Appendix A Qualitative Results

Fig. 1 and Fig. 2 show qualitative results of our system assembling a variety of multi-part objects
using different robot arms, both in simulation and in the real world. Once the hardware configuration
is provided, our planner works seamlessly with a wide range of robot arms and end-effectors without
requiring additional tuning.

The assembly process begins with picking up parts from the fixture, then transferring them to the
assembly area for either holding or insertion. The system determines when to switch roles between
the two arms, for example by handing over a part or changing the holding grasp, in order to maintain
stability and accuracy. After each insertion, the robot returns to retrieve the next part, and this
process continues until the assembly is complete. Finally, both arms return to their initial positions.

All plans are generated automatically, including grasp selection, arm coordination, motion gener-
ation, and fixture design. The only manual input required is the initial setup of the workcell and
placement of the hardware.

For real-world execution, we demonstrate robust sim-to-real transfer across long-horizon assembly
tasks, with consistent step-by-step correspondence between simulation and physical execution. The
system maintains geometric and temporal alignment across all stages of the assembly, including
grasping, insertion, and part switching. This highlights the reliability of our simulation-informed
planning and policy execution.

Figure 1: Step-by-step rendered assembly executions on different assemblies with different robots.

15

T Wy X ™ .
O e e e

- Real

g oo T o

M b >
o a"'“'fq’f{g”;a

» i it
= o =

Figure 2: Step-by-step real-world assembly executions on different assemblies with Panda robots,
with side-by-side correspondences between simulation and real.

Appendix B Problem Formulation

As in Sec. 3, we formulate planning as optimizing assembly-hold sequences ¢, grasps o, and robot
motions 7:

-

min E(?: (¢1:1’a Oi—1:4, ﬂ'z)) S.t. Cprec((yb) S Oa Ckin(¢7 g, 7T) = 07 Ccol(¢7 g, 7T) S 0 (2)

¢,0,m

16

A more detailed breakdown of constraints Cprec (¢), Ckin(¢), Ceol(¢) is shown below.

i Fi9.9)

s.t. Vie[l,n],
Corec(1:4) <0 (3a)
Ciin(0ai ga,i» 74 (0),05,) = 0 (3b)
Ciin(0a,is Gayi» T4 ;(1),05) =0 (30)
Cin(0n.is gn.i> i ;(1),05) =0 (3d)
Ceol(@1.4, 7[a, 1], w[h,i]) <0 3e)

where each motion 7 : [0, 1] — Q is a time-parametrized joint trajectory in the robot’s configura-
tion space Q. Eq. (3a) are the precedence constraints that ensure the partially assembled parts are
connected and do not collapse under gravity. Egs. (3b) to (3d) ensure the robot configuration, grasp,
and the grasped object pose are kinematically consistent when picking, assembling, and holding.
Eq. (3e) ensures that both robots’ trajectories do not collide with previously assembled parts and
other static obstacles.

The key planning stages in Sec. 3 are further summarized here.

» Sec. 3.1: Starting from a multi-part mesh model, we construct a precedence graph rep-
resenting a minimum constraint set for any feasible sequence, considering only collision
among parts.

 Sec. 3.2: To reduce online collision checking overhead during search, we pre-compute a
discretized, collision-free grasp set for assembling and holding for all part pairs. Each
feasible grasp is associated with a corresponding robot trajectory.

* Sec. 3.3: We leverage the precedence graph and precomputed grasp pairs to expand a state
tree that contains all feasible part-grasp sequences and then search for an optimal part-grasp
sequence that minimizes a grasp stability cost.

* Sec. 3.4: After the grasps are determined, we develop an automatic design algorithm to
generate a pickup fixture, so that the planned grasp can be achieved easily without the need
of a re-grasp.

» Sec. 3.5: With the assembly sequence fixed and all robot configurations determined for
kinematic switches, i.e., pick-up, assembly, and hold, we plan for all transit and transfer
motions.

