
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1
1.1 Two-Player Zero-Sum Games . 1

1.2 Evolutionary Reinforcement Learning and Coevolution 2

1.3 Contributions . 2

1.4 Related Works . 3

1.4.1 Regret Analysis of Bandit Learning in Matrix Games 3

1.4.2 Runtime Analysis of Coevolutionary Algorithms on Games 3

2 Preliminaries 3
2.1 Notations . 3

2.2 P-ary Two-Player Zero-Sum Games and Nash Regret 3

3 Co-evolutionary Bandit Learning for Mixed Nash Equilibrium 4
3.1 Learning in Games and COEBL . 4

3.2 Regret Analysis of COEBL . 5

4 Empirical Results 6
4.1 Rock-Paper-Scissors Game . 7

4.2 DIAGONAL Game . 7

4.3 BIGGERNUMBER Game . 9

5 Conclusion and Discussion 10

A Appendix 15
A.1 Summary of Regret Bounds . 15

A.2 Algorithm Implementation . 15

A.3 Pseudocode of Algorithms . 15

A.4 Technical Lemmas . 16

A.5 Omitted Proofs . 18

A.6 Complete Empirical Results . 21

A.6.1 Reasons for the choices of matrix games benchmarks 21

A.6.2 Reasons for the choices of symmetric matrix games benchmarks 21

A.6.3 DIAGONAL Game . 21

A.6.4 BIGGERNUMBER Game . 24

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SUMMARY OF REGRET BOUNDS

We provide a table to summarise the relevant regret bounds for different algorithms in matrix games
with bandit feedback.

Algorithms HEDGE GP-MW EXP3 EXP3-IX UCB/ K-Learning COEBL
(Freund & Schapire, 1997) (Sessa et al., 2019) (Auer et al., 2002) (Neu, 2015; Cai et al., 2023) (O’Donoghue et al., 2021) Theorem 2

Feedback rewards for all actions obtained reward
+ opponents’ actions obtained reward obtained reward obtained reward obtained reward

Regret O
�p

T logK
�

O
�p

T logK
�

+ �T

p
T O

�p
TK logK

�
O
�p

TK logK
�

Õ

⇣p
K2T

⌘
Õ

⇣p
K2T

⌘

Table 2: Regret bounds for different algorithms in matrix games. K denotes the number of actions
for each player, T denotes the time horizon, and �T in the bound for the GP-MW algorithm denotes a
kernel-dependent quantity. In this table, we assume both players have the same number of strategies.
This can be generalised to the case where both players have different numbers of strategies. For
the regret bound of COEBL, we consider the worst-case scenario (i.e., the opponent uses the best-
response strategy) and the Nash regret (Def. (3)), the same as in (O’Donoghue et al., 2021).

A.2 ALGORITHM IMPLEMENTATION

Previous works, including (O’Donoghue et al., 2021; Cai et al., 2023), have not released the source
code for their algorithms. Therefore, we provide our own implementation for COEBL, and other
bandit baselines used in this paper. The source code is available at the anonymous link https:

//anonymous.4open.science/r/ICLR2025_Code-BD87/README.md.

We will release the code later once the paper is accepted.

A.3 PSEUDOCODE OF ALGORITHMS

As follows, we summarise a general framework of algorithms for matrix games with bandit feedback
considered in this paper. We only present the algorithm for the row player, and the algorithm for the
column player is symmetric.

Algorithm 2 General framework for matrix games with bandit feedback (O’Donoghue et al., 2021)
Require: Policy space of player: X ✓ �m;
Require: Initial probability distribution P1 2 X ;

1: for t = 1 to T do
2: The row player chooses action it from Pt

3: The column player chooses action jt from Qt

4: Observe reward rt based on it, jt

5: Update probability distribution Pt based on Ft+1, where Ft+1 := (i1, j1, r1 · · · , it, jt, rt)
6: end for

Algorithm 5 EXP3-IX variant for matrix games (Cai et al., 2023)

Require: Define ⌘t = t
�k⌘ , �t = t

�k� , "t = t
�k" where k⌘ = 5

8 , k� = 3
8 , k" = 1

8 . A is the set of
actions.

