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A APPENDIX

A.1 DATASET STATISTICS

In this section, we provide an overview of the statistics pertaining to two distinct sets of datasets
utilized for the tasks of Future Link Prediction (FLP) and Dynamic Node Classification (DNC).
The initial set, detailed in Table 1, presents information regarding the number of nodes, edges, and
unique edges across seven datasets featured in Table 10 and Table 12. For these three datasets,
namely Reddit, Wikipedia, and MOOC, all edge features have been incorporated, where applicable.
Furthermore, within this table, the last column represents the percentage of Repetitive Edges, which
signifies the proportion of edges that occur more than once within the dynamic graph.

Table 1: Dynamic Graph Datasets. % Repetitive Edges: % of edges which appear more than once
in the dynamic graph.

Dataset #Nodes  #Edges # Unique Edges Edge Features Node Labels Bipartite % Repetitive Edges
Reddit 11,000 672,447 78,516 v v v 54%
Wikipedia 9,227 157,474 18,257 v v v 48%
MOOC 7,144 411,749 178,443 v v v 53%
LastFM 1980 1,293,103 154,993 v 68%
UCI 1899 59,835 13838 v 62%
Enron 184 125,235 2215 92%
SocialEvolution 74 2,099,519 2506 97%

A.1.1 TGB DATASET

In this section, we present the characteristics of datasets as proposed by the Dynamic Graph En-
coder Leaderboard Huang et al. (2023). Similar to previous benchmark datasets, we have conducted
comparisons regarding the number of nodes, edges, and type of graphs. Additionally, we report the
Number of Steps and the Surprise Index, as defined in Poursafaei et al. (2022), which illustrates the
ratio of test edges that were not observed during the training phase.

Table 2: Statistics of TGBL Dynamic Graph Datasets

Dataset  # Nodes # Edges # Steps Edge Features  Bipartite  Surprise Index Poursafaei et al. (2022)

Wiki 9,227 157,474 152,757 v v 0.108
Review 352,637 4,873,540 6,865 v v 0.987
Coin 638,486 22,809,486 1,295,720 v 0.120
Comment 994,790 44,314,507 30,998,030 v 0.823
Flight 18143 67,169,570 1,385 v 0.024

A.2 IMPLEMENTATION DETAILS

In this section, we elucidate the intricacies of our implementation, providing a comprehensive
overview of the specific parameters our model accommodates during hyperparameter optimization.
Subsequently, we delve into a discussion of the optimal configurations and setups that yield the best
performance for our proposed architecture.
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Furthermore, in addition to an in-depth discussion of the baselines incorporated into our paper,
we also offer a comprehensive overview of the respective hyperparameter configurations in this
section. We are confident that with the open-sourcing of our code upon acceptance and the thorough
descriptions of our model and baseline methodologies presented in the paper, our work is fully
reproducible.

A.2.1 EVALUATION PROTOCOL

Transductive Setup: Under the transductive setting, a dataset is split normally by time, i.e., the
model is trained on the first 70% of links, validated on %15 and tested on the rest.

Inductive Setup: In the inductive setting, we strive to test the model’s prediction performance on
edges with unseen nodes. Therefore, following (Wang et al., 2021), we randomly assign 10% of the
nodes to the validation and test sets and remove any interactions involving them in the training set.
Additionally, to ensure an inductive setting, we remove any interactions not involving these nodes
from the test set.

A.2.2 LosSS FUNCTION

As previously discussed in the main body of this paper, we focus on two specific downstream tasks:
Future Link Prediction (FLP) and Dynamic Node Classification (DNC). For the former, we employ
the binary cross-entropy loss, while for the latter, our model is trained through the minimization of
the cross-entropy loss function. The formula for the binary cross-entropy loss is presented below:

H(y,9) = — (y - log(9) + (1 — y) - log(1 — 9)) )

where y € {0,1} is the true label, and § is the predicted probability that the instance belongs to
class 1. Moreover, the formulation of the cross-entropy loss is as follows:

H(y,9) = — Zyi -log(9:) 2)

where 7 represents the index over all classes, y; is the true probability of the sample belonging to
class 7, encoded as a one-hot vector. It is 1 for the true class and O for all other classes. Finally, ; is
the predicted probability of the sample belonging to class .

