D-QURE: Dynamic Question based Code Refinement - A Prompt
Refinement Approach

Abstract

Large Language Models (LLMs) have revo-
lutionized various fields by significantly ad-
vancing tasks such as text generation, trans-
lation, and comprehension. Despite these suc-
cesses, their application in software devel-
opment tasks like debugging, code summari-
sation and code correction remains underex-
plored. While traditional approaches to code
debugging and refinement integrate unit tests
and program verifiers to iteratively improve
the generated programs, they often fall short
in handling complex logic flows and intricate
data operations. Moreover advance methods
often rely on static prompts or extensive model
fine-tuning, which are computationally inten-
sive and lack adaptability. In response to these
limitations, we introduce Dynamic QUestion-
based Code REfinement D-QURE, a novel
framework leveraging LLMs to iteratively re-
fine code through dynamic question genera-
tion. D-QURE stands out by continuously gen-
erating and refining prompts to guide the de-
bugging process, ensuring more accurate and
reliable code correction. Unlike existing meth-
ods, our framework addresses the limitations
of performance saturation and declining effec-
tiveness observed in iterative code refinement
and natural language feedback-based code re-
finement approaches. D-QURE improves ac-
curacy by 34.62% (HumanEval) and 12.98 %
(MBPP+) over the baseline.

1 Introduction

The advent of pre-trained large language models
has revolutionized the field of natural language
processing (NLP), leading to significant advance-
ments in tasks such as text generation, transla-
tion, and comprehension. Models such as GPT-4
(AL, March 14, 2024), Gemini (Google and Deep-
mind, May 14, 2024), and BERT (Jacob Devlin
and Toutanova, 2018) exhibit remarkable capabil-
ities in understanding and generating human-like
text. Traditional approaches have relied on exten-

Buggy Code

| i def circular_shift(x, shift):

I digits = str(x)
if shift >= len(digits):
return digits[::-1] # return digits reversed
else:
return digits[-shift:] + digits[:-shift]

Questions

1. Is the logic for Reversing the digits when shift is greater than
or equal to the number of digits correct?
| 2. What happens when the shift value is equal to the humber I
I of digits?

3. Are there the edge cases such as negative shift values or I
I zero shift considered in the logic of the function?

Figure 1: Example of Buggy Code and Corresponding
Questions Generated by D-QURE. The generated ques-
tions pinpoint to the bug in handling shift values greater
than or equal to the number of digits.

sive model fine-tuning, which involves adjusting
the model parameters for each individual task, de-
manding significant computational resources and
storage. More recently, Brown et al. (Tianyu Gao
and Chen, 2021) showed that prompt design is ef-
fective at modulating a frozen GPT-3 model’s be-
havior through text prompts. While extensive re-
search has been conducted on using LLMs for
various NLP tasks, their application in software
development tasks such as debugging, code cor-
rection, and code summarization has not received
equivalent attention. This disparity is noteworthy
given the complexity of modern software systems
and the crucial role of efficient debugging in the
software development lifecycle.

Fine-tuning (Zhang et al., 2024) large language
models (LLMs) for specific tasks in software de-
velopment presents several challenges like compu-
tational overhead. This approach limits scalability,
making it impractical for managing diverse and
dynamic codebases. Furthermore, fine-tuned mod-
els are often tailored to specific programming lan-
guages, which reduces their versatility across dif-
ferent coding environments. Additionally, in real-



world applications, the scarcity of labeled datasets
for fine-tuning poses a significant obstacle. There
are few datasets with correctly annotated code
snippets available for training, making it difficult
to achieve robust fine-tuning. In contrast, Prompt
(Tianyu Gao and Chen, 2021) based methods can
be adapted to a variety of tasks by simply altering
the input prompts, eliminating the need for multi-
ple fine-tuned models. Prompts can be crafted to
work with different programming languages, en-
hancing the model’s versatility. This adaptability
makes prompt-based methods particularly suited
to the diverse and evolving needs of modern soft-
ware development.

In  software  development, Debugging
(Cheryl Lee and Lyu, 2024), Code Correc-
tion and Code Summarisation (Weisong Sun
and Chen, 2024) are critical yet challenging
tasks. Traditional methods for debugging often
rely heavily on the developer’s intuition and
experience, which can lead to inconsistent and
time-consuming outcomes. Automated debugging
tools have made strides in improving efficiency,
but they still fall short in handling the complex-
ities and nuances of modern software systems.
This is where leveraging the questioning approach
can bring significant improvements.

