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A APPENDIX

A.1 SUMMARY OF REGRET BOUNDS

We provide a table to summarise the relevant regret bounds for different algorithms in matrix games
with bandit feedback.

Algorithms HEDGE GP-MW Exp3 Exp3-IX UcB/ K-Learning COEBL
& (Freund & Schapirel{1997) (Sessa et al.,[2019) (Auer et al.J2002) (Neu,2015;|Cai et al.,[2023) (O’Donoghue et al.,[2021) TheoremE]
. . obtained reward . . . . )
Feedback rewards for all actions + opponents’ actions obtained reward obtained reward obtained reward obtained reward
Regret O (VTTogK) O (VTTogK) + VT O (JVTKIogK) 0 (VTKTogK) o (\/I(2T> 16) (\/KZT)

Table 2: Regret bounds for different algorithms in matrix games. K denotes the number of actions
for each player, T" denotes the time horizon, and 7 in the bound for the GP-MW algorithm denotes a
kernel-dependent quantity. In this table, we assume both players have the same number of strategies.
This can be generalised to the case where both players have different numbers of strategies. For
the regret bound of COEBL, we consider the worst-case scenario (i.e., the opponent uses the best-
response strategy) and the Nash regret (Def. (E[)), the same as in (O’Donoghue et al.,|[2021).

A.2 ALGORITHM IMPLEMENTATION

Previous works, including (O’Donoghue et al.,|[2021}|Cai et al., 2023), have not released the source
code for their algorithms. Therefore, we provide our own implementation for COEBL, and other
bandit baselines used in this paper. The source code is available at the anonymous link https:
//anonymous.4open.science/r/ICLR2025_Code-BD87/README .md.

We will release the code later once the paper is accepted.
A.3 PSEUDOCODE OF ALGORITHMS
As follows, we summarise a general framework of algorithms for matrix games with bandit feedback

considered in this paper. We only present the algorithm for the row player, and the algorithm for the
column player is symmetric.

Algorithm 2 General framework for matrix games with bandit feedback (O’Donoghue et al., [2021)

Require: Policy space of player: X C A,,;;
Require: Initial probability distribution P; € X;
1: fort =1to T do
2:  The row player chooses action ¢; from P;
3 The column player chooses action j; from Q;
4 Observe reward 7 based on iy, j;
5:  Update probability distribution P; based on Fy41, where Fyiq := (i1, 1,71 ,%t, Jt, T't)
6: end for

Algorithm 5 Exp3-IX variant for matrix games (Cai et al., 2023)

Require: Define n, =t %7, 8, = ¢t 74, &, = t =% where k,, = 2, kg = 2, k. = §. Ais the set of
actions.
Require: Q, = {z € A, 12, > 15, Va € A}.
1: Initialisation: 1 = 2 (1,--- ,1).

2: fort=1,2,...do

3:  Sample a; ~ =, and receive o, € [0,1] with o, = G, p, Where b, is the action by the
opponent.

4:  Compute g; where g; o = 1[a; = alor/ (x4 + Bt) + € lnxy 4, Va € A.

5:  Update 441 = argmingcq, {x—rgt + n—ltKL(gc7 xt)}

6: end for
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Algorithm 3 EXP3 for matrix games (Auer et al.,|1995; |0’ Donoghue et al.,[2021)

1: Input: Number of actions K, number of iterations 7, learning rate 7 and exploration parameter
Y.

2: Initialise:

3 Sy < Oforalli € [K]

4: fort=1,2,--- ,T do

5. Calculate the sampling distribution P;: for all ¢

6 Py = (1=y)exp(nSi—1,0)/ 3= exp(nSi-1,5) +7/K

7 Sample A; ~ P; and observe reward X; € [0, 1]

8 Update Sy;: for all i

9 Sti — St—l,i +1-— I{At = Z}(l — Xt)/Pti

10: end for

Algorithm 4 UcB for matrix games (O’Donoghue et al.,[2021)

forroundt =1,2,...,7 do
foralli,j € [m] do

7 v 2Tog(2T7m?
compute A}; = A + %
ij

1:
2
3
4:  end for
5
6:

use policy * € argmax,ena,, mingena,, y* Alz
end for

A.4 TECHNICAL LEMMAS

Lemma 3. Given x,y € A, foralli,j € [m], A;j; € R, then y" Az = Zi’je[m] Y Aij.

