalization to268

Bval is low, robustness transfer to CIFAR-10 is very high. We use this loss weighting for all following269

task transfer experiments.270

Robustness transfer from example subsets. Using the weighted loss, we focus in the following on271

S-ESAT on two source tasks: CIFAR-100 and ImageNet-200, and train on three downstream tasks.272

Similar results for S-CSAT and SVHN as additional downstream task can be found in the supplement,273

sections A.3 and A.4. Figure 8 presents results for three settings: CIFAR-100 → CIFAR-10 and274

ImageNet-200 → Caltech-256,Oxford-Flowers-102. The first and second row show robust and clean275

accuracy on the downstream task respectively. As before, we compare with a random (red) and a full276

AT baseline (gray line). Selecting A to contain the hardest examples first (highest entropy) is marked277

by a solid line; selecting easiest is marked by a dashed line.278

In line with the improvements seen using the appropriate loss weighting, we see similarly fast279

recovery of baseline AT performance across all dataset. In fact, |A| containing only 30% of training280

data (15k and 70k) is sufficient to reach near baseline performance. On CIFAR-100 → CIFAR-10281

and ImageNet-200 → Flowers-102 even slightly outperforming the same with a further increase282

in size. Similar to the non-transfer settings tested before, we also see similar interactions between283
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Figure 8: Transfer from S-ESAT to three different downstream tasks. S-ESAT is trained on source
dataset CIFAR-100 (left) and ImageNet-200 (middle and right). We report robust (top row) and clean
(bottom) accuracies for increasing size of A. Similar to our investigation on transfer from A to B, we
find that hard examples provide better robustness transfer than easy ones, but random selections (red)
achieve competitive performances. Most importantly, “seeing” only few AEs (here 30% of source
data) recovers baseline AT performance (gray line).

subset selection strategies. I.e. hardest examples (solid line) provide greater robustness transfer284

than easiest (dashed line) while a random baseline (red) achieves competitive performances. The285

latter consistently outperforming entropy selection on ImageNet-200 → Flowers-102, supporting our286

observation in section 4.2: with increasing dataset complexity, informed subset selection provides287

diminishing returns. Note that all robust accuracy increases proportionally correlate to an increase in288

clean accuracy as well. This is in stark contrast to the inverse relationship in previous settings. C.f.289

figure 5 and 6, for which clean accuracy decreases. This interaction during transfer is similar to what290

is reported in [8]: increased robustness of the source model results in increased clean accuracy on the291

target task (over a non-robust model). Intriguingly though, with appropriate weighting, the biggest292

robustness gains on the downstream task happen under fairly small A. This is a promising outlook293

for introducing robustness in the foundational setting [37], where models are generally trained on294

very large datasets, for which AT is multiple factors more expensive to train. Note that our results295

generalize to single-step attacks like fast gradient sign method (FGSM) [18, 38] as well. We provide296

evaluations in the supplement, section A.5. While we consider the fixed-feature transfer only, recent297

work has shown this to be a reliable indicator for utility on full-network transfer [8, 39].298

5 Conclusion299

In this paper, we presented an analysis of how adversarial robustness transfers between classes,300

examples and tasks. To this end, we proposed the use of Subset Adversarial Training (SAT), which301

splits the training data into A and B and constructs AEs on A only. Trained on CIFAR-10, CIFAR-302

100 and ImageNet-200, SAT revealed a surprising generalizability of robustness between subsets,303

which we found to be based on the following observations: (i) adv. robustness transfers among304

classes even if some or most classes have never been attacked during training and (ii) hard classes305

and examples provide better robustness transfer than easy ones. These observations remained largely306

valid in the transfer to downstream tasks like Flowers-102 and Caltech-256 for which we found that307

overemphasizing loss minimization of AEs in A provided fast convergence to baseline AT robust308

accuracies, even though transfer to B was severely reduced. Specifically, it appears that only few AEs309