Require: ⌦t = {x 2 �m : xa �
1

mt2 , 8a 2 A}.
1: Initialisation: x1 = 1

m (1, · · · , 1).
2: for t = 1, 2, . . . do
3: Sample at ⇠ xt, and receive �t 2 [0, 1] with �t = Gat,bt where bt is the action by the

opponent.
4: Compute gt where gt,a = 1[at = a]�t/(xt,a + �t) + "t lnxt,a, 8a 2 A.
5: Update xt+1 = argminx2⌦t

n
x
>
gt +

1
⌘t

KL(x, xt)
o

.
6: end for

15

https://anonymous.4open.science/r/ICLR2025_Code-BD87/README.md
https://anonymous.4open.science/r/ICLR2025_Code-BD87/README.md

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 3 EXP3 for matrix games (Auer et al., 1995; O’Donoghue et al., 2021)
1: Input: Number of actions K, number of iterations T , learning rate ⌘ and exploration parameter

�.
2: Initialise:
3: ˆS0,i 0 for all i 2 [K]
4: for t = 1, 2, · · · , T do
5: Calculate the sampling distribution Pt: for all i

6: Pti (1� �)exp(⌘Ŝt�1,i)/
PK

j=1 exp(⌘Ŝt�1,j) + �/K

7: Sample At ⇠ Pt and observe reward Xt 2 [0, 1]
8: Update Ŝti: for all i

9: Ŝti Ŝt�1,i + 1� 1{At = i}(1�Xt)/Pti

10: end for

Algorithm 4 UCB for matrix games (O’Donoghue et al., 2021)
1: for round t = 1, 2, . . . , T do
2: for all i, j 2 [m] do
3: compute Ã

t
ij = Āt

ij +
q

2 log(2T 2m2)
1_nt

ij

4: end for
5: use policy x 2 argmaxx2�m miny2�m y

T
Ã

t
x

6: end for

A.4 TECHNICAL LEMMAS

Lemma 3. Given x, y 2 �m, for all i, j 2 [m], Aij 2 R, then y
T
Ax =

P
i,j2[m] yjxiAij .

Proof of Lemma 3. We compute y
T
Ax as follows.

y
T
Ax = (y1 . . . ym)

0

B@
A11 . . . A1m

...
. . .

...
Am1 . . . Amm

1

CA

0

B@
x1
...

xm

1

CA

Note that simple algebra gives

= (y1 . . . ym)

0

B@
A11x1 +A1mxm

...
Am1x1 +Ammxm

1

CA

=
mX

j=1

yj

mX

i=1

xiAij

!

=
X

i,j2[m]

yjxiAij .

Lemma 4. The following inequalities hold for any n 2 N:

(1)

1 +
1
p
2
+ · · ·+

1
p
n
 2
p
n.

(2) Given xi � 0 for all i 2 [n],

1

n

nX

i=1

xi 

rPn
i x

2
i

n

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(3) Hoeffding’s inequality for �2-sub-Gaussian random variables with zero-mean (Vershynin,
2018): let X1, . . . , Xn be n independent random variables such that Xi is �

2-sub-
Gaussian. Then for any a 2 Rn, we have

Pr

nX

i=1

aiXi > t

!
 exp

✓
�

t
2

2�2kak22

◆
,Pr

nX

i=1

aiXi < �t

!
 exp

✓
�

t
2

2�2kak22

◆
.

Of special interest is the case where ai = 1/n for all i. Then, we get that the average
X̄ = 1

n

Pn
i=1 Xi satisfies

Pr(X̄ > t)  exp

✓
�
nt

2

2�2

◆
,Pr(X̄ < �t)  exp

✓
�
nt

2

2�2

◆
.

Proof of Lemma 4. Proof of (3) can be found in (Vershynin, 2018). So, we only provide the proofs
of other two inequalities here.

(1) We proceed by induction. For n = 1, the inequality is trivial, i.e. 1  2
p
1. Now, assume

the inequality holds for n = k � 2. For the case n = k + 1, applying the induction
hypothesis step gives,

1 +
1
p
2
+ · · ·+

1
p
k
+

1
p
k + 1

= 2
p

k +
1

p
k + 1

Rearranging the terms gives

 2
p
k + 1 + 2

p

k � 2
p
k + 1 +

1
p
k + 1

Notice that 2
p
k � 2

p
k + 1 = �2p

k+
p
k+1

. Thus, we have

= 2
p
k + 1 +

p
k +
p
k + 1� 2

p
k + 1

p
k + 1

⇣p
k + 1 +

p
k

⌘

Note that
p
k +
p
k + 1� 2

p
k + 1 =

p
k �
p
k + 1 < 0 gives

< 2
p
k + 1.

Thus, we complete the induction step and can complete the proof i.e. the inequality holds
for all n 2 N.

