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A APPENDIX

A.1 SUMMARY OF REGRET BOUNDS

We provide a table to summarise the relevant regret bounds for different algorithms in matrix games
with bandit feedback.

Algorithms HEDGE GP-MW EXP3 EXP3-IX UCB/ K-Learning COEBL
(Freund & Schapire, 1997) (Sessa et al., 2019) (Auer et al., 2002) (Neu, 2015; Cai et al., 2023) (O’Donoghue et al., 2021) Theorem 2

Feedback rewards for all actions obtained reward
+ opponents’ actions obtained reward obtained reward obtained reward obtained reward

Regret O
�p

T logK
�

O
�p

T logK
�

+ �T

p
T O

�p
TK logK

�
O
�p

TK logK
�

Õ

⇣p
K2T

⌘
Õ

⇣p
K2T

⌘

Table 2: Regret bounds for different algorithms in matrix games. K denotes the number of actions
for each player, T denotes the time horizon, and �T in the bound for the GP-MW algorithm denotes a
kernel-dependent quantity. In this table, we assume both players have the same number of strategies.
This can be generalised to the case where both players have different numbers of strategies. For
the regret bound of COEBL, we consider the worst-case scenario (i.e., the opponent uses the best-
response strategy) and the Nash regret (Def. (3)), the same as in (O’Donoghue et al., 2021).

A.2 ALGORITHM IMPLEMENTATION

Previous works, including (O’Donoghue et al., 2021; Cai et al., 2023), have not released the source
code for their algorithms. Therefore, we provide our own implementation for COEBL, and other
bandit baselines used in this paper. The source code is available at the anonymous link https:

//anonymous.4open.science/r/ICLR2025_Code-BD87/README.md.

We will release the code later once the paper is accepted.

A.3 PSEUDOCODE OF ALGORITHMS

As follows, we summarise a general framework of algorithms for matrix games with bandit feedback
considered in this paper. We only present the algorithm for the row player, and the algorithm for the
column player is symmetric.

Algorithm 2 General framework for matrix games with bandit feedback (O’Donoghue et al., 2021)
Require: Policy space of player: X ✓ �m;
Require: Initial probability distribution P1 2 X ;

1: for t = 1 to T do
2: The row player chooses action it from Pt

3: The column player chooses action jt from Qt

4: Observe reward rt based on it, jt

5: Update probability distribution Pt based on Ft+1, where Ft+1 := (i1, j1, r1 · · · , it, jt, rt)
6: end for

Algorithm 5 EXP3-IX variant for matrix games (Cai et al., 2023)

Require: Define ⌘t = t
�k⌘ , �t = t

�k� , "t = t
�k" where k⌘ = 5

8 , k� = 3
8 , k" = 1

8 . A is the set of
actions.

Require: ⌦t = {x 2 �m : xa �
1

mt2 , 8a 2 A}.
1: Initialisation: x1 = 1

m (1, · · · , 1).
2: for t = 1, 2, . . . do
3: Sample at ⇠ xt, and receive �t 2 [0, 1] with �t = Gat,bt where bt is the action by the

opponent.
4: Compute gt where gt,a = 1[at = a]�t/(xt,a + �t) + "t lnxt,a, 8a 2 A.
5: Update xt+1 = argminx2⌦t

n
x
>
gt +

1
⌘t

KL(x, xt)
o

.
6: end for

15
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Algorithm 3 EXP3 for matrix games (Auer et al., 1995; O’Donoghue et al., 2021)
1: Input: Number of actions K, number of iterations T , learning rate ⌘ and exploration parameter

�.
2: Initialise:
3: ˆS0,i  0 for all i 2 [K]
4: for t = 1, 2, · · · , T do
5: Calculate the sampling distribution Pt: for all i