(A containing 30% of the training set) learn all of the robust features which generalize to downstream310

tasks. This finding could be particularly interesting for AT in the foundational setting, in which very311

large datasets render training computationally demanding.312

More broadly, improving adversarial robustness remains one of the most important problems to313

solve in deep learning, especially in high-stake decision making like autonomous driving or medical314

diagnostics. Our findings shed new light onto the properties of adversarial training and may lead to315

more efficient robustness transfer approaches which would allow easier deployment of robust models.316

We provided an account on a broad variety of datasets and used models commonly evaluated in317

related work. It needs to be seen whether our findings generalize to other threat models [40] as well.318
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Dataset Classes Size (Train/Test)
CIFAR-10 [30] 10 50 000 / 10 000
CIFAR-100 [30] 100 50 000 / 10 000
ImageNet-200 [32, 31] 200 259 906 / 10 000
Caltech-256 [35] 257 24 485 / 6122
Flowers-102 [36] 102 1020 / 1020
SVHN [42] 10 73 257 / 26 032

Table 1: Number of training and validation examples per dataset used. ImageNet-200 uses examples
from [32] only for classes defined in [31]

Conventional setting
Dataset Architecture Epochs Batchsize lr lr-decays L2 decay
CIFAR-10 PreActResNet-18 200 128 0.1 100, 150 5 · 10−4

CIFAR-100 PreActResNet-18 200 128 0.1 100, 150 5 · 10−4

ImageNet-200 ResNet-50 150 256 0.1 50, 100 1 · 10−4

Transfer setting
Dataset Architecture Epochs Batchsize lr lr-decays L2 decay
CIFAR-10 PreActResNet-18 + [512,10] 40 128 0.1 20, 30 5 · 10−4

SVHN PreActResNet-18 + [512,10] 40 128 0.1 20, 30 5 · 10−4

Caltech-256 ResNet-50 + [2048,257] 100 128 0.1 50, 75 1 · 10−4

Flowers-102 ResNet-50 + [2048,102] 100 102 0.1 50, 75 1 · 10−4

Table 2: Training settings for all used dataset for the conventional (upper rows) and the transfer
setting (lower rows). In the transfer setting, the last classifier layer is replaced with two linear layers
of size K ×K and K ×N , abbreviated as [K,N ]. K defines the number of feature channels and N
the number of classes.

A Appendix408

A.1 Full training details409

For all training setups listed in table 2, we train our models from scratch using SGD with a momentum410

of 0.9. Dataset sizes are listed in table 1. All are data augmented based on the definitions in [41].411

The sequence of transformations are listed in figure 9. Left, for CIFAR-10, CIFAR-100 and SVHN.412

Right, for ImageNet-200, Caltech-256 and Flowers-102.413

Adversarial training is performed with 7 steps of projected gradient descent (PGD-7) within an414

ϵ = 0.5 for CIFAR and SVHN and ϵ = 3.0 for ImageNet-200, Caltech-256 and Flowers-102. For415

each step, we use a step size of 0.1 and 0.5 respectively. For all experiments, we maximize the default416

cross-entropy loss.417

Class order. In the following, we list the order of classes ranked by entropy HC (equation 3).418

CIFAR-10 can be derived from figure 4 in the main paper. In figures 10 and 11, we provide the list419

for CIFAR-100 and ImageNet-200. On CIFAR-100, the first and thus hardest classes consist mostly420

of animate categories like otter, rabbit and crocodile. The easiest on the other hand are inanimate421

categories, specifically vehicle related classes, e.g. road, motorcycle or pickup-truck. Overall, the422

- pad 4 pixels
- random crop to 32x32
- random horizontal flip
- color jitter [0.25, 0.25, 0.25]
- random rotation within +/- 2 deg.

- random crop to 224x224
- random horizontal flip
- color jitter [0.1, 0.1, 0.1]
- random rotation within +/- 2 deg.