(2) We proceed by induction. For n = 1, the inequality is trivial, i.e. 1 
p
12. Now, assume

the inequality holds for n = k � 2. For the case n = k + 1, applying the induction
hypothesis step gives,

1

(k + 1)2
(x1 + · · ·+ xk + xk+1)

2


1

(k + 1)2

0

@

vuut
k

kX

i=1

x2
i + xk+1

1

A

2

=
1

(k + 1)2

0

@k

kX

i=1

x
2
i + x

2
k+1 + 2xk+1

vuut
k

kX

i=1

x2
i

1

A

Notice that 2ab  a
2 + b

2 for a, b � 0 gives 2xk+1

q
k
Pk

i=1 x
2
i = 2xk+1

p
k ·

qPk
i=1 x

2
i  kx

2
k+1 +

Pk
i=1 x

2
i .


1

(k + 1)2

k

kX

i=1

x
2
i + x

2
k+1 + kx

2
k+1 +

kX

i=1

x
2
i

!

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Rearranging the terms gives

=
1

(k + 1)2

(k + 1)

k+1X

i=1

x
2
i

!
=

1

k + 1

k+1X

i=1

x
2
i .

Then, taking the square root of both sides gives the desired inequality for the case n = k+1.
Thus, we complete the proof.

A.5 OMITTED PROOFS

Note that we restrict A 2 [0, 1]m⇥m in the analysis for simplification. However, the proof works for
any bounded A 2 [�b, b]m⇥m where b is constant with respect to T and m, by simply shifting from
[�b, b] to [0, 2b] and normalising the entries in [0, 1].

Lemma 1. Suppose Assumption (A) holds with T � 2m2
� 2 and � :=

�
1/2T 2

m
2
�c/8 where

c > 0 is the mutation rate in COEBL. For each iteration t 2 N, given Ã
t in Algorithm 1, we have:

Pr
⇣
Aij � (Ãt)ij  0

⌘
� 1� �, for all i, j 2 [m]. (2)

Proof of Lemma 1. We consider the mutation rate c > 0 in COEBL, where c is a constant with
respect to T and m. We denote the empirical mean of the sample payoff Aij by (Āt)ij and the
number of times that row i and column j have been chosen by both players up to round t. Under
Assumption (A), we compute the probability with zij ⇠ N (0, 1) are i.i.d:

Pr
⇣
Aij  (Ãt)ij

⌘

=Pr

(Aij  (Āt)ij +

s
c log(2T 2m2)

1 _ nt
ij + 1

+
1

1 _ nt
ij

· zij

!

=Pr

0

@Aij �
1

1 _ nt
ij

1_nt
ijX

k=1

(Ak)ij �
zij

1 _ nt
ij



s
c log(2T 2m2)

1 _ nt
ij + 1

1

A

Recall that (Ak)ij = Aij + ⌘k where ⌘k are i.i.d. 1-sub-Gaussian with zero mean. Note that
⌘
0
k := �⌘k is also 1-sub-Gaussian with zero mean and z

0
ij := �zij ⇠ N (0, 1). Thus, we can

rewrite the inequality as follows.

=Pr

0

@ 1

1 _ nt
ij

0

@
1_nt

ijX

k=1

⌘
0
k + z

0
ij

1

A 

s
c log(2T 2m2)

1 _ nt
ij + 1

1

A

We consider the reverse quantity:

Pr

0

@ 1

1 _ nt
ij

0

@
1_nt

ijX

k=1

⌘
0
k + z

0
ij

1

A >

s
c log(2T 2m2)

1 _ nt
ij + 1

1

A

=Pr

0

@ 1

1 _ nt
ij + 1

0

@
1_nt

ijX

k=1

⌘
0
k + z

0
ij

1

A >
1 _ n

t
ij

1 _ nt
ij + 1

s
c log(2T 2m2)

1 _ nt
ij + 1

1

A

Note that 1_nt
ij

1_nt
ij+1 �

1
2 . Thus, we have

Pr

0

@ 1

1 _ nt
ij + 1

0

@
1_nt

ijX

k=1

⌘
0
k + z

0
ij

1

A >
1

2

s
c log(2T 2m2)

1 _ nt
ij + 1

1

A

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Using Hoeffding’s inequality for i.i.d. sub-Gaussian random variables gives

 exp

0

@�
(1 _ n

t
ij + 1) · 1

4
c log(2T 2m2)

1_nt
ij+1

2

1

A

=

✓
1

2T 2m2

◆c/8

:= �

Hence, we complete the proof.