Proof of Lemma[3} We compute y” Az as follows.
A11 N Alm I

yTAx =W - Ym)
Aml N Amm Tm,

Note that simple algebra gives
Ay + A,

=W - Ym) :
Amlml +Ammxm

(1)

(2) Given x; > 0foralli € [n],
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(3) Hoeffding’s inequality for o2-sub-Gaussian random variables with zero-mean (Vershynin,
2018): let X1,...,X, be n independent random variables such that X; is o°-sub-
Gaussian. Then for any a € R™, we have

n 2 n 2

t t
P § Xi>t] < ———|,p § X< —t] < - .
< ! ) eXp( 202||a||%> ( ‘ ) eXp( 202||a||%>

=1 i=1

Of special interest is the case where a; = 1/n for all i. Then, we get that the average
X = % i, X satisfies

2

_ it . ¢
Pr(X >t) <exp (—;‘2> ,Pr(X < —t) <exp <—;‘2> .

Proof of Lemma Proof of (3) can be found in (Vershynin, |2018). So, we only provide the proofs
of other two inequalities here.

(1) We proceed by induction. For n = 1, the inequality is trivial, i.e. 1 < 2+/1. Now, assume
the inequality holds for n = k£ > 2. For the case n = k + 1, applying the induction
hypothesis step gives,

TSI S Y/ S
V2 Vi VE+1 VE+1
Rearranging the terms gives
1
<Wk+1+2Vk—2Vk+ 14+ ——=
- vk +1

Notice that 2vk — 2k + Thus, we have

1=——2_
VrvErL
ZQMJF\/EJM/%L —/k+1

\/k+1(\/k+1+\/E)
Note that vk + vk +1 —2VE+ 1 =Vk — VE+ 1 < 0 gives
<2Vk+1.
Thus, we complete the induction step and can complete the proof i.e. the inequality holds

forall n € N.

(2) We proceed by induction. For n = 1, the inequality is trivial, i.e. 1 < v/12. Now, assume
the inequality holds for n = k£ > 2. For the case n = k + 1, applying the induction
hypothesis step gives,

2

k
2 1 2
G ap @t ek o) < g | R et o
1 k
:m k2$?+$i+1+2$k+1
i=1

Notice that 2ab < a? + b2 for a,b > 0 gives Zz;ﬁ_“/ka:l x? = 2zpVk -

k 2 2 k 2
i1 T < kxy ., + Die1 T

k k
1
< [CESE (kaf +afig +kaig + Z‘T12>
1=1

i=1
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Rearranging the terms gives
k+1 k+1
(k+1) = 7.
g (60T - 2

Then, taking the square root of both sides gives the desired inequality for the case n = k+1.
Thus, we complete the proof.

O

A.5 OMITTED PROOFS

Note that we restrict A € [0, 1]™*"™ in the analysis for simplification. However, the proof works for
any bounded A € [—b, b]™>*™ where b is constant with respect to 7" and m, by simply shifting from
[—b,b] to [0, 2b] and normalising the entries in [0, 1].