Appendix C Algorithmic Details
We now present detailed mathematical formulations of each algorithm introduced in Sec. 3.

C.1 Part Precedence Planning

Alg. 1 and the following paragraphs provide the details of the part precedence planning algorithm.

Precedence Tier Generation Initially, an empty list of tiers Tj is initialized. We use O, to
represent all the remaining assembled parts, which starts from all parts O. Although O,. is not empty,
the algorithm constructs a new tier ¢, by evaluating each part o; € O, to determine the feasibility
of disassembly. Using motion planning, a disassembly path g; is computed for o;. Specifically, we
apply Assemble-Them-All [10], a physics-based method for efficient disassembly motion planning
given the highly constrained search space, and determine success based on a given timeout. If o;
can be disassembled, the pair (0;,¢;) is added to tprec. Once all feasible parts are processed, the
constructed tier ¢pr. is added to Tprc, and all 0; € tp. is removed from O,.. This process repeats
until all parts are assigned to tiers.

17

Precedence Graph Generation The graph construction phase generates a directed graph Gprec
that encodes precedence constraints among parts. An empty set O, is initialized to track parts in
earlier tiers (i.e., parts that are supposed to be disassembled earlier). For each tier {yrec € Tprec, the
algorithm processes every part 0; € fpec by checking its disassembly path 7,, for collisions with
parts in earlier tiers O,. A collision check function identifies the set of colliding parts O, C O.. For
each o, € O, an edge (0;, 0.) is added to Gy, indicating that o;’s disassembly depends on o.’s
prior removal. After processing all parts in ¢p., the disassembled parts O, are added to O.. The
algorithm proceeds until all parts in all precedence tiers are added to the precedence graph.

Algorithm 1 Part Precedence Planning

1: Input: All parts O with goal poses pg
2: Output: Directed graph G representing precedence constraints
3: Initialize an empty list of tiers: Tprec < [1
4: Initialize an empty directed graph: Gpyec — DiGraph()
5: Initialize all remaining parts O, <~ O
6: while O, # () do > Tier generation
7: Initialize an empty tier: tprec <— {}
8: for each part o; € O, do
9: To; — DisassemblyPath(o;, O,.)
10: if feasible 7, is found then
11: toree < tprec U {(04, 7o,)}
12: Op O, \{0; | (0i,7T0,) € tprec}
13: Tprec-Append (tprec)
14: Initialize an empty set of parts in earlier tiers: O, < ()
15: for each tier tprec € Tprec do > Graph construction
16: Let Oy < {0i | (0i,To;) € tprec} > Parts in tier ¢prec
17: for each (04, 75,) € tprec do
18: Gprec-AddNode(0;, path = 7,,)
19: O, < CheckPathCollision(0;, 7,,, O.) > O,: colliding parts in O,
20: for each o. € O, do
21: Glprec-AddEdge(0;, o)
22: O, + 0. U Oy > Update parts in earlier tiers
23: return G

C.2 Dual-Arm Grasp Filtering

This section provides a detailed description of the sub-steps involved in the grasp filtering algorithm.

Single-Pose Grasp Feasibility Check Alg. 2 evaluates whether a specific grasp configuration g is
feasible for a target part o in its current pose p,. The algorithm first determines the set of preceding
parts Oprec from the precedence graph Gprec. For each gripper aperture (@grasp and arelease), collision
checks are performed involving the robot body, the gripper, the target part o, the preceding parts
Oprec, and the environment obstacles E. If any collision occurs between them, the grasp g is not
feasible. Additional collision checks are performed between the gripper and other non-preceding
parts Oy \ Oprec, and collision information is added to the grasp. Such collisions are not hard
constraints because the non-preceding parts may get assembled later than the target part depending
on the specific assembly sequence. In this case, the collision does not matter, but the information
has to be recorded to find collision-free assembly sequences in the later stage.