Theorem 2 (Main Result). Consider any two-player zero-sum matrix game. Under Assumption
(A) with T � 2m2

� 2 and � =
�
1/2T 2

m
2
�c/8, where c > 0 is the mutation rate in COEBL, the

worst-case Nash regret of COEBL for c � 8 is bounded by 2
p

2cTm2 log(2T 2m2), i.e., Õ(
p
m2T).

Proof of Theorem 2. First, we follow the proof of Theorem 1 in (O’Donoghue et al., 2021) using
the following events. Let Et be the event that 9i, j 2 [m] such that (Ãt)ij < Aij . We know
Et 2 Ft where Ft is defined in the preliminaries. Consider some iteration Et does not hold and let
ỹt := argminy2�m

y
T
t Ãtxt be the best response of the column player. Since Et does not hold, then

for 8i, j 2 [m], Aij  (Ãt)ij . Thus, V ⇤
A  V

⇤
Ãt

. So, the regret in each round t under the case that
Et does not hold is bounded by the following,

V
⇤
A � Et

�
y
T
t Axt

�
 Et

⇣
V

⇤
Ãt
� y

T
t Axt

⌘
= Et

⇣
ỹt

T
Ãtxt � y

T
t Axt

⌘

Recall that ỹt is the best response of the column player.

 Et

⇣
y
T
t Ãtxt � y

T
t Axt

⌘

= Et

⇣
y
T
t

⇣
Ãt �A

⌘
xt

⌘

Recall the estimated matrix in Algorithm 1. We have
⇣
Ãt �A

⌘

ij
=
q

c log(2T 2m2)
1_nt

ij+1 + 1
1_nt

ij
N (0, 1).

Note that log(2T 2
m

2) = log
�
(1/�)8/c

�
= 8 log(1/�)/c. Using Lemma 3 gives

= Et

0

@
s

8 log(1/�)

1 _ nt
itjt

+ 1
+

mX

j=1

yj

mX

i=1

xi
zij

1 _ nt
ij

1

A

Note that 1 _ n
t
ij � 1. We can have the following inequality.

 Et

0

@
s

8 log(1/�)

1 _ nt
itjt

+ 1
+

mX

j=1

yj

mX

i=1

xizij

1

A

By linearity of expectation and Et(zij) = 0, we have

= Et

 s
8 log(1/�)

1 _ nt
itjt

+ 1

!
. (4)

Thus, we can bound the overall regret. Given the class of games 8A 2 A defined in (A), we have

R (A, COEBL, T) =E

TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
!

Using law of total probability gives

=E

TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
| \

T
t=1E

c
t

!
· Pr

�
\
T
t=1E

c
t

�

+ E

TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
|
�
\
T
t=1E

c
t

�c
!
⇥ Pr

⇣�
\
T
t=1E

c
t

�c⌘

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Using De Morgan’s Law gives
�
\
T
t=1E

c
t

�c
= [Tt=1Et.

=E

TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
| \

T
t=1E

c
t

!
· Pr

�
\
T
t=1E

c
t

�

+ E

TX

t=1

VA⇤ � Et

�
y
T
t Axt

�
| [

T
t=1Et

!
· Pr

�
[
T
t=1Et

�

Using the upper bound in Eq. 4 and Pr
�
\
T
t=1E

c
t

�
 1 gives

E

TX

t=1

s
8 log(1/�)

1 _ nt
itjt

+ 1

!
+ E

TX

t=1

1

!
· Pr

�
[
T
t=1Et

�

Using the Union bound gives

E

TX

t=1

s
8 log(1/�)

1 _ nt
itjt

+ 1

!
+ T

TX

t=1

Pr (Et)

Using Lemma 1 gives Pr (Et)  �. Thus, we have

E

TX

t=1

s
8 log(1/�)

1 _ nt
itjt

+ 1

!
+ T

2
�

Recall that � =
�
1/2T 2

m
2
�c/8
 1/2T 2

m
2 for c � 8. Note that log(1/�) = log

⇣�
2T 2

m
2
�c/8⌘

=

c log(2T 2
m

2)/8.

E

TX

t=1

s
c log(2T 2m2)

1 _ nt
itjt

+ 1

!
+

1

2m2

Rewrite the summation in the expectation.