Questions play a crucial role in human problem-
solving, helping to clarify, focus, and direct atten-
tion to specific aspects of a problem. In the con-
text of debugging, questions can help identify the
root cause of an issue by systematically explor-
ing various dimensions of the code. This system-
atic probing is akin to the way expert develop-
ers debug code by forming hypotheses and test-
ing them through targeted inquiries. Unlike tradi-
tional automated tools, LLMs can generate con-
textually relevant and diverse questions that cover
multiple aspects of the code, leading to a more
thorough and accurate debugging process. On the
other hand, relying on bug summaries or test case
feedback can be less effective. Bug summaries are
often verbose, can provide incorrect information,
fail to highlight all mistakes, and may even hal-
lucinate issues that do not exist. Test cases, while
useful, are hard to synthesize and the use of incor-
rect test cases can lead to more errors at a faster
pace during code refinement process. In contrast,
a question-driven approach leverages the probing
nature of questions to uncover deeper insights and
more precise code corrections.

1.1 Dynamic Questions based Code
Refinement

We introduce a novel, structured, Question-driven
approach to code analysis and bug refinement,
utilizing the capabilities of LLMs. D-QURE in-
volves generating questions about a given piece of
code, evaluating the relevance of these questions,
and using the relevant ones to guide the debugging
process.
Our contributions are as follows:

1. We propose a multi-agent, Question-driven
debugging framework that utilizes LLMs to
generate, evaluate, and filter relevant ques-
tions for code rectification.

2. We demonstrate that our approach outper-
forms traditional LLLM-based code correction
methods, yielding more accurate and reliable
results.

3. We validate our methodology using estab-
lished benchmarks and datasets, ensuring its
robustness and practical applicability.

Through comprehensive experiments, we show
that D-QURE not only enhances debugging accu-
racy by 34.62% for Human Eval and 12.98% for
MBPP+ but also offers valuable insights into the
debugging capabilities of LLMs. This work paves
the way for more efficient and reliable code cor-
rection techniques, harnessing the full potential of
LLMs in the field of software development and
maintenance. By addressing the current research
gap, we aim to foster further innovation and ex-
ploration in applying LLMs to code-related tasks.

2 Related Work

In recent years, several advancements have
been made in enhancing the capabilities of
LLMs through iterative refinement processes and
prompt evolution mechanisms. The iterative re-
finement approach, as exemplified by Self Re-
fine(Aman Madaan and Clark, 2023), focuses on
improving initial outputs from LLMs through it-
erative feedback and refinement. (Claire Cardie
and Du, 2017) introduces a data-driven approach
to automatic question generation for reading com-
prehension using attention-based neural networks.
Unlike rule-based systems, their model learns end-
to-end to generate natural and challenging ques-
tions directly from text passages. The system
achieves state-of-the-art performance in automatic
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Figure 2: This figure illustrates the D-QURE Framework. The process begins with the Question Generation LLM
, which generates questions based on the task description and buggy code. The Relevant Question Extractor filters
these questions to identify the most relevant ones. The Rectified Code Generator then uses these relevant questions
to refine the code. The Evaluator runs the refined code against the test cases to evaluate its correctness. Finally,
the Prompt Refiner iterates on the process by adjusting the prompts based on the results, aiming to improve the

debugging performance in subsequent cycles.

evaluations and human assessments, underscoring
the importance of generating contextually relevant
questions to enhance comprehension tasks.

Prompt Breeder (Fernando et al., 2023) intro-
duces a novel self-improvement mechanism for
LLMs through prompt evolution. This method
iteratively evolves task-prompts and mutation-
prompts using an evolutionary algorithm guided
by the LLM itself. By continuously mutating and
evaluating prompts, PromptBreeder surpasses tra-
ditional prompt strategies in various domains, in-
cluding arithmetic and commonsense reasoning
tasks. This approach highlights the efficacy of
self-referential systems in adapting prompts for
specific tasks without human intervention. We
draw inspiration from these works to develop a
novel approach for debugging code framework.
Our focus lies in refining prompts iteratively to
guide LLMs effectively in generating questions
and modifying code. Unlike existing methods,
which often rely on static prompts or manual or
no feedback, our approach adapts prompts dynam-
ically based on performance metrics and iterative
feedback. By integrating these insights, we aim to

fill the gap in automated debugging systems by en-
hancing the precision and efficiency of code cor-
rection processes through adaptive prompt refine-
ment.