6: Pti  (1� �)exp(⌘Ŝt�1,i)/
PK

j=1 exp(⌘Ŝt�1,j) + �/K

7: Sample At ⇠ Pt and observe reward Xt 2 [0, 1]
8: Update Ŝti: for all i

9: Ŝti  Ŝt�1,i + 1� 1{At = i}(1�Xt)/Pti

10: end for

Algorithm 4 UCB for matrix games (O’Donoghue et al., 2021)
1: for round t = 1, 2, . . . , T do
2: for all i, j 2 [m] do
3: compute Ã

t
ij = Āt

ij +
q

2 log(2T 2m2)
1_nt

ij

4: end for
5: use policy x 2 argmaxx2�m miny2�m y

T
Ã

t
x

6: end for

A.4 TECHNICAL LEMMAS

Lemma 3. Given x, y 2 �m, for all i, j 2 [m], Aij 2 R, then y
T
Ax =

P
i,j2[m] yjxiAij .

Proof of Lemma 3. We compute y
T
Ax as follows.

y
T
Ax = (y1 . . . ym)

0

B@
A11 . . . A1m

...
. . .

...
Am1 . . . Amm

1

CA

0

B@
x1
...

xm

1

CA

Note that simple algebra gives

= (y1 . . . ym)

0

B@
A11x1 +A1mxm

...
Am1x1 +Ammxm

1

CA

=
mX

j=1

yj

 
mX

i=1

xiAij

!

=
X

i,j2[m]

yjxiAij .

Lemma 4. The following inequalities hold for any n 2 N:

(1)

1 +
1
p
2
+ · · ·+

1
p
n
 2
p
n.

(2) Given xi � 0 for all i 2 [n],

1

n

nX

i=1

xi 

rPn
i x

2
i

n
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(3) Hoeffding’s inequality for �2-sub-Gaussian random variables with zero-mean (Vershynin,
2018): let X1, . . . , Xn be n independent random variables such that Xi is �

2-sub-
Gaussian. Then for any a 2 Rn, we have

Pr

 
nX

i=1

aiXi > t

!
 exp

✓
�

t
2

2�2kak22

◆
,Pr

 
nX

i=1

aiXi < �t

!
 exp

✓
�

t
2

2�2kak22

◆
.

Of special interest is the case where ai = 1/n for all i. Then, we get that the average
X̄ = 1

n

Pn
i=1 Xi satisfies

Pr(X̄ > t)  exp

✓
�
nt

2

2�2

◆
,Pr(X̄ < �t)  exp

✓
�
nt

2

2�2

◆
.

Proof of Lemma 4. Proof of (3) can be found in (Vershynin, 2018). So, we only provide the proofs
of other two inequalities here.

(1) We proceed by induction. For n = 1, the inequality is trivial, i.e. 1  2
p
1. Now, assume

the inequality holds for n = k � 2. For the case n = k + 1, applying the induction
hypothesis step gives,

1 +
1
p
2
+ · · ·+

1
p
k
+

1
p
k + 1

= 2
p

k +
1

p
k + 1

Rearranging the terms gives

 2
p
k + 1 + 2

p

k � 2
p
k + 1 +

1
p
k + 1

Notice that 2
p
k � 2

p
k + 1 = �2p

k+
p
k+1

. Thus, we have

= 2
p
k + 1 +

p
k +
p
k + 1� 2

p
k + 1

p
k + 1

⇣p
k + 1 +

p
k

⌘

Note that
p
k +
p
k + 1� 2

p
k + 1 =

p
k �
p
k + 1 < 0 gives

< 2
p
k + 1.

Thus, we complete the induction step and can complete the proof i.e. the inequality holds
for all n 2 N.

(2) We proceed by induction. For n = 1, the inequality is trivial, i.e. 1 
p
12. Now, assume

the inequality holds for n = k � 2. For the case n = k + 1, applying the induction
hypothesis step gives,

1

(k + 1)2
(x1 + · · ·+ xk + xk+1)

2


1

(k + 1)2

0

@

vuut
k

kX

i=1

x2
i + xk+1

1

A

2

=
1

(k + 1)2

0

@k

kX

i=1

x
2
i + x

2
k+1 + 2xk+1

vuut
k

kX

i=1

x2
i

1

A

Notice that 2ab  a
2 + b

2 for a, b � 0 gives 2xk+1

q
k
Pk

i=1 x
2
i = 2xk+1

p
k ·

qPk
i=1 x

2
i  kx

2
k+1 +

Pk
i=1 x

2
i .