A.2.3 BEST HYPERPARAMETERS FOR BENCHMARK DATASETS.

Table 3 displays the hyperparameters that have been subjected to experimentation and tuning for
each dataset. For each parameter, a range of values has been tested as follows:

* Window Size (W): This parameter signifies the window length chosen for selecting the
input subgraph based on edge timestamps. It falls within the range of € { 16384, 32768
,65536, 262144 }.

¢ Number of Patches: This parameter indicates the count of equal and non-overlapping
chunks for each input subgraph. It is the range of € {8, 16, 32}.

 #lLocal Encoders: This parameter represents the number of local encoder layers within each
block, and its value falls within the range of € {1, 2}.

* Neighbor Sampling (NS) mode: € {uniform,last}. In the case of a uniform Neighbor
Sampler (NS), it uniformly selects samples from the 1-hop interactions of a given node.
Conversely, in last mode, it samples from the most recent interactions.

* Anchor Node Mode: € {GlobalTarget, LocalInput, LocalTarget} depending on the
mechanism of neighbor sampling we can sample from nodes within all patches (Localln-
put), nodes within the next patch (LocalTarget), or global target nodes (GlobalTarget).

* Batch Size: € {8, 16, 32,64}
¢ Positional Encoding: € {SineCosine, Time2V ec, Identity, Linear}
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Dataset Window Size (W) | Number of Patches | #Local Encoders | NS Mode | Anchor Node Mode | Batch Size
Reddit 262144 32 2 uniform GlobalTarget 8
Wikipedia 65536 8 2 uniform GlobalTarget 8
MOOC 65536 8 2 uniform GlobalTarget 8
LastFM 202144 32 2 uniform GlobalTarget 8
UCT 65536 8 2 uniform GlobalTarget 8
Enron 65536 8 2 uniform GlobalTarget 8
SocialEvolution 65536 8 2 uniform GlobalTarget 8

Table 3: Best Parameters of the model pipeline after Hyperparameter search

SineCosine is utilized as the Positional Encoding (PE) method following the experiments conducted
in Appendix A.3.3.

Selecting Best Checkpoint: Throughout all experiments, the models undergo training for a duration
of 100 epochs, with the best checkpoints selected for testing based on their validation Average
Precision (AP) performance.

A.2.4 BEST HYPERPARAMETERS FOR TGBL DATASET

In this section, we present the optimal hyperparameters used in our architecture design for each
TGBL dataset. We conducted hyperparameter tuning for all TGBL datasets; however, due to time
constraints, we explored a more limited set of parameters for the large-scale dataset. Despite Tody-
former outperforming its counterparts on these datasets, there remains potential for further improve-
ment through an extensive hyperparameter search.

Dataset Window Size (W) | Number of Patches | First-hop NS size | NS Mode | Anchor Node Mode | Batch Size
TGBWiki 262144 32 256 uniform GlobalTarget 32
TGBReview 262144 32 64 uniform GlobalTarget 64
TGBComment 65536 8 64 uniform GlobalTarget 256
TGBCOin 65536 8 64 uniform GlobalTarget 96
TGBFlight 65536 8 64 uniform GlobalTarget 128

Table 4: Optimal Window size W for downstream training.

A.3 MORE EXPERIMENTAL RESULT

In this section, we present the additional experiments conducted and provide an analysis of the
derived results and conclusions.