X

i,j2[m]

E

TX

t=1

s
c log(2T 2m2)

1 _ nt
ij + 1

1{it=i,jt=j}

!
+

1

2m2

Let us denote the set Bij := {t 2 {0, · · · , nT
ij} | it = i, jt = j} for i, j 2 [m]. So we can rewrite

the summand as follows.

=
p
c log(2T 2m2)

X

i,j2[m]

E

0

@
X

tk2Bij

s
1

1 _ n
tk
ij + 1

1

A+
1

2m2

Note that ntk
ij is an increasing sequence in tk. Thus, we can have

=
p
c log(2T 2m2)

X

i,j2[m]

E

0

@
nT
ijX

k=1

r
1

k + 1

1

A+
1

2m2

Adding one more 1/
p
1 in the inner sum and using Lemma 4 (1) give



p
c log(2T 2m2)

X

i,j2[m]

E
⇣
2
q

1 _ nT
ij + 1

⌘
+

1

2m2

Using Lemma 4 (2) with xk :=
q
1 _ nT

ij + 1 where k 2 [m2] gives



p
4c log(2T 2m2) ·m2

sP
i,j2[m] 1 _ nT

ij + 1

m2

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Notice that 1 _ n
T
ij  n

T
ij + 1.



p
4c log(2T 2m2)

s
m2

X

i,j2[m]

(nT
ij + 2)

Notice that
P

i,j2[m] n
T
ij = T .

=
p
4c log(2T 2m2)

p
m2(T + 2m2)

Since T � 2m2, we have


p
4c log(2T 2m2)

p

2m2T = 2
p

2cTm2 log(2T 2m2) = Õ(
p

m2T).

Thus, we can conclude that WORSTCASEREGRET (A, COEBL, T) = Õ

⇣p
m2T

⌘
.

A.6 COMPLETE EMPIRICAL RESULTS

A.6.1 REASONS FOR THE CHOICES OF MATRIX GAMES BENCHMARKS

We choose the given matrix games benchmarks for the following reasons:

1. The RPS game is a classical benchmark widely used in the previous RL and game theory
literature, and we want to compare the performance of COEBL with the existing algorithms.

2. However, RPS consists of a small number of actions and the game is not complex enough
to test the performances of the algorithms. Therefore, we included the DIAGONAL and
BIGGERNUMBER games, which are more complex and feature exponentially larger action
spaces

3. We chose these matrix game benchmarks from multiple fields, including RL (Littman,
1994; O’Donoghue et al., 2021), game theory (Zhang & Sandholm, 2024), and evolutionary
computation (Lehre & Lin, 2024), to demonstrate the general applicability of the proposed
algorithm.

A.6.2 REASONS FOR THE CHOICES OF SYMMETRIC MATRIX GAMES BENCHMARKS

One might notice that all the matrix games considered in the experiments are symmetric, meaning
that for the payoff matrix A, Aij = �Aji for all i, j 2 [m]. In such games, there is no advantage in
being the first or second player, the experimental studies provide fair head-to-head comparisons.

A.6.3 DIAGONAL GAME

We defer the full experimental results on DIAGONAL game to the appendix and provide the payoff
matrix of DIAGONAL game when n = 2.

00 01 10 11
00 0 -1 -1 -1
01 1 0 0 -1
10 1 0 0 -1
11 1 1 1 0

Table 3: The payoff matrix of DIAGONAL game (n = 2). Binary bitstrings represent different pure
strategies of each player. This game compares the number of 1-bits of each player.

In this case, both players have 2n actions, which is way more complicated than the RPS. In terms
of the regret, all the algorithms in the self-play scenario, exhibit sublinear regrets. However, only
COEBL converges for several problem instances. When n increases to certain level, like n � 4,
none of them can converge to the Nash equilibrium anymore. For the ALG-1 vs ALG-2 scenario,
after iteration 2000, COEBL has an overwhelming advantage over other bandit baselines in terms
of regret performance. For the convergence of the the Nash equilibrium, surprisingly, in Figure 8,
UCB-vs-COEBL converges to or approximates the Nash equilibrium even when n = 4. However,
they also fail to converge to the Nash equilibrium when n = 5, 6, 7. We can see that the opponent
performance has certain impact to the overall dynamics towards the Nash equilibrium.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) n = 2 (b) n = 3 (c) n = 4

(d) n = 5 (e) n = 6 (f) n = 7

(g) n = 2 (h) n = 3 (i) n = 4

(j) n = 5 (k) n = 6 (l) n = 7

Figure 7: Regret and TV Distance for Self-Plays on DIAGONAL for n = 2, . . . , 7

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Regret and TV-distance for ALG 1-vs-ALG 2 on DIAGONAL for n = 2, . . . , 7.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.6.4 BIGGERNUMBER GAME