1

(k + 1)2

 
k

kX

i=1

x
2
i + x

2
k+1 + kx

2
k+1 +

kX

i=1

x
2
i

!
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Rearranging the terms gives

=
1

(k + 1)2

 
(k + 1)

k+1X

i=1

x
2
i

!
=

1

k + 1

k+1X

i=1

x
2
i .

Then, taking the square root of both sides gives the desired inequality for the case n = k+1.
Thus, we complete the proof.

A.5 OMITTED PROOFS

Note that we restrict A 2 [0, 1]m⇥m in the analysis for simplification. However, the proof works for
any bounded A 2 [�b, b]m⇥m where b is constant with respect to T and m, by simply shifting from
[�b, b] to [0, 2b] and normalising the entries in [0, 1].

Lemma 1. Suppose Assumption (A) holds with T � 2m2
� 2 and � :=

�
1/2T 2

m
2
�c/8 where

c > 0 is the mutation rate in COEBL. For each iteration t 2 N, given Ã
t in Algorithm 1, we have:

Pr
⇣
Aij � (Ãt)ij  0

⌘
� 1� �, for all i, j 2 [m]. (2)

Proof of Lemma 1. We consider the mutation rate c > 0 in COEBL, where c is a constant with
respect to T and m. We denote the empirical mean of the sample payoff Aij by (Āt)ij and the
number of times that row i and column j have been chosen by both players up to round t. Under
Assumption (A), we compute the probability with zij ⇠ N (0, 1) are i.i.d:

Pr
⇣
Aij  (Ãt)ij

⌘

=Pr

 
(Aij  (Āt)ij +

s
c log(2T 2m2)

1 _ nt
ij + 1

+
1

1 _ nt
ij

· zij

!

=Pr

0

@Aij �
1

1 _ nt
ij

1_nt
ijX

k=1

(Ak)ij �
zij

1 _ nt
ij



s
c log(2T 2m2)

1 _ nt
ij + 1

1

A

Recall that (Ak)ij = Aij + ⌘k where ⌘k are i.i.d. 1-sub-Gaussian with zero mean. Note that
⌘
0
k := �⌘k is also 1-sub-Gaussian with zero mean and z

0
ij := �zij ⇠ N (0, 1). Thus, we can

rewrite the inequality as follows.

=Pr

0

@ 1

1 _ nt
ij

0

@
1_nt

ijX

k=1

⌘
0
k + z

0
ij

1

A 

s
c log(2T 2m2)

1 _ nt
ij + 1

1

A

We consider the reverse quantity:

Pr

0

@ 1

1 _ nt
ij

0

@
1_nt

ijX

k=1

⌘
0
k + z

0
ij

1

A >

s
c log(2T 2m2)

1 _ nt
ij + 1

1

A

=Pr

0

@ 1

1 _ nt
ij + 1

0

@
1_nt

ijX

k=1

⌘
0
k + z

0
ij

1

A >
1 _ n

t
ij

1 _ nt
ij + 1

s
c log(2T 2m2)

1 _ nt
ij + 1

1

A

Note that 1_nt
ij

1_nt
ij+1 �

1
2 . Thus, we have

Pr

0

@ 1

1 _ nt
ij + 1

0

@
1_nt

ijX

k=1

⌘
0
k + z

0
ij

1

A >
1

2

s
c log(2T 2m2)

1 _ nt
ij + 1

1

A
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Using Hoeffding’s inequality for i.i.d. sub-Gaussian random variables gives

 exp

0

@�
(1 _ n

t
ij + 1) · 1

4
c log(2T 2m2)

1_nt
ij+1

2

1

A

=

✓
1

2T 2m2

◆c/8

:= �

Hence, we complete the proof.