Assembling Grasp Feasibility Check Alg. 3 determines the feasibility of using a grasp ¢ to dis-
assemble a target part o along its disassembly path 7,, derived from Gy.c. For each pose p, ; along
T,, the grasp is transformed accordingly and its feasibility is validated using Alg. 2. The aggregated
collision and IK information across all poses is stored in g. The grasp is feasible if all poses along
T, are validated.

18

Algorithm 2 Single-Pose Grasp Feasibility Check

1:

9:
10:
11:
12:

13:
14:
15:
16:

Input: Grasp g, robot R, target part o with pose p,, all parts o € O with their corresponding
goal poses p&, precedence graph Gpree

2: Output: Feasibility (True/False), updated grasp g with collision and IK information
3: Oprec < Glprec-PrecedingParts (o)

4: I + environment obstacles

5:
6
7
8

qé? + IK(R, g,0,Dp,) > IK for robot to grasp part o under pose p, with grasp g

: if feasible ¢/ is found then

Set robot R configuration to q?
for each gripper aperture a € {agrasp, Grelcase } 4O
Set gripper with aperture a
if CheckCollision(R, 0, Oprec, E) then
return False, g

CheckCollision(R, O \ Oprec)

Record collision and IK information to g
return True, g

else
return False, ¢

Algorithm 3 Assembling Grasp Feasibility Check

,_
=4

W oeRankhwde

Input: Grasp g, robot R, target part o, all parts O with goal poses pg, precedence graph Glprec
Output: Feasibility (True/False), updated grasp g with collision and IK information

To <= Gprec.GetPath (o) > Disassembly path of part o
for each part pose p, ; € 7, do > Disassembling o while grasping o
Transform grasp g according to p! to obtain g,
feas, g < CheckGraspFeas(g;, 0, po ¢, -..) > Alg. 2

if not feas then
return False, ¢

Gather collision and IK information from g; to g
return True, g

Holding Grasp Feasibility Check Alg. 4 evaluates whether a grasp g can securely hold a part o
while allowing other parts o; to be disassembled. The feasibility of g is first validated using Alg. 2.

Algorithm 4 Holding Grasp Feasibility Check

_
e

WAy kw2

Input: Grasp g, robot R, target part o, all parts O with goal poses pg, precedence graph Gppec
Output: Feasibility (True/False), updated grasp g with collision and IK information
feas, g <— CheckGraspFeas(g, o, pf,) > Alg. 2
if not feas then
return False, ¢
for each part o, € Oy \ {0} do
Go; < Gprec.GetPath(o;) > Disassembly path of o;
for each part pose p,, + € go, do > Disassembling o; while grasping o

CheckCollision(R, o0;) and gather collision information to g
return True, g

Grasp Pair Filtering Putting the assembling and holding feasibility checks together, Alg. 5 gen-

erates and filters the dual-arm grasp pairs. For each part o;, a set of candidate grasp poses { gk},ivzg 1
is generated. Each grasp is evaluated for assembling and holding feasibility using Algs. 3 and 4,
respectively, and feasible grasps are stored in G%[o;] and G"[0;]. Finally, iterating through all
assembly-hold part pairs, the set of feasible assembly-hold grasp pairs G**"[o,, 0p,] only contains
those that do not lead to collisions between the two robots.

19

Algorithm 5 Dual-Arm Grasp Pair Filtering

1: Input: All parts O with goal poses pg, robots R,, Ry, precedence graph Gprec

2: Output: Assembling grasps G, holding grasps G”, assembling-holding grasp pairs G**"