3 Methodology

3.1 Problem Formulation

In the context of code debugging, our goal is to
transform a buggy code snippet C' into a corrected
version that meets the requirements outlined in the
task description 7.

Formally, we can describe this process as Algo-

Algorithm 1: D-QURE Code Refinement Process
Input: Task description 7', Buggy code C;
Output: Corrected code C*

1: Generate Questions: (), = QG(T',C)

2: Filter Relevant Questions: R =
S(anTv C)
3: Correct Code: Q) = {q¢ € Qg |

R(¢,T,C) = 1} C* = CR(Q’, C,T)

rithm 1.
where (), is the set of generated questions, R is



the relevance score, () is the subset of questions
with relevance score = 1, and CR is the function
that refines C based on Q) to produce C*.

The objective is to enhance the efficiency of code
debugging, validated against test cases 7}, for ro-
bustness.

3.2 Overview

Our debugging workflow 2 begins with identifying
the task description and buggy code. A Question-
Generator LLM creates code-specific questions,
which are filtered by a Relevancy Checker to retain
only the most useful ones. These guide the Code
Refinement Agent in generating a corrected ver-
sion of the code. The modified code is then tested
against predefined test cases. If it fails, the process
is iteratively refined until the code passes or a set
iteration limit is reached.

The following sections detail each component
of this workflow:

3.2.1 Dynamic Question Generator

The Question Generation block is integral to our
debugging framework. The process begins with
the identification of a Task description and the as-
sociated Buggy Code. This information is formu-
lated into a Prompt [??], which is used to gener-
ate detailed and relevant questions about the code.
Given the task description 7' and the correspond-
ing buggy code C, our framework uses the pre-
trained Language Learning Model (LLM) to gen-
erate a set of questions. The goal of these ques-
tions is to uncover potential logical errors, incor-
rect implementations, or edge cases that the code
may not handle properly.

Mathematically, this process can be represented
as follows:

QG(Cv T) - {le Q27 ce Qn}

where QG is the Dynamic Question Genera-
tor and {Q1,Q2,...,Q,} is the set of generated
questions. Each Q); is crafted to probe specific as-
pects of the code’s functionality and logic.

For instance, if the task is to check whether a
number is a Woodall number, the generated ques-
tions are:

1. Is the function correctly checking if the given
number is a Woodall number, i.e., of the form
n-2" —17

2. Does the function handle the case when the
input number n is 0 or 1, which are not
Woodall numbers?

3. Is the variable ¢ correctly initialized, and is it
being incremented correctly within the while
loop?

These questions aim to dissect the code logic,
identify potential edge cases, and ensure that all
variables and control structures are correctly im-
plemented. By generating a diverse set of ques-
tions, the framework can effectively pinpoint areas
where the code may be failing or where improve-
ments can be made.

In essence, the Question Generation block
leverages the capabilities of LLMs to provide a
structured and systematic way of interrogating
the code, laying the groundwork for subsequent
stages.

3.2.2 Question Relevance Evaluation

The Relevant Question Evaluation is critical for
ensuring the efficiency and effectiveness of the de-
bugging process. Not all questions generated by
the Question-Generator are equally useful. Filter-
ing out irrelevant questions is essential because in-
cluding unnecessary questions can clutter the con-
text, making it harder for the subsequent stages to
rectify the bugs. This filtering helps maintain the
clarity and relevance of the information provided
to the Code Refinement block.

Mathematically, the process of evaluating and se-
lecting relevant questions can be represented as
follows:

{QlaQQa"'in} — {QllaQ/Q’vQ:n}

where {Q1,Q2, ..., Qy} is the initial set of ques-
tions, and {Q}, @5, ..., Q.,} is the filtered set of
relevant questions, with m < n.

Each question is analysed based on its context,
specificity, and relevance to the task description
and the buggy code. The goal is to select questions
that are most likely to lead to insights about the un-
derlying issues in the code, thereby streamlining
the debugging process and avoiding unnecessary
computational overhead.

3.2.3 Code Refinement

The Code Refinement C R stage uses the relevant
questions, the buggy code, and the task descrip-
tion to generate a modified version of the code.
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Figure 3: Comparison of Pass Rates Across Iterations
for NL Code Feedback, Iterative Refinement, and D-
QURE. This bar plot illustrates the number of test cases
passed by each model at different iterations, highlight-
ing the effectiveness of D-QURE in improving code
correctness over multiple iterations.