Lemma 1. Suppose Assumption (A) holds with T > 2m? > 2 and § = (1/2T2m2)c/8 where
¢ > 0 is the mutation rate in COEBL. For each iteration t € N, given A® in Algorithmll] we have:

Pr (Aij — (A < 0) >1-06, foralli,je [m]. 2)

Proof of Lemmal[l] We consider the mutation rate ¢ > 0 in COEBL, where c is a constant with
respect to 7 and m. We denote the empirical mean of the sample payoff A;; by (A;);; and the
number of times that row ¢ and column j have been chosen by both players up to round ¢. Under
Assumption (A), we compute the probability with z;; ~ A(0,1) are i.i.d:

Pr (Aij < (/L)ij)

- clog(2T2m?) 1
=Pr (Aij < (At)ij + 7 T Zij
( Ivng +1 1V ng;
pr 4 1§:§j(A ) Zij clog(2T?m?)
=rr ij — 7 k)ij — T > T
1V Pt LV, IV +1

Recall that (Ay);; = A;; + 1, where 7, are ii.d. 1-sub-Gaussian with zero mean. Note that
)y, = —nk is also 1-sub-Gaussian with zero mean and zj; := —z;; ~ N(0,1). Thus, we can
rewrite the inequality as follows.

e log(2T2m?)
—pP 1y | < [ER08ES T
"\ 1TV Z"’“J“Z” =\ vl 1
We consider the reverse quantity:
1Vn§j
clog(2T?m?)
Pr ! Z/ > = 0 7
1V zjlmﬁr W 1vnl +1
1vnl,
1 J LV nj; clog(272m?)
=Pr| ——— L+ 2
1vnl +1 2 et > 1V +1 1vnl +1
Note that W > 1. Thus, we have
1 Rl 1 [clog(212m?)
clog m
<Pr|—F— vtz | >y
= v z::"’“+2” 2\ TVl +1

18
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Using Hoeffding’s inequality for i.i.d. sub-Gaussian random variables gives

1 clog(2T%m?)
“e (1 V nzj + 1) ‘1 1%/n§j+1
<n | —
< exp 5
1 c/8
- (2T2m2) =0
Hence, we complete the proof. O

Theorem 2 (Main Result). Consider any two-player zero-sum matrix game. Under Assumption
(A) withT > 2m? > 2 and 6 = (1/2T2m2)c/8, where ¢ > 0 is the mutation rate in COEBL, the
worst-case Nash regret of COEBL for ¢ > 8 is bounded by 2\/2ch2 log(2T2m2), i.e., O(V'm?2T).

Proof of Theorem@] First, we follow the proof of Theorem 1 in (O’Donoghue et al., 2021) using

the following events. Let E; be the event that 3i,5 € [m] such that (flt)ij < A;;. We know
E; € F; where F; is defined in the preliminaries. Consider some iteration F; does not hold and let

gy i= argming g a yl Ay, be the best response of the column player. Since E; does not hold, then
for Vi, j € [m], A;; < (flt)ij. Thus, V; < V/’{ . So, the regret in each round ¢ under the case that
FE; does not hold is bounded by the following,

VX — Et (y?Axt) S Et (V;{t — ytTAxt) = Et (gtTA~t$t — ytTA.’Et)
Recall that y; is the best response of the column player.

<E; (yffitxt — ytTAxt)

5 (3~ 4))

Recall the estimated matrix in Algorithm We have (/L - A) = Cl?i(ifi"lﬁ) +
ij ij

Note that log(27%m?) = log ((1/6)%/¢) = 8log(1/4)/c. Using Lemmagives

-N(0,1).

1Vn

m

8log( 1/5
=E
t 1Vvnt Z:y7z:%ll\/n»

1tJt

Note that 1 V n - > 1. We can have the following inequality.

m

8log( 1/5
§ Et 1 \/n Zy] Z'TZZ’L]

Zt]t
By linearity of expectation and E;(z;;) = 0, we have

:Et( 8log(1/6) ) @

1vnl . +1

itJt

Thus, we can bound the overall regret. Given the class of games VA € A defined in (A), we have

T
R (A, COEBL,T) (Z Vas — Eq(yi Alt))

t=1
Using law of total probability gives

=K (Z VA* Et Y A.]?t) I ﬁt 1E(‘> -Pr (ﬂg‘zlEtc)