3: Initialize empty dictionaries G, G", G2*" « {:}, {:}, {:}

4: for each part o; in O do > Feasible grasp generation

50 G%oil,G"oi] + {}. {}
6: Generate N,; grasp poses { gk}g:g 1 on part o;
7: for each grasp pose g;. do
8: feas,, g, < CheckAssemGraspFeas(gx, R, 0i, -..)
9: if feas, then
10: G%los] += G"[0i] U{ga}
11: feasy,, gn, < CheckHoldGraspFeas(gx, R}, 05, ...)
12: if feas;, then
13: G"oi] + G"[oi] U {gn}
14: for each part o, € O do > Feasible grasp pair filtering
15: for each part 0, € O do
16: if 0q € Gprec.PrecedingParts(oy,) then
17: (iontinue
G**M(0a, 0n)] < {}
18: for each grasp g, € G%[0,] do
19: for each grasp g, € G"[o] do
20: Set robot R, configuration to qﬁ“
21: Set robot R}, configuration to qﬁh
22: if not CheckCollision(R,, Ry,) then
23: G*"{(0a,0n)] <= G*"[(0a,0n)] U {(ga; gn)}

24: return G, G", Goxh

C.3 Dual-arm Sequence-Grasp Optimization

Alg. 6 provides the pseudocode for the sequence-grasp optimization algorithm, followed by the
formulas used to evaluate the transition edge cost.

Objective evaluation
* Maximizing the number of supportive parts held (f;): Part A is supportive to part B if A is
in the preceding parts of B in Gprec.

* Minimizing the number of holding grasp transitions (f2): Holding grasp transitions can be
counted simply by comparing whether the holding grasps in consecutive steps are the same.

* Minimizing approximated torque for assembling grasps (f3):

(| Tpart + Tarasp|

N “)
grasp
Where:
Npan
. deontact
Tpart = Z (ri - cpart) X N
=1 part
Ngmsp
_ _dcontact
Torasp = E (rj - Cparl) X N
i=1 grasp
Where:

— r;,1; are the position vectors of contact points on the part and grasp, respectively.
— Cpart is the center of mass of the part.

20

Algorithm 6 Dual-Arm Assembly Sequence Planning

1: Input: All parts O, precedence graph G, assembling grasps G¢, assembling-holding grasp

pairs Go<"
2: Output: Optimal assembly part-grasp sequence S*
3: Initialize an empty tree Tz <— DiGraph()
4: S <]
5: for each o € O do
6: if Gprec.SucceedingParts(0) = () then
7 for each g € G[0] do
8: T¢.AddNode((a, O \ {0}, 0, 9))
9: push(S, (a, 0\ {0}, 0,9))
10: while S not empty do
11: (ti,Oi,Oi,gi) %pOp(S)

> Initialize an empty search stack.

> Root nodes

12: tiv1 < hift, =aelset; ;1 < a

13: for each 0,1 € O; do

14: Oip1 < O; \ {01} ift;;1 =aelse O;41 < O;

15: if (O; U {0;}) N Gprec.PrecedingParts(0;41) # () then

16: continue > Precedence check

17: for each g, 1 € G'+1[0;41] do

18: O < G'i+1[0;11][gi11]-CollidingSet > Precomputed collision set

19: if O, N O;11 # 0 then

20: continue > State collison check

21 if (git1,9:) € G+ 7" [(0i41,0;)] then

22: Tg.AddEdge(((t;, Os, 04, gi), (tiy1, Oiy1,0i41,9i41))) > Grasp pair validity
check

23: push(S, (ti+1,0it1,0i41, gi+1))

24: for each e; € T.Edges() do
25: ((tlﬂOUOng’L)v(tJ7Oj70j7gj)) — €
26: if t; = a, tj = h then

27: ei.f < f(Oi,0i,9i,05,95)
28: else
29: eif —0

30: 5™ <= (07,11 9a.1:0h.2: 9h 20 -+ Oam» an] < DP(TG, @)
31: return S*

> Objective evaluation

> Assembling-holding step
> Holding transition step

> Dynamic programming

— deontact 18 the contact direction vector.

— Ngpasp and Ny, are the number of contact points for the grasp and part, respectively.