Figure 9: Input transformation for CIFAR and SVHN datasets (left) and ImageNet-200, Caltech-256
and Flowers-102 (right) during training. During testing, no transformations are applied to CIFAR and
SVHN. The remaining datasets are resized such that the shortest side equals 256, after which they are
center cropped to 224.
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otter, lizard, seal, rabbit, mouse, crocodile, lobster, shrew, shark,
woman, beaver, bowl, turtle, squirrel, possum, snail, girl, kangaroo,
ray, forest, caterpillar, man, baby, dinosaur, lamp, elephant, couch, boy,
porcupine, snake, butterfly, leopard, crab, table, mushroom, dolphin,
willow_tree, beetle, spider, clock, fox, sweet_pepper, bee, house,
raccoon, tulip, bridge, bus, rose, tank, whale, train, worm, lion, poppy,
trout, bed, plate, can, telephone, tiger, hamster, aquarium_fish,
maple_tree, orchid, pear, mountain, tractor, oak_tree, rocket, skunk,
cockroach, television, cup, sea, cloud, lawn_mower, castle, bottle,
palm_tree, keyboard, apple, plain, pickup_truck, bicycle, orange, chair,
wardrobe, motorcycle, road

Figure 10: CIFAR-100 classes ranked by decreasing entropy HC . Animal classes are hardest,
inanimate classes easiest.

spatula, shovel, syringe, drumstick, hand blower, lighter, nail, maraca,
barrow, umbrella, bow, quill, iron, stethoscope, soap dispenser, dumbbell,
mask, reel, toaster, ant, walking stick, envelope, candle, sleeping bag,
sandal, tricycle, cowboy boot, cradle, breastplate, bubble, banjo, chest,
cliff, wine bottle, fountain, crayfish, doormat, Chihuahua, chain, apron,
kimono, cockroach, accordion, sewing machine, ocarina, revolver, torch,
piggy bank, goblet, studio couch, wreck, hermit crab, grand piano, beaker,
snail, marimba, sundial, mantis, vulture, sea lion, flagpole, washer,
acoustic guitar, mongoose, grasshopper, Christmas stocking, bikini, corn,
balance beam, fox squirrel, American alligator, academic gown,
feather boa, suspension bridge, stingray, acorn, common iguana, forklift,
parachute, mushroom, hotdog, American black bear, beacon, garbage truck,
cello, pug, bee, banana, volcano, baboon, centipede, golfcart, marmot,
limousine, African chameleon, leafhopper, canoe, wood rabbit, agama,
starfish, lynx, German shepherd, capuchin, balloon, goose,
submarine, golden retriever, mitten, jeep, hummingbird, armadillo,
weevil, porcupine, puck, snowplow, barn, fly, tarantula, Rottweiler,
pool table, red fox, harvestman, pretzel, ballplayer, American egret,
puffer, ladybug, pelican, obelisk, bald eagle, go-kart, bell pepper,
castle, snowmobile, junco, lemon, spider web, lion, water tower,
basketball, guacamole, toucan, tank, jellyfish, viaduct,
robin, ambulance, broccoli, flatworm, pomegranate, bison, sea anemone,
jay, rugby ball, organ, drake, cheeseburger, mosque, koala, garter snake,
African elephant, lycaenid, oystercatcher, box turtle, cabbage butterfly,
steam locomotive, goldfinch, jack-o’-lantern, school bus, lorikeet,
manhole cover, rapeseed, flamingo, yellow lady’s slipper, monarch

Figure 11: ImageNet-200 classes ranked by decreasing entropy HC . In contrast to the order on
CIFAR-10 and CIFAR-100, animate classes are generally not the most frequent among the hardest.
Instead its mostly inanimate objects.

animate-inanimate order is similar to CIFAR-10. On ImageNet-200, we observe a very different423

order. Inanimate categories like spatula, drumstick or umbrella are among the hardest, while animate424

classes like monarch (butterfly), flamingo or lorikeet are among the easiest. Named hard classes may425

be difficult to distinguish due to a frequent presence of people in the images.426

A.2 Alternative rankings427

For simplicity, we focused our experiments on using entropy as a proxy to measure example and class428

difficulty (c.f. equation 3). Multiple such difficulty metrics have been proposed in literature [43, 16,429

26, 27], of which we select a few from recent literature to compare to: signed variance (SVar) [16] and430

variance of gradients (VoG) [27]. We want to highlight, that they perform very similar to our entropy431

metric when utilized in our SAT framework. Figure 12 compares these two metrics with our used432

entropy metric using ESAT on CIFAR-100. Overall, VoG has a slight edge over SVar and Entropy,433
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yet the differences remain small. On 5k attacked examples, Entropy (yellow line) achieves 21.0%,434

VoG (red line) 21.9% and SVar (purple line) 22.3% robust accuracy. On 25k attacked examples,435

Entropy achieves 38.0%, VoG 38.8% and SVar 38.1%. While some improvements over our simple436

Entropy metric are possible, no proposed metric has a clear edge over the other.437

A.3 Full results for CSAT438
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Figure 12: Various hardness met-
rics result in similar rob. accs. for
ESAT on CIFAR-100.