+E (Z V- — B (yf Aay) | (ﬂf_lEf)c> x Pr (N, E¢))

19
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Using De Morgan’s Law gives (N/_, Ef)" = U, E;.
=E <Z Ve — Eq(y] Axy) | N 1EC> -Pr (N, Ef)

+ E(Z VA* — Et (y;TAZEt) | UtT_lEt> - Pr (UthlEt)

t=1

Using the upper bound in Eq. @and Pr (N, Ef) < 1 gives

<E<Z 18vk;g 1/9) >+E<Zl> Pr (U, Ey)

Using the Union bound gives
T
810g 1/6)
<E T Pr(E
(3D w3 e
Using Lemma[l| gives Pr (E;) < 6. Thus, we have

T
8log(1/4 9
<
E<Z 1vnt +1>+T5

Tt Jt

Recall that § = (1/2T2m2)c/8 < 1/27%m? for ¢ > 8. Note that log(1/5) = log ((2T2m2)c/8) =
clog(2T%m?)/8.

lt]t

clog 2T2m2) 1
<E
(/) oo
Rewrite the summation in the expectation.
clog( 2T m?) 1
< E =)L TR _
3 B3 1 ) g
i,J€[M

Let us denote the set B;; := {t € {0,--- ,n} | iy = i,j, = j} fori,j € [m]. So we can rewrite
the summand as follows.

1
clog(2T?m?) Y E| > 1\/nt’“+1 +5

i,j€[m] tr€B;j

Note that n * is an increasing sequence in tj. Thus, we can have

— 2m2) [~
Vclog(2T?m?2) 1 k;+1

IS m] k

Adding one more 1/+/1 in the inner sum and using Lemma! (1) give

|
clog(2T?m?) 3 E(Q, [1vnT + 1) t5 s
m

i,j€[m]

Using Lemma(z) with z, := \/W where k € [m?] gives
< /4clog(2T?m?) mQ\/Z J€[m] - ij
m

20
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Notice that 1V nf; < nj; + 1.

< V4clog(2T?m?) [m? Z n - +2)

1,j€[m]

Notice that > . =T.

i,jE€[m)]
= /4clog(2T2m2)\/m2(T + 2m?)
Since T' > 2m2, we have
< /4clog(2T2m2)V2m2T = 2+/2¢T'm? log(2T2m?2) = O(Vm?T).
Thus, we can conclude that WORSTCASEREGRET (A, COEBL,T) = @) (\/mQT). O

A.6 COMPLETE EMPIRICAL RESULTS

A.6.1 REASONS FOR THE CHOICES OF MATRIX GAMES BENCHMARKS
We choose the given matrix games benchmarks for the following reasons:

1. The RPS game is a classical benchmark widely used in the previous RL and game theory
literature, and we want to compare the performance of COEBL with the existing algorithms.

2. However, RPS consists of a small number of actions and the game is not complex enough
to test the performances of the algorithms. Therefore, we included the DIAGONAL and
BIGGERNUMBER games, which are more complex and feature exponentially larger action
spaces

3. We chose these matrix game benchmarks from multiple fields, including RL (Littman,
1994;|0’Donoghue et al.| 2021)), game theory (Zhang & Sandholm,2024]), and evolutionary
computation (Lehre & Lin}2024), to demonstrate the general applicability of the proposed
algorithm.

A.6.2 REASONS FOR THE CHOICES OF SYMMETRIC MATRIX GAMES BENCHMARKS

One might notice that all the matrix games considered in the experiments are symmetric, meaning
that for the payoff matrix A, A;; = —Aj; forall ¢, j € [m]. In such games, there is no advantage in
being the first or second player, the experimental studies provide fair head-to-head comparisons.

A.6.3 DIAGONAL GAME

We defer the full experimental results on DIAGONAL game to the appendix and provide the payoff
matrix of DTAGONAL game when n = 2.