* Maximizing part contact area for holding grasps, weighted by the orientation difference

from the paired assembling grasps (fy):

Agrotation x N hold
Where:

Aemlalion = ”RI;)%d ' Rassemble”

Where:

(&)

— ABottion Tepresents the angular difference between the holding and assembling grasps.
— Ryoia and Rygsemble are the rotation matrices derived from the quaternions of the hold-

ing and assembling grasps, respectively.

— Nholq 1s the number of contact points in the holding grasp.

C.4 Grasp-Oriented Pickup Fixture Generation

The fixture generation process begins with the computation of an appropriate pickup pose for each
part. Our goal is to enforce a top-down pickup grasp without requiring re-grasping during the tran-
sition from pickup to assembly. Therefore, we can derive the pickup orientation of each part given

21

the final assembled pose of them and the optimal grasp planned at the assembled pose, since we
maintain the same relative transformation between the part and the gripper from pickup to assembly.

Next, we determine the pickup position for all parts. Since all pickup motions follow a top-down
path, parts are arranged to prevent any overlap along the Z-axis, the vertical direction in the world
coordinate frame. This constraint ensures unobstructed pickup paths and simplifies the design of the
supporting fixture. Along the Z-axis, parts are positioned at the lowest possible height while ensuring
that there are no collisions with the ground based on their orientation. In addition, a minimum base
height is maintained for the fixture board to provide structural stability and support.

Determining the XY positions of the parts is more challenging, as the layout directly impacts the
fixture area, which should ideally be minimized to reduce material costs for fixture fabrication and
maximize the available workspace within the workcell. Additionally, incorrect part layout on the
XY plane can lead to potential collisions between the gripper and the remaining parts during pickup.
Since the orientation of each object is locked, we can represent each part using a rectangular bound-
ing box of its 2D-projected contour. Then, the problem becomes a 2D bin-packing problem, a classic
problem with both heuristic and exact algorithms exist [S1]. We use a simple algorithm that iterates
through the following phases:

1. We use the Maximal Rectangles algorithm [52] to pack the bounding boxes into an initial
bounding area;

2. We check the collisions between the gripper and the precedent parts of the grasped part;

3. If any collisions are detected, the colliding parts are buffered with additional spacing and
the bin-packing process is performed again;

4. We increase the bin area once it is not enough to find a packing solution given the increased
rectangle sizes.

Once an optimal packing configuration is determined, the fixture is generated by creating mold cav-
ities that accommodate the part shapes. A minimal mold depth is calculated to ensure gravitational
stability of part placement, where the Z-axis projection of each part’s center of mass lies within the
convex hull of the contact points between the fixture and the part. The fixture cavity is generated
by projecting the part’s 3D geometry onto a 2D plane perpendicular to the pickup direction and ex-
truding it to the calculated depth. Additional cavity is generated by creating free space for the grasp
motion for every part based on the gripper geometry and the grasping motion. Finally, the generated
fixture is enhanced with countersunk pads to assist in accurate positioning. By automating the entire
fixture generation process, our approach provides a flexible and scalable solution for diverse part
geometries and assembly sequences.

Appendix D Experimental Setup

D.1 Hardware Setup

We conduct real-world experiments using a dual-arm setup composed of two Franka Emika Panda
robots, each equipped with parallel-jaw grippers. The arms are mounted on one side of a shared
table, facing the user, and their relative positions are calibrated via a common reference frame. The
workspace is divided into a pickup area and an assembly area, both fixed and pre-defined based on
the available workspace area. The system uses internal encoders for joint sensing, without external
force-torque sensors or visual feedback.

D.2 Simulation Environment

We use RedMax, the same simulator used in Tian et al. [11], for simulation-based planning, and Isaac
Gym for reinforcement learning. Grasp feasibility is determined by sampling 100 candidate grasps
per part using an antipodal grasp planner, followed by inverse kinematics validation and collision

22

checking in RedMax. Precedence tier planning uses a physics-based disassembly planner [10] with
orthogonal force directions for motion planning.