Results for CSAT can be plotted for three different validation439

subsets: Aval, Bval and on the whole dataset Dval. For clarity, we440

only showed robust accuracies on Dval and Bval in the main paper441

in figure 5. Here, we provide all results. That is, in figure 13, we442

show robust accuracies in the upper split and clean accuracies443

in the lower split for all 3 subsets.444
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Figure 13: Full robust (upper split) and clean accuracies (lower split) from CSAT experiments, plotted
for the whole dataset, Aval and Bval. Selecting the hardest classes first (solid lines), clean accuracies
and robust accuracies on Aval steadily increase, while selecting the easiest in contrast (dotted lines)
results in a steady decline. This provides additional support that entropy as metric provides a useful
account of difficulty, since easy classes can achieve higher accuracy. Furthermore, we note that clean
accuracy on the whole dataset is increasing or mostly stable, while on other datasets it is steadily
decreasing. This should be investigated further.
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Figure 15: Transfer from S-CSAT to the same downstream tasks as in figure 8. S-CSAT is trained on
source dataset CIFAR-100 (left) and ImageNet-200 (middle and right). We report robust (top row)
and clean (bottom) accuracies for increasing size of A. We observe similar properties to S-ESAT,
yet find convergence to the baseline AT performance to be substantially slower; in line with our
discussion on SAT in section 3.2.

A.4 Full results for transfer settings445

In the main paper, we omitted transfer results to SVHN as well446

as using S-CSAT. Firstly, we provide the transfer result from CIFAR-100 to SVHN in figure 14.447

Robust accuracies are plotted on the upper plot, clean accuracies below. Note that 5k examples448

in A are sufficient to reach baseline AT performance (gray line), while 15k provides a substantial449

improvement in robust accuracy ( 22% vs 20%). Secondly, transfer results on S-CSAT aligned with450

the experiments in section 4.3 are shown in figure 15. We observe similar characteristics to the CSAT451

results in section 3.2, i.e. selecting the hardest classes first (solid line) is only advantageous on small452

A, while generally it draws even with the random baseline (red). Overall, convergence to the full AT453

baseline is slower than with S-ESAT.454

A.5 Single-step AT455
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Figure 14: Robust-
ness transfer from
CIFAR-100 to SVHN
using S-ESAT

While our main experiments use AT with 7 PGD-steps, we here show that456

non-trivial robustness transfer can be achieved with single-step AT as well.457

We focus on transfer to downstream tasks and compare with the results shown458

in figure 8, section 4.3. I.e., we train one ESAT model on CIFAR-100 and459

ImageNet-200 respectively, and finetune an additional classifier on either460

CIFAR-10, Caltech256 or Flowers-102. We use FGSM-RS [38], with a step-461

size of 0.625 for ϵ = 0.5 and 3.75 for ϵ = 3.0. All other training settings are462

consistent with previous experiments (c.f. section A.1).463

Results are shown in figure 16, comparing PGD-7 training (circles on solid464

line) and single-step FGSM-RS (squares on dotted line). Generally, we465

observe very similar clean and robust accuracies (lower and upper row)466

across all architectures. Specifically, FGSM-RS achieves slightly higher467

clean accuracies and slightly lower robust accuracies – especially for small468

|A|. Nonetheless, single-step AT converges to the full AT baseline (gray line)469

in a similar fast rate, i.e. generating AEs for around 30% of the training set470

is sufficient.471
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Figure 16: Comparison between PGD-7 and single step S-ESAT on the transfer setting to three
different downstream tasks.
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