Theorem 2 (Main Result). Consider any two-player zero-sum matrix game. Under Assumption
(A) with T � 2m2

� 2 and � =
�
1/2T 2

m
2
�c/8, where c > 0 is the mutation rate in COEBL, the

worst-case Nash regret of COEBL for c � 8 is bounded by 2
p

2cTm2 log(2T 2m2), i.e., Õ(
p
m2T ).

Proof of Theorem 2. First, we follow the proof of Theorem 1 in (O’Donoghue et al., 2021) using
the following events. Let Et be the event that 9i, j 2 [m] such that (Ãt)ij < Aij . We know
Et 2 Ft where Ft is defined in the preliminaries. Consider some iteration Et does not hold and let
ỹt := argminy2�m

y
T
t Ãtxt be the best response of the column player. Since Et does not hold, then

for 8i, j 2 [m], Aij  (Ãt)ij . Thus, V ⇤
A  V

⇤
Ãt

. So, the regret in each round t under the case that
Et does not hold is bounded by the following,

V
⇤
A � Et

�
y
T
t Axt

�
 Et

⇣
V

⇤
Ãt
� y

T
t Axt

⌘
= Et

⇣
ỹt

T
Ãtxt � y

T
t Axt

⌘

Recall that ỹt is the best response of the column player.

 Et

⇣
y
T
t Ãtxt � y

T
t Axt

⌘

= Et

⇣
y
T
t

⇣
Ãt �A

⌘
xt

⌘

Recall the estimated matrix in Algorithm 1. We have
⇣
Ãt �A

⌘

ij
=
q

c log(2T 2m2)
1_nt

ij+1 + 1
1_nt

ij
N (0, 1).

Note that log(2T 2
m

2) = log
�
(1/�)8/c

�
= 8 log(1/�)/c. Using Lemma 3 gives

= Et

0

@
s

8 log(1/�)

1 _ nt
itjt

+ 1
+

mX

j=1

yj

mX

i=1

xi
zij

1 _ nt
ij

1

A

Note that 1 _ n
t
ij � 1. We can have the following inequality.

 Et

0

@
s

8 log(1/�)

1 _ nt
itjt

+ 1
+

mX

j=1

yj

mX

i=1

xizij

1

A

By linearity of expectation and Et(zij) = 0, we have

= Et

 s
8 log(1/�)

1 _ nt
itjt

+ 1

!
. (4)

Thus, we can bound the overall regret. Given the class of games 8A 2 A defined in (A), we have

R (A, COEBL, T ) =E

 
TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
!

Using law of total probability gives

=E

 
TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
| \

T
t=1E

c
t

!
· Pr

�
\
T
t=1E

c
t

�

+ E

 
TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
|
�
\
T
t=1E

c
t

�c
!
⇥ Pr

⇣�
\
T
t=1E

c
t

�c⌘
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Using De Morgan’s Law gives
�
\
T
t=1E

c
t

�c
= [Tt=1Et.

=E

 
TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
| \

T
t=1E

c
t

!
· Pr

�
\
T
t=1E

c
t

�

+ E

 
TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
| [

T
t=1Et

!
· Pr

�
[
T
t=1Et

�

Using the upper bound in Eq. 4 and Pr
�
\
T
t=1E

c
t

�
 1 gives

E

 
TX

t=1

s
8 log(1/�)

1 _ nt
itjt

+ 1

!
+ E

 
TX

t=1

1

!
· Pr

�
[
T
t=1Et

�

Using the Union bound gives

E

 
TX

t=1

s
8 log(1/�)

1 _ nt
itjt

+ 1

!
+ T

TX

t=1

Pr (Et)

Using Lemma 1 gives Pr (Et)  �. Thus, we have

E

 
TX

t=1

s
8 log(1/�)

1 _ nt
itjt

+ 1

!
+ T

2
�

Recall that � =
�
1/2T 2

m
2
�c/8
 1/2T 2

m
2 for c � 8. Note that log(1/�) = log

⇣�
2T 2

m
2
�c/8⌘

=

c log(2T 2
m

2)/8.

E

 
TX

t=1

s
c log(2T 2m2)

1 _ nt
itjt

+ 1

!
+

1

2m2

Rewrite the summation in the expectation.