D.3 Training Configuration

Assembly policies are trained using PPO from the RL Games framework with key hyperparameters
for RL presented in Table 1, which we use for all reported RL experiments. Our generalist policies
are trained for a maximum of 5 x 107 steps (or equivalently 1500 iterations) with a parallel rollout
setup using 1024 environments, which takes less than 2 hours on a single NVIDIA RTX A6000
GPU.

Table 1: Key RL Hyperparameters.

Parameter Value
Algorithm Name PPO
MLP Units [256, 128, 64]
MLP Activation elu
Learning Rate le-4
Gamma 0.99
Tau 0.95
Entropy Coefficient | 0.003
Gradient Norm 1.0
Horizon Length 32
Minibatch Size 512
Mini Epochs 8
Critic Coefficient 2

KL Threshold 0.016

D.4 Real-World Deployment

Robot control alternates between executing planned transit motions in joint space and reactive policy
execution for insertion steps. For policy execution, a task-space impedance controller is used with
gains K, = [800 N/m, 800 N/m, 400 N/m] and K; = 2\/7 , transformed into the path-centric
frame to ensure consistent compliance. Control runs at 30 Hz. During deployment, we use the leaky
Policy-Level Action Integrator (leaky PLAI) scheme for improved stability with an action scale of
0.001 and an error threshold of 0.02. We use the same set of control parameters across all benchmark
assemblies. Interventions are requested after three consecutive failures to insert, detected via joint
deviation thresholds and motion stagnation.

Appendix E Ablation Studies

E.1 Impact of Coordinate and Action Design

We conducted ablation studies to evaluate the impact of coordinate frame selection (world vs. path-
centric) and action representation (nominal vs. residual) on the assembly specialist (AS) policy’s
performance in simulation. Table 2 presents the average % of successful steps without intervention
across 1024 randomized simulation evaluations for each assembly task under four configurations.

Overall, the combination of path-centric coordinates and residual actions proves particularly effec-
tive for assemblies involving diverse insertion directions, such as the Plumbers Block and Gamepad.
Individually, each technique provides a structured prior that simplifies learning: path-centric coor-
dinates standardize insertion directions by reorienting each assembly motion into a canonical frame,
while residual actions leverages the planned trajectory and allow for fine-grained corrective adjust-
ments on top of it. When applied together, they complement each other, enabling both directional
consistency and precise control, leading to significantly higher success rates across most assemblies
in our benchmark.

23

Table 2: Ablation studies on the impact of coordinate and action design choices on the assembly
specialist (AS) policy’s performance across 1024 randomized simulation evaluations.

% of Successful Steps without Intervention (Simulation)

Coordinate Action Beam Plumber Block Car Gamepad Cooling Manifold Duct Stool
World Nominal | 99.71% 49.32% 73.24% 76.95% 94.92% 96.97% 70.41%
World Residual | 99.71% 95.02% 71.09% 73.44% 95.02 % 97.75% 74.80%

Path-Centric Nominal | 99.71% 93.95% 60.35% 85.35% 92.58% 97.17% 70.41%

Path-Centric ~ Residual | 99.12% 97.46 % 70.12% 88.87% 95.02% 96.58% 76.66%

Table 3: Scaling effect of number of policy trials across 3 complete end-to-end multi-step real-world
evaluations.

% of Successful Steps without Intervention (Real World)

Method # Trials Beam Plumber Block Car Gamepad Cooling Manifold Duct Stool
Open-Loop Tracking 1 \ 42% 25% 20% 20% 17% 14% 21%
o 1 58% 58% 60% 40% 67% 3% 75%

Assepml]’.ly S(I/’f;)‘am 2 67% 58% 80% 60% 67% 79% 75%
ohey 3 75% 67% 87% 73% 83% 79% 88%

E.2 Effect of Number of Trials

In real-world experiments, we evaluate the assembly specialist policy with varying numbers of al-
lowed trials (1, 2, or 3) per step, due to the stochastic nature of the policy. Table 3 summarizes
the average % of successful steps without intervention across three end-to-end multi-step assembly
runs. Results indicate that permitting additional trials substantially boosts success rates. The pol-
icy consistently improves as trial count increases, suggesting that the policy benefits from repeated
attempts to refine alignment and correct minor positional errors.