6o o -1 -1 -1
01| 1 o 0 -1
w1 o0 0 -1
11| 1 1 1 0

Table 3: The payoff matrix of DIAGONAL game (n = 2). Binary bitstrings represent different pure
strategies of each player. This game compares the number of 1-bits of each player.

In this case, both players have 2™ actions, which is way more complicated than the RPS. In terms
of the regret, all the algorithms in the self-play scenario, exhibit sublinear regrets. However, only
COEBL converges for several problem instances. When n increases to certain level, like n > 4,
none of them can converge to the Nash equilibrium anymore. For the ALG-1 vs ALG-2 scenario,
after iteration 2000, COEBL has an overwhelming advantage over other bandit baselines in terms
of regret performance. For the convergence of the the Nash equilibrium, surprisingly, in Figure
UcCB-vs-COEBL converges to or approximates the Nash equilibrium even when n = 4. However,
they also fail to converge to the Nash equilibrium when n = 5,6, 7. We can see that the opponent
performance has certain impact to the overall dynamics towards the Nash equilibrium.
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A.6.4 BIGGERNUMBER GAME

BIGGERNUMBER is another challenging two-player zero-sum game proposed and analysed by
Zhang & Sandholm|(2024). In this game, each player aims to select a number greater than their
opponent’s. The players’ action space is defined as X = {0, 1}", where binary bitstrings of length
n correspond to natural numbers in the range [0,2" — 1]. If the players select the same number,
they receive a payoff of 0. If the difference between the players’ numbers is exactly 1, the player
with the larger number receives a payoff of 2, while the player with the smaller number receives —2.
Otherwise, the player with the larger number receives a payoff of 1, and the player with the smaller
number receives a payoff of —1. To simplify the game and align it with ternary games, we modify
the payoff function BIGGERNUMBER : X x X — {—1,0, 1} defined by:

0 =y
BIGGERNUMBER(z,y) :=¢1 x>y.
-1 z<y

The payoff matrix of the BIGGERNUMBER game for n = 2 is:

6o -1 -1 -1
ooy 1 o0 -1 -1
10 | 1 1 0 -1
11| 1 1 1 0

Table 4: The payoff matrix of the BIGGERNUMBER game for n = 2. Binary bitstrings represent the
pure strategies available to each player: 0 = (00)2, 1 = (01)2, 2 = (10)2, and 3 = (11)2. In this
game, players compare their numbers from N.

As proved by |Zhang & Sandholm|(2024), this payoff matrix also exhibits a unique pure Nash equi-
librium where both players choose 1™ € {0, 1}" (i.e., the binary string of all ones, corresponding to
2" —1 € N). This corresponds to the mixed Nash equilibrium 2* = (0,--- ,1) and y* = (0,--- , 1).
We conduct experiments using Algorithms [3|to[5]and compare them with our proposed Algorithm|T]
(i.e. COEBL) on this matrix game benchmark, the BIGGERNUMBER game.

In Figure [9] we present the self-play results of each algorithm on the BIGGERNUMBER game for
various values of n. We observe that COEBL exhibits sublinear regret in the BIGGERNUMBER game,
similar to other bandit baselines, and aligns with our theoretical bound. In terms of convergence
measured by TV-distance, COEBL converges to the Nash equilibrium for n = 2, 3,4, while the
other baselines do not converge. However, after n = 5 (as the number of pure strategies increases
exponentially), COEBL also fails to converge to the Nash equilibrium.

In Figure[I0} we present the regret and TV-distance for ALG 1-vs-ALG 2 on BIGGERNUMBER. Sim-
ilar to the DIAGONAL game, we observe that all regret values are positive with minimum 8.39 and
maximum 351.27, indicating that the minimiser is winning on average. Thus, COEBL outperforms
the other bandit baselines in BIGGERNUMBER foralln =2,...,7.
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Figure 9: Regret and TV Distance for Self-Plays on BIGGERNUMBER
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