The main idea is to leverage the additional con-
text provided by the questions to guide the LLM
in understanding where modifications are needed
and how to apply them effectively.
Mathematically, the process can be represented as
follows:

C* = CR(C, T,{Q},Q%,...,QL.})

where:

- C'is the buggy code and 7T’ is the task description.
-{Q),Q5, ..., Q. } are the relevant questions af-
ter Relevance Evaluation.

- C* is the modified code output by the LLM.

3.2.4 Evaluator

The evaluation stage is crucial for validating the
effectiveness of the code refinement process. This
stage assesses whether the modifications intro-
duced during refinement have successfully ad-
dressed the bugs or shortcomings in the origi-
nal code. We evaluate the refined code on two
key metrics for each pass, denoted as pass@k,
where k represents the k-th iteration of the refine-
ment process. For example, pass@1 accuracy and
pass@1 PI score are calculated for the first itera-
tion. Pass @k indicates the evaluation of the code’s
performance after the k-th iteration. We use these
metrics to assess the cumulative performance of
the refined code:

* Accuracy : This metric measures the binary
outcome of all the test cases cumulatively.

# Buggy code fixed

A p—
ceuracy Total T'asks count

* Partial Improvement (PI) Score: This metric
provides a more detailed assessment of the
refinement process beyond a simple pass/fail
outcome. It considers the severity or impor-
tance of each test case.

The scoring mechanism can be mathemati-
cally represented as follows:

# Test cases passed

PI Score =
Total test cases

We leverage the EvalPlus (Liu et al., 2023) frame-
work for comprehensive testing and scoring. This
framework provides a structured environment for
running the refined code against a suite of test
cases designed to assess its correctness and relia-
bility. By analyzing these metrics, we can identify
any residual issues remaining in the refined code.
This information can then be used to guide fur-
ther refinements and ultimately enhance the over-
all code quality.

3.2.5 Prompt Refinement

Prompt refinement aims to iteratively enhance the
prompts provided to the LLM for generating pre-
cise and contextually relevant questions and code.
The prompt refinement process consists of the fol-
lowing steps:

1. Initial Prompt Creation: We already begin
by generating k distinct prompt templates
based on the fask description and the identi-
fied buggy code. These templates serve as the
initial set of instructions for generating ques-
tions.

2. Scoring and Evaluation: Each of the k& prompt
templates is employed to generate questions,
which are subsequently used to guide the
code refinement process. The effectiveness of
each prompt template is quantified by the PI
score of the refined code across all the test
cases.

3. Identifying Prompts for Refinement: To de-
termine which prompt templates require re-
finement, we consider two criteria:
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Figure 4: Performance Comparison of Natural Language Code Feedback based Refinement, Iterative Code Refine-
ment, and D-QURE on MBPP+ and Human Eval datasets: (a) Scores plot highlighting the superior performance
of D-QURE in generating high-quality, accurate code solutions. (b) Accuracy Comparison demonstrating that D-
QURE consistently outperforms the other models in generating precise code corrections over multiple iterations.

(a) Minimum Edit Distance and Maxi-
mum Score Difference: We select a
pair of prompt templates based on the
minimum edit distance between them
and the maximum difference in their
scores. This approach identifies pairs of
prompts that are structurally similar but
exhibit significant performance differ-
ences.

(b) Max and Min Score Prompts: Select a
pair of prompts with the highest and
lowest scores. However, empirical evi-
dence indicates that the first approach
(minimum edit distance and maximum

score difference) yields better results.

4. Dynamic Question Generator Prompt Refine-
ment : Upon identifying the prompt pair, the
refinement process begins with the analysis
of the high-scoring prompt template to iden-
tify elements that contribute to its success.
These elements are considered beneficial and
are prioritized in the refined prompt and ex-
clusion of low-scoring elements that is ele-

ments from the low-scoring prompt template
identified as detrimental to performance are
excluded from the refined prompt.

Based on this analysis, a new set of refined
question generator prompts is generated. These
prompts incorporate the advantageous elements
from the high-scoring template while excluding
the detrimental elements from the low-scoring
template. The process of scoring, evaluation, and
refinement is repeated iteratively. Each iteration
aims to produce more precise and contextually
aware questions, leading to more effective correct
code generation. This iterative process continues
until one of the following conditions is met: A
cycle length of 5 iterations is achieved or all test
cases are passed by the refined code or there is no
increase in the score for that cycle.