The results further demonstrate open-loop baseline’s inability to recover from failures and adapt
to variations in the real world environment, even though the planned path is accurate and the real
robot is well calibrated. In contrast, the RL policy consistently demonstrates improved progress,
with notable gains observed as the number of trials increases. The results show a clear trend: with
1 trial per step, the policy can achieve moderate progress but still faces challenges in most of the
assemblies. Introducing retries significantly enhance progress, enabling the system to correct minor
errors and overcome small disturbances.

Appendix F Integrating Vision Feedback: VLM for Insertion Alignment

To further address insertion misalignments observed during the initial insertion attempt, we integrate
a vision-language model (VLM) to provide corrective alignment feedback in the form of discrete
actions. The model, a state-of-the-art version of Gemini (gemini-2.5-pro-preview-03-25), is
leveraged to assess spatial alignment between the grasped part and the insertion hole based on visual
input.

While training visuomotor policies directly from visual input is a common approach for alignment
tasks, it requires extensive data collection, task-specific training, and continuous fine-tuning to gen-
eralize across diverse parts and insertion scenarios. In contrast, leveraging a VLM for alignment
feedback offers significant advantages. VLMs are pre-trained on diverse visual contexts, enabling
them to generalize across varied geometries and occlusions without extensive task-specific data col-
lection. Additionally, they provide interpretable, discrete corrective actions (e.g., “move right”)
accompanied by concise explanations, enhancing both robustness and transparency in alignment
tasks, especially under low-cost, fixed-focus camera setups.

24

F.1 Physical Setup

The vision integration requires only RGB input without
high imaging quality, allowing for the use of low-cost
cameras. We utilize an Arducam B0205 USB camera
($34.99), shown in Fig. 3, mounted on the robot wrist at
an angle optimized to capture the insertion area. The cam-
era is equipped with an IR-CUT filter and infrared LEDs
for low-light conditions, but lacks focus adjustment, re-
sulting in reduced image clarity when the insertion part is
out of focus.

Figure 3: Physical setup for integerat-
ing vision feedback. Left: Camera de-
tails. Right: The mounted configuration

F.2 Methodology on the robot wrist.

If the insertion policy fails on the first attempt, the en-

tire video of the failed attempt is recorded and segmented into ten key frames sampled uniformly
across the video. These frames are passed to the VLM, which is prompted to recommend the best
corrective action (up, down, left, or right) to align the part with the hole. The VLM is addition-
ally prompted to provide a concise, step-by-step reasoning for the recommended action to mitigate
potential hallucinations. The exact prompt we use is detailed below.

20

You are assisting a robot in aligning a grasped part for insertion
using visual feedback from a camera mounted on the robot’s wrist.

Task:
- The part is grasped by the robot and can move in four directions: ["
up", "down", "left", "right"], each by 2 mm in the camera frame.

- The goal is to move the part to align it precisely with the hole for
insertion.

Instructions:

- Carefully observe the video frames. Focus only on the position of
the part relative to the hole.

- Determine the single best action to move the part to align with the
hole.

- Focus only on spatial cues: Is the part too far left, right, above,
or below the hole?

Response format:

{

"action": "right",

"reason": "The part is too far left relative to the hole and needs to
move right to align."

}

Only output the single best action based on spatial cues. If the part
is already aligned, output "hold".
What is the best action to move the part to align with the hole?