X

i,j2[m]

E

 
TX

t=1

s
c log(2T 2m2)

1 _ nt
ij + 1

1{it=i,jt=j}

!
+

1

2m2

Let us denote the set Bij := {t 2 {0, · · · , nT
ij} | it = i, jt = j} for i, j 2 [m]. So we can rewrite

the summand as follows.

=
p
c log(2T 2m2)

X

i,j2[m]

E

0

@
X

tk2Bij

s
1

1 _ n
tk
ij + 1

1

A+
1

2m2

Note that ntk
ij is an increasing sequence in tk. Thus, we can have

=
p
c log(2T 2m2)

X

i,j2[m]

E

0

@
nT
ijX

k=1

r
1

k + 1

1

A+
1

2m2

Adding one more 1/
p
1 in the inner sum and using Lemma 4 (1) give



p
c log(2T 2m2)

X

i,j2[m]

E
⇣
2
q

1 _ nT
ij + 1

⌘
+

1

2m2

Using Lemma 4 (2) with xk :=
q
1 _ nT

ij + 1 where k 2 [m2] gives



p
4c log(2T 2m2) ·m2

sP
i,j2[m] 1 _ nT

ij + 1

m2
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Notice that 1 _ n
T
ij  n

T
ij + 1.



p
4c log(2T 2m2)

s
m2

X

i,j2[m]

(nT
ij + 2)

Notice that
P

i,j2[m] n
T
ij = T .

=
p
4c log(2T 2m2)

p
m2(T + 2m2)

Since T � 2m2, we have


p
4c log(2T 2m2)

p

2m2T = 2
p

2cTm2 log(2T 2m2) = Õ(
p

m2T ).

Thus, we can conclude that WORSTCASEREGRET (A, COEBL, T ) = Õ

⇣p
m2T

⌘
.

A.6 COMPLETE EMPIRICAL RESULTS

A.6.1 REASONS FOR THE CHOICES OF MATRIX GAMES BENCHMARKS

We choose the given matrix games benchmarks for the following reasons:

1. The RPS game is a classical benchmark widely used in the previous RL and game theory
literature, and we want to compare the performance of COEBL with the existing algorithms.

2. However, RPS consists of a small number of actions and the game is not complex enough
to test the performances of the algorithms. Therefore, we included the DIAGONAL and
BIGGERNUMBER games, which are more complex and feature exponentially larger action
spaces

3. We chose these matrix game benchmarks from multiple fields, including RL (Littman,
1994; O’Donoghue et al., 2021), game theory (Zhang & Sandholm, 2024), and evolutionary
computation (Lehre & Lin, 2024), to demonstrate the general applicability of the proposed
algorithm.

A.6.2 REASONS FOR THE CHOICES OF SYMMETRIC MATRIX GAMES BENCHMARKS

One might notice that all the matrix games considered in the experiments are symmetric, meaning
that for the payoff matrix A, Aij = �Aji for all i, j 2 [m]. In such games, there is no advantage in
being the first or second player, the experimental studies provide fair head-to-head comparisons.

A.6.3 DIAGONAL GAME

We defer the full experimental results on DIAGONAL game to the appendix and provide the payoff
matrix of DIAGONAL game when n = 2.

00 01 10 11
00 0 -1 -1 -1
01 1 0 0 -1
10 1 0 0 -1
11 1 1 1 0

Table 3: The payoff matrix of DIAGONAL game (n = 2). Binary bitstrings represent different pure
strategies of each player. This game compares the number of 1-bits of each player.