4 Experiments and Results

4.1 Experiment Setup

In our experimental setup, we utilized the Human
Eval (Mark Chen and Bavari 2021) and MBPP+
(Jacob Austin and Le 2021) datasets to evaluate



Methods MBPP+(%)  Human Eval(%) Methods MBPP+(%) HumanEval(%)
First Pass Code Accuracy 78.10 63.41 First Pass Code Pl Score 80.85 78.26
Iterative Code Refinement 85.96 (10.06) 80.48 (126.92) Iterative Code Refinement 87.63(18.38) 90.48(115.61)
NL feedback based Code Refinement | 86.71(*11.02) 79.87(125.95) NL feedback based Code Refinement ~ 87.80 (18.59) 91.89(*17.41)
D-QURE(ours) 88.23(112.98) 85.36(134.62) D-QURE(ours) 89.72(t10.98) 93.81(t19.87)

Table 1: Comparison of code refinement accuracy (left) and Partial Improvement (PI) score (right) across different
methods on MBPP+ and HumanEval datasets. The table displays the initial accuracy of the seed code and the
improved accuracy for Iterative Code Refinement, NL Feedback Based Code Refinement, and D-QURE. The per-
centage increase in accuracy is shown in parentheses. D-QURE demonstrates the highest improvement in accuracy
on both datasets, with a significant increase of 12.98% on MBPP+ and 34.62% on HumanEval.

the effectiveness of our debugging framework. Af-
ter generating seed programs using Llama3 (Al
April 18, 2024). We proceeded with the follow-
ing dataset-specific evaluations: the HumanEval
dataset consists of 164 Python instances (104
correct), while the MBPP+ dataset includes 399
instances (312 correct). Detailed initial prompts
for seed program generation are provided in Ap-
pendix. To balance computational feasibility and
the potential for meaningful improvements, we set
the maximum number of debugging iterations to
five. The refined prompts, which are also detailed
in the Appendix, were generated based on an iter-
ative refinement process designed to enhance the
debugging framework. Additional implementation
details, including exact prompts, generation pa-
rameters, and iterative refinement processes, are
provided in the Appendix.

4.1.1 Performance Metrics

In this study, we employ several key metrics to
evaluate the effectiveness of our models. The pri-
mary metrics includes the accuracy for each pass,
the score for each pass, and the count of task
IDs that pass after each iteration. Partial Improve-
ment(PI) Score is calculated as the ratio of cor-
rectly passed test cases to the total number of test
cases.

4.2 Methods
4.2.1 D-QURE: Dynamic Question-Based
Buggy Code Refinement

D-QURE initiates with five different prompt tem-
plates. For each pass, the process involves gener-
ating questions, evaluating their relevance, and re-
fining the buggy code using the relevant questions
and rask description. The scores for each template
are calculated, and the best-performing template’s
accuracy and score are recorded as the pass@1 re-
sults. The Prompt Refiner refines the question gen-
erator prompt to create five new templates for the

next pass.

4.2.2 Natural Language Bug Feedback Based
Code Refinement

This approach involves consist of two phases. Ini-
tially, a natural language bug summary of the code
is generated. This summary is then provided to the
next stage, where the buggy code is rectified based
on the identified bug summary. The performance
is evaluated after each iteration, and the accuracy
for each iteration is reported.

4.2.3 Iterative Code Refinement

In the iterative code refinement approach, each
task is paired with its corresponding buggy code,
which is then passed to the LLM to generate cor-
rected code. If the model fails to produce a cor-
rect solution in the first pass, the buggy code along
with the task is sent to the next pass for further
refinement. This process continues iteratively un-
til the code passes the test or all passes are com-
pleted. After each pass, the performance is evalu-
ated, and the accuracy for that pass is reported.

4.3 Results

We compare D-QURE with two baseline models:
Natural Language Bug Feedback Based Code Re-
finement and Iterative Code Refinement, evalu-
ating their performance on the MBPP+ and Hu-
manEval datasets. D-QURE consistently outper-
forms both models.