BIGGERNUMBER is another challenging two-player zero-sum game proposed and analysed by
Zhang & Sandholm (2024). In this game, each player aims to select a number greater than their
opponent’s. The players’ action space is defined as X = {0, 1}n, where binary bitstrings of length
n correspond to natural numbers in the range [0, 2n � 1]. If the players select the same number,
they receive a payoff of 0. If the difference between the players’ numbers is exactly 1, the player
with the larger number receives a payoff of 2, while the player with the smaller number receives�2.
Otherwise, the player with the larger number receives a payoff of 1, and the player with the smaller
number receives a payoff of �1. To simplify the game and align it with ternary games, we modify
the payoff function BIGGERNUMBER : X ⇥ X ! {�1, 0, 1} defined by:

BIGGERNUMBER(x, y) :=

8
<

:

0 x = y

1 x > y

�1 x < y

.

The payoff matrix of the BIGGERNUMBER game for n = 2 is:

00 01 10 11
00 0 -1 -1 -1
01 1 0 -1 -1
10 1 1 0 -1
11 1 1 1 0

Table 4: The payoff matrix of the BIGGERNUMBER game for n = 2. Binary bitstrings represent the
pure strategies available to each player: 0 = (00)2, 1 = (01)2, 2 = (10)2, and 3 = (11)2. In this
game, players compare their numbers from N.

As proved by Zhang & Sandholm (2024), this payoff matrix also exhibits a unique pure Nash equi-
librium where both players choose 1n 2 {0, 1}n (i.e., the binary string of all ones, corresponding to
2n�1 2 N). This corresponds to the mixed Nash equilibrium x

⇤ = (0, · · · , 1) and y
⇤ = (0, · · · , 1).

We conduct experiments using Algorithms 3 to 5 and compare them with our proposed Algorithm 1
(i.e. COEBL) on this matrix game benchmark, the BIGGERNUMBER game.

In Figure 9, we present the self-play results of each algorithm on the BIGGERNUMBER game for
various values of n. We observe that COEBL exhibits sublinear regret in the BIGGERNUMBER game,
similar to other bandit baselines, and aligns with our theoretical bound. In terms of convergence
measured by TV-distance, COEBL converges to the Nash equilibrium for n = 2, 3, 4, while the
other baselines do not converge. However, after n = 5 (as the number of pure strategies increases
exponentially), COEBL also fails to converge to the Nash equilibrium.

In Figure 10, we present the regret and TV-distance for ALG 1-vs-ALG 2 on BIGGERNUMBER. Sim-
ilar to the DIAGONAL game, we observe that all regret values are positive with minimum 8.39 and
maximum 351.27, indicating that the minimiser is winning on average. Thus, COEBL outperforms
the other bandit baselines in BIGGERNUMBER for all n = 2, . . . , 7.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) n = 2 (b) n = 3 (c) n = 4

(d) n = 5 (e) n = 6 (f) n = 7

(g) n = 2 (h) n = 3 (i) n = 4

(j) n = 5 (k) n = 6 (l) n = 7

Figure 9: Regret and TV Distance for Self-Plays on BIGGERNUMBER

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10: Regret and TV-distance for ALG 1-vs-ALG 2 on BIGGERNUMBER.

26

	Introduction
	Two-Player Zero-Sum Games
	Evolutionary Reinforcement Learning and Coevolution
	Contributions
	Related Works
	Regret Analysis of Bandit Learning in Matrix Games
	Runtime Analysis of Coevolutionary Algorithms on Games

	Preliminaries
	Notations
	P-ary Two-Player Zero-Sum Games and Nash Regret

	Co-evolutionary Bandit Learning for Mixed Nash Equilibrium
	Learning in Games and Coebl
	Regret Analysis of Coebl

	Empirical Results
	Rock-Paper-Scissors Game
	Diagonal Game
	BiggerNumber Game

	Conclusion and Discussion
	Appendix
	Summary of Regret Bounds
	Algorithm Implementation
	Pseudocode of Algorithms
	Technical Lemmas
	Omitted Proofs
	Complete Empirical Results
	Reasons for the choices of matrix games benchmarks
	Reasons for the choices of symmetric matrix games benchmarks
	Diagonal Game
	BiggerNumber Game