In this case, both players have 2n actions, which is way more complicated than the RPS. In terms
of the regret, all the algorithms in the self-play scenario, exhibit sublinear regrets. However, only
COEBL converges for several problem instances. When n increases to certain level, like n � 4,
none of them can converge to the Nash equilibrium anymore. For the ALG-1 vs ALG-2 scenario,
after iteration 2000, COEBL has an overwhelming advantage over other bandit baselines in terms
of regret performance. For the convergence of the the Nash equilibrium, surprisingly, in Figure 8,
UCB-vs-COEBL converges to or approximates the Nash equilibrium even when n = 4. However,
they also fail to converge to the Nash equilibrium when n = 5, 6, 7. We can see that the opponent
performance has certain impact to the overall dynamics towards the Nash equilibrium.
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(a) n = 2 (b) n = 3 (c) n = 4

(d) n = 5 (e) n = 6 (f) n = 7

(g) n = 2 (h) n = 3 (i) n = 4

(j) n = 5 (k) n = 6 (l) n = 7

Figure 7: Regret and TV Distance for Self-Plays on DIAGONAL for n = 2, . . . , 7
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Regret and TV-distance for ALG 1-vs-ALG 2 on DIAGONAL for n = 2, . . . , 7.
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A.6.4 BIGGERNUMBER GAME

BIGGERNUMBER is another challenging two-player zero-sum game proposed and analysed by
Zhang & Sandholm (2024). In this game, each player aims to select a number greater than their
opponent’s. The players’ action space is defined as X = {0, 1}n, where binary bitstrings of length
n correspond to natural numbers in the range [0, 2n � 1]. If the players select the same number,
they receive a payoff of 0. If the difference between the players’ numbers is exactly 1, the player
with the larger number receives a payoff of 2, while the player with the smaller number receives�2.
Otherwise, the player with the larger number receives a payoff of 1, and the player with the smaller
number receives a payoff of �1. To simplify the game and align it with ternary games, we modify
the payoff function BIGGERNUMBER : X ⇥ X ! {�1, 0, 1} defined by:

BIGGERNUMBER(x, y) :=

8
<

:

0 x = y

1 x > y

�1 x < y

.

The payoff matrix of the BIGGERNUMBER game for n = 2 is:

00 01 10 11
00 0 -1 -1 -1
01 1 0 -1 -1
10 1 1 0 -1
11 1 1 1 0

Table 4: The payoff matrix of the BIGGERNUMBER game for n = 2. Binary bitstrings represent the
pure strategies available to each player: 0 = (00)2, 1 = (01)2, 2 = (10)2, and 3 = (11)2. In this
game, players compare their numbers from N.

As proved by Zhang & Sandholm (2024), this payoff matrix also exhibits a unique pure Nash equi-
librium where both players choose 1n 2 {0, 1}n (i.e., the binary string of all ones, corresponding to
2n�1 2 N). This corresponds to the mixed Nash equilibrium x

⇤ = (0, · · · , 1) and y
⇤ = (0, · · · , 1).

We conduct experiments using Algorithms 3 to 5 and compare them with our proposed Algorithm 1
(i.e. COEBL) on this matrix game benchmark, the BIGGERNUMBER game.

In Figure 9, we present the self-play results of each algorithm on the BIGGERNUMBER game for
various values of n. We observe that COEBL exhibits sublinear regret in the BIGGERNUMBER game,
similar to other bandit baselines, and aligns with our theoretical bound. In terms of convergence
measured by TV-distance, COEBL converges to the Nash equilibrium for n = 2, 3, 4, while the
other baselines do not converge. However, after n = 5 (as the number of pure strategies increases
exponentially), COEBL also fails to converge to the Nash equilibrium.

In Figure 10, we present the regret and TV-distance for ALG 1-vs-ALG 2 on BIGGERNUMBER. Sim-
ilar to the DIAGONAL game, we observe that all regret values are positive with minimum 8.39 and
maximum 351.27, indicating that the minimiser is winning on average. Thus, COEBL outperforms
the other bandit baselines in BIGGERNUMBER for all n = 2, . . . , 7.
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(a) n = 2 (b) n = 3 (c) n = 4

(d) n = 5 (e) n = 6 (f) n = 7

(g) n = 2 (h) n = 3 (i) n = 4

(j) n = 5 (k) n = 6 (l) n = 7

Figure 9: Regret and TV Distance for Self-Plays on BIGGERNUMBER
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10: Regret and TV-distance for ALG 1-vs-ALG 2 on BIGGERNUMBER.
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