In terms of accuracy (Table 1), D-QURE main-
tains higher pass rates across all passes, achiev-
ing pass@5 accuracy of 88.23% for MBPP+ and
pass @4 accuracy of 85.36 % for HumanEval. This
demonstrates a significant improvement over the
other two methods. Figure 4 illustrating the PI
score plot reveals that D-QURE achieves superior
scores in each iteration, reflecting its robust code
refinement capabilities. As shown in Figure 3, the
pass rates for each iteration further underscore D-
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Figure 5: Distribution of questions labeled as ’Rele-
vant’ (approved by the relevancy checker LLM for code
refinement) versus 'Non-Relevant’ (filtered out as irrel-
evant).

QURE’s efficacy, as it achieves consistently higher
pass counts compared to the baseline models. A
detailed examination shows that D-QURE main-
tains high accuracy and score levels throughout
the iterations. In contrast, the Iterative Code Re-
finement model, while initially showing improve-
ment, reaches a saturation point where further it-
erations fail to yield significant gains. The Natu-
ral Language Bug Feedback Based Code Refine-
ment model also shows a similar trend, with initial
improvements followed by a plateau and eventual
decline in scores. This highlights the limitation of
these methods in sustaining long-term improve-
ments. D-QURE, however, demonstrates a contin-
uous upward trajectory, indicating its robustness
and effectiveness in iterative bug fixing and code
refinement. D-QURE achieves an increase in ac-
curacy by 34.62% on HumanEval and 12.98%
on MBPP+ compared to the first pass seed code
generation accuracy, reflecting a 1.35x improve-
ment on HumanEval and a 1.13x improvement on
MBPP+. These results validate the effectiveness of
D-QURE in refining buggy code and highlight its
potential as a superior tool for automated code re-
finement and bug fixing. It states that our approach
is more effective than conventional methods, as
evidenced by the consistently higher performance
metrics across both datasets.

5 Conclusion and Future Work

5.1 Conclusion

In this work, we introduced Dynamic Question-
based Code Refinement (D-QURE), a novel
framework designed to enhance the debugging ca-
pabilities of Large Language Models (LLMs). It
systematically generates and evaluates contextu-
ally relevant questions to guide the code refine-

ment process, addressing the limitations of tradi-
tional debugging methods that often rely on static
prompts or extensive model fine-tuning.

Our experiments on the MBPP+ and Human Eval
dataset revealed several key findings:

1. D-QURE consistently outperforms baseline
models in terms of accuracy, performance
improvement score, and pass rates across
multiple iterations.

2. While traditional methods tend to plateau or
degrade in performance over time, D-QURE
maintains its effectiveness, demonstrating ro-
bust iterative improvement.

3. The question-driven approach enables a more
nuanced and targeted debugging process, par-
ticularly effective in handling complex logic
flows and intricate data operations.

These results underscore the potential of D-QURE
to revolutionize automated code correction, set-
ting a new benchmark for efficiency and adaptabil-
ity in software development practices. Hopefully
these findings will contribute to the advancement
of large language models in the field of automatic
debugging.

5.2 Limitations

The framework’s performance heavily depends on
the quality of test cases and initial prompts. Poor
test cases or prompts can lead to inaccurate evalua-
tions and weaker refinements. Additionally, while
the question generator prompt undergoes refine-
ment, other prompts in the framework are not sub-
ject to the same level of improvement, which may
impact the overall performance.

5.3 Future Work

Future improvements can focus on enhancing the
evaluator by enabling it to dynamically gener-
ate test cases rather than relying solely on pre-
defined ones. Integrating reinforcement learning
techniques for prompt refinement could further
optimize the model’s performance by continu-
ously improving prompt quality. Additionally, in-
corporating runtime execution feedback would
provide real-time insights, facilitating more pre-
cise code modifications. These advancements aim
to make the framework more robust and effective
in automated debugging and code refinement.
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Appendix: Prompt used in D-QURE

This section provides a detailed description of the
various prompts used in our workflow, outlining
their purpose and usage.

Question Generation Prompt

This prompt is utilized to create a series of ques-
tions based on the task description and the initial
buggy code. The main goal is to pinpoint areas of
the code that may be problematic or require further
investigation. By generating these questions, the
model can identify potential issues and focus on
specific parts of the code that need attention, en-
hancing the overall debugging process. The tem-
plate for this prompt can be found in Figure 6,
which illustrates the structure used for generating
these questions.

Question Relevancy Prompt

Once a series of questions has been generated, this
prompt is employed to assess their relevance. It
filters out questions that are least likely to assist
in identifying and correcting bugs, thus streamlin-
ing the debugging process. This filtering step en-
sures that only the most pertinent questions are
considered, reducing extraneous context and im-
proving the efficiency of subsequent code modifi-
cations. The template for this prompt can be found
in Figure 7, which illustrates the structure used for
generating the relvancy score for each of the ques-
tions.