)20

After receiving the VLM feedback, the robot executes the recommended action by adjusting the
gripper in the task frame by 2 mm. The insertion policy is then restarted from this new position.
If the insertion still fails, the entire process is repeated with the newly recorded video sequence,
allowing for multiple VLM interventions as necessary.

25

F.3 Results and Analysis

Frame 1 Frame 2 Frame 3
> - . o .

Frame 4 Frame 5

Before {
“action”: “right”,
“reason”: “The partis too

far left relative to the hole

and needs to move right to
align.”

} Gemini

After

{

“action”: “up”,

“reason”: “The partis too
far down relative to the
hole and needs to move up
to align.”

Af St
er } Gemini

Figure 4: Example outputs from VLM during corrective alignment. The VLM identifies spatial
misalignments in the camera frame and recommends discrete corrective actions (e.g., “right” and
“up”’) with concise reasoning.

The VLM integration demonstrated notable improvements in alignment accuracy, particularly in
cases where the insertion policy initially failed due to misalignment. Figure 4 illustrates two repre-
sentative examples where the VLM provided corrective actions that successfully guided the arm to
the intended alignment.

In the first example, the VLM identified a leftward misalignment and recommended the action
“right”, allowing the part to be re-centered relative to the insertion hole. The corrective action was
executed in the tool frame, resulting in a more precise alignment before the subsequent insertion
attempt. Similarly, in the second example, the VLM detected a downward offset and suggested the
action “up”, effectively repositioning the part closer to the target insertion point. In both cases, a sin-
gle VLM intervention was sufficient to resolve the misalignment, highlighting the model’s capacity
to reason spatially based on minimal visual input.

Despite the low-cost camera setup and lack of focus adjustment capabilities, the VLM effectively
discerned alignment cues based on coarse visual features. This is particularly noteworthy given
that occlusions and visual clutter are prevalent in multi-part assemblies, where small positional
errors can accumulate over successive steps. The VLM’s concise, reason-based output structure
further mitigates hallucination risks by constraining the response format to a single action-reason
pair, reducing ambiguity and enhancing interpretability.

F.4 Limitations and Future Work

While the VLM integration demonstrated significant alignment improvements, occlusions remained
a primary failure mode. Occlusions are common in complex assemblies, necessitating either a flex-
ible/active camera setup or multiple cameras strategically positioned to cover the scene comprehen-
sively. Furthermore, hallucination remains a concern, particularly in cluttered scenes where visual
cues are ambiguous. Future work will explore improving prompt engineering and camera configu-
rations, potentially leveraging multi-view setups and active camera movements akin to human head
and body movements.

26

	Introduction
	Related Work
	Planning Multi-Step Dual-Arm Assembly
	Part Precedence Planning
	Dual-Arm Grasp Filtering
	Dual-Arm Sequence-Grasp Optimization
	Grasp-Aware Pickup Fixture Generation
	Motion Planning for Transit and Transfer

	Learning General Single-Step Assembly Policy
	Path-Centric Coordinate Transformation
	Plan-Guided Residual Action
	Minimalist Reward Design and Sim-to-Real Transfer

	Experiments
	Benchmark Suite and Experimental Setup
	Planning Multi-Step Assembly in Simulation
	Learning Single-Step Assembly in Simulation
	Executing Multi-Step Assembly in Real World

	Conclusion
	Limitations and Future Work
	Qualitative Results
	Problem Formulation
	Algorithmic Details
	Part Precedence Planning
	Dual-Arm Grasp Filtering
	Dual-arm Sequence-Grasp Optimization
	Grasp-Oriented Pickup Fixture Generation

	Experimental Setup
	Hardware Setup
	Simulation Environment
	Training Configuration
	Real-World Deployment

	Ablation Studies
	Impact of Coordinate and Action Design
	Effect of Number of Trials

	Integrating Vision Feedback: VLM for Insertion Alignment
	Physical Setup
	Methodology
	Results and Analysis
	Limitations and Future Work