A.3.1 FLP RESULT ON BENCHMARK DATASETS

Table 5 is an extension of Table 10, now incorporating the Wikipedia and Reddit datasets. Notably,
for these two datasets, Todyformer attains the highest test Average Precision (AP) score in the Trans-
ductive setup. However, it secures the second-best and third-best positions in the Inductive setup for
these Wikipedia and Reddit respectively. While the model does not attain the top position on these
two datasets for inductive setup, its performance is only marginally below that of state-of-the-art
(SOTA) models, which have previously achieved accuracy levels exceeding 99% Average Precision
(AP).

A.3.2 FLP VALIDATION RESULT ON TGBL DATASET

As discussed in the paper, Todyformer has been compared to baseline methods using the TGBL
dataset. Table 6 represents an extension of Table 11 specifically for validation (MRR). The results
presented in both tables are in line with counterpart methods outlined in the paper by Huang et al.
(2023). It is important to note that for the larger datasets, TCL, GraphMIxer, and EdgeBank were
found to be impractical due to memory constraints, as mentioned in the paper.
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Table 5: Future link Prediction Performance in AP (Mean + Std). Bold font and ul font represent
first- and second-best performance respectively.

Setting } Model } Wikipedia Reddit MOOC LastFM Enron UCI SocialEvol.
° JODIE 0.956 = 0.002 0.979 + 0.001 0.797 £0.01 0.691+0.010  0.785+£0.020  0.869 £+ 0.010 0.847 £0.014
2 DyRep 0.955 + 0.004 0.981 + le-4 0.840£0.004  0.68340.033 0.795+0.042  0.524 £ 0.076 0.885 =+ 0.004
E TGAT 0.968 £ 0.001 0.986 + 3e-4 0.793 £0.006  0.6334+0.002  0.637+0.002  0.835 £ 0.003 0.631 £ 0.001
12 TGN 0.986 + 0.001 0.985 + 0.001 0.911£0.010  0.7434+0.030  0.866 +0.006  0.843 £ 0.090 0.966 £ 0.001
] CaW 0.976 £ 0.007 0.988 + 2¢-4 0.940 £0.014 0.903 £ 1le-4  0.970 £0.001  0.939 & 0.008 0.947 £ Le-4
& NAT 0.987 £ 0.001 0.991 £ 0.001 0.874 £ 0.004 0.859+ le-4  0.924+0.001  0.944 £ 0.002 0.944 £ 0.010

GraphMixer | 0.974 £ 0.001 0.975 4+ 0.001 0.835 £ 0.001 0.862 £ 0.003  0.824 £0.001  0.932 +£ 0.006 0.935 £ 3e-4
Dygformer | 0.991 £0.0001  0.992 4+ 0.0001  0.892 + 0.005 0.901 £0.003  0.926 £0.001  0.959 £ 0.001 0.952 + 2e-4

DyG2Vec 0.995 + 0.003 0.996 + 2e-4 0.980 £ 0.002 0.960 £+ le-4  0.991 +0.001  0.988 & 0.007 0.987 & 2e-4
Todyformer | 0.996 & 2e-4 0.998 £8e-5 0.992+7e-4 0976 +f3e-4 0.995+6e-4 0.994+ 4e-4 0.992 + 1le-4

JODIE 0.891+£0.014  0.865 4 0.021 0.707 £ 0.029 0.865+£0.03  0.747+0.041  0.753 + 0.011 0.791 £ 0.031

Q DyRep 0.890 = 0.002 0.921 4 0.003 0.723 £ 0.009 0.869 +0.015  0.666 £0.059  0.437 +0.021 0.904 & 3e-4
g TGAT 0.954 + 0.001 0.979 + 0.001 0.805 = 0.006 0.644 £ 0.002  0.693 £0.004  0.820 +£ 0.005 0.632 £ 0.005
5 TGN 0.974 £ 0.001 0.954 &+ 0.002 0.855 £0.014 0.789 £0.050  0.746 £0.013  0.791 £ 0.057 0.904 £ 0.023
= CaW 0.977 £ 0.006 0.984 + 2e-4 0.933 £0.014 0.890 +0.001  0.962 £0.001  0.931 £ 0.002 0.950 + le-4

NAT 