Bug Rectification Prompt

This prompt is designed to address and correct
the identified issues in the buggy code. By incor-
porating the relevant questions generated previ-
ously and the task description, the LLM is guided
to make precise and effective modifications. This
prompt helps ensure that the corrections made to
the code are directly informed by the questions
and context provided. The template for this prompt
can be found in Figure 8, which illustrates the
structure used for generating the rectified code.

Mutation Prompt

In this stage, the prompts are refined iteratively
to improve their quality and relevance. The re-
finement process involves comparing different
prompts based on criteria such as minimum edit
distance and maximum score difference. By evolv-
ing the prompts over multiple iterations, this step

aims to enhance the overall effectiveness of the de-
bugging process and improve the accuracy of the
generated code. The template for this prompt can
be found in Figure 9, which illustrates the struc-
ture of the prompt.

Iterative Bug Rectification Prompt

This prompt serves as a reference point for eval-
uating the progress of the prompt refinement
process across multiple iterations. It establishes
a baseline against which improvements in code
quality and debugging accuracy can be measured.
Maintaining this baseline helps in tracking the ef-
fectiveness of the iterative refinement process and
ensures that the enhancements are quantifiable.

Natural Language Feedback generation
Prompt

The Summary Creation Prompt is used to generate
a comprehensive overview of the entire debugging
process. It includes details such as the initial prob-
lem, identified bugs, questions generated, and the
final corrected code. This summary provides a de-
tailed account of the iterative refinement process,
helping to consolidate the information and present
a clear narrative of the debugging workflow.

Natural Language Feedback based Bug
rectification Prompt

Using the insights gained from the summary of the
debugging process, this prompt further refines the
code. By leveraging the summary’s information,
the LLM is enabled to make more informed and
accurate modifications. This approach aims to in-
crease the likelihood of passing all test cases by
utilizing the comprehensive understanding derived
from the summary to guide code corrections.The
template for this prompt can be found in Figure 10,
which illustrates the structure used for generating
the rectified code based on the Natural Language
feedback for the given task and the buggy code.



**Role* *: You are a meticulous code reviewer.

**Tasgk* *: Evaluate the buggy code and devise 5 specific questions to identify the
bug.

**Input buggy code* *:
deflong_words(n,, sentence):

""Write a function to find words that are longer than n characters from a given list
of words.

assert long_words(3,"python is a programming
language™)==["python',' programming',language']""

words = sentence.split()
return [word for word in words if len(word) > n]
**Pseudocode Creation* *: Break down the steps in pseudocode.

**Questions* *: Develop B questions from your pseudocode targeting key code
segments, unexpected behaviors, and variable states. Analyze dependencies and
inconsistencies. Rank questions by their effectiveness in detecting the bug.

Write the questions enclosed in <Questionl></Questionl> tags, the second question
between <Question2></Question2> and so on. Don't write anything else in your
response.

Model Output:

Questionl: Does the function long_words(n, sentence) correctly handle multiple
sentences in the input sentence?

Question?: Is the absence of the parameter name following 'n' in the function
definition intentional?

Questiond: Can the function long_words(n, sentence) deal with punctuation marks
attached to the words in the sentence?

Question4: Are there any edge cases (e.g., empty sentence, n equal to zero, ete.)
that the function does not handle?

Questiond: Would the function long_words(n, sentence) behave as expected if the
input sentence contains special characters like newline, tab, etc.?

Figure 6: Question Generation Prompt: One of the prompt templates used to generate a series of questions based
on the task description and the initial buggy code. The purpose is to identify areas of the code that might be
problematic and need further investigation.



Observe the buggy code implementation of the following TASK:

The Buggy Code :
deflong_words(n,, sentence):
words = sentence.split()
return [word for word in words if len(word) > n]

The bug can be either be Logical error or Syntax error. Evaluate the following
questions to determine if they are relevant and helpful in identifying the bug type
(Logical Error or Syntax Error) in the provided code.

The questions are as follows:

: Does the function long_words(n, sentence) correctly handle multiple
sentences in the input sentence?

: Is the absence of the parameter name following 'n' in the function
definition intentional?

: Can the function long_words(n, sentence) deal with punctuation marks
attached to the words in the sentence?

: Are there any edge cases (e.g., empty sentence, n equal to zero, ete.)
that the function does not handle?

: Would the function long_words(n, sentence) behave as expected if the
input sentence containg special characters like newline, tab, ete?

Assign Score 1: if the question is relevant and helpful or Score 0 if the question is
not relevant or not helpful. \

Model Output:

Questionl: Does the function long_words(n, sentence) correctly handle multiple
sentences in the input sentence? Score: O

Question2
Score: 1
Questiond
Score: 1
Question4
Score: 1

Question5: Would the function long_words(n, sentence) behave as expected if the
input sentence contaings special characters like newline, tab, ete? Score: O

Figure 7: Question Relevancy Prompt: This prompt filters the generated questions to determine their relevance.
Only the questions that are most likely to help identify and correct bugs are kept, reducing unnecessary context
and improving the efficiency of subsequent code modifications.



Observe the buggy code implementation of the following
* *TASK* *: nun

The buggy solution with a bug guaranteed is:
deflong_words(n,, sentence):
words = sentence.split()
return [word for word in words if len(word) > n]
These are the few questions which will be helpful in identifying the bug in the code:

: Is the absence of the parameter name following 'n' in the function
definition intentional?

: Can the function long_words(n, sentence) deal with punctuation marks
attached to the words in the sentence?

: Are there any edge cases (e.g., empty sentence, n equal to zero, ete.)
that the function does not handle?

Use the provided information to identify the bug and then generate the rectified
code with the bug resolved. Your task is to correct the buggy code and give the
correct code enclosed in <correct_code></correct_code> tags.

Model Output:

Figure 8: Bug Rectification Prompt: This prompt is used to correct the identified buggy code. By incorporating
relevant questions and the task description, the LLM is guided to make precise modifications to the code.



I am giving these two prompts for a language model designed for the task of
question generation.

HitHt #it#

**Role* *: You are a thorough code reviewer.

**Task* *: Inspect the buggy code and craft 5 precise questions to find the bug.
**Input buggy code* *: BUGGY CODE.

**Pseudocode Creation* *: Illustrate the steps in pseudocode.

**Questions* *: Formulate 5 questions from your pseudocode aimed at specific
code sections, unexpected behaviors, variable states, and dependencies. Rank
questions according to their effectiveness in detecting the bug.

#it#
**Role* *: You are a meticulous code reviewer.
**Task* *: Evaluate the buggy code and devise 5 specific questions to identify the
bug.
**Input buggy code* *: BUGGY CODE.
**Pgeudocode Creation* *: Break down the steps in pseudocode.
**Questions* *: Develop 5 questions from your pseudocode targeting key code
segments, unexpected behaviors, and variable states. Analyze dependencies and
inconsistencies. Rank questions by their effectiveness in detecting the bug.

#it# TASK ###
(1

#it# BUGGY CODE ###
{}

Accuracy score is defined as the Average of (number of passed test cases )/(Total
test cases). Accuracy scores for PROMPT1 is 89.14% and PROMPTR is 88.14%.
Refine the QUESTION GENERATION PROMPT using the following logic:

1. Identify Prompts' Performance: Compare the accuracy scores of existing
prompts.

- Higher score indicates a more effective prompt.

- Lower score indicates a less effective prompt.

2. Analyze Effective Prompts: Focus on the structure and content of prompts with
higher scores to understand what makes them effective.

3. Identify Improvement Areas: Examine prompts with lower scores to pinpoint
weaknesses or gaps.

4. Combine Strengths and Address Weaknesses: Create new prompts by
incorporating successful elements from high-scoring prompts and addressing
issues found in low-scoring prompts.

Don't write anything else in your response except the list of redefined Question
Generation prompt to improve the score.

#it# #it#

Figure 9: Mutation Prompt: Prompts are refined iteratively to enhance the quality and relevance of the generated
code. By comparing prompts based on the minimum edit distance and maximum score difference, the Prompt
generates set of 5 new question generation prompts.



/For the given

* ¥ * % . <text>
with its Buggy code implementation: <code>.

Based on the given Bug summary: < >. Generate the rectified code
enclosed within <correct_code></correct_code> tags.

Don't write anything else in your response besides code.

/

Figure 10: Bug Summary Based Rectification: This prompt generated the summary of the buggy code to further
refine the code. By leveraging the insights gained from the summary, the LLM can make more informed modifica-
tions to the code, ensuring a higher likelihood of passing all test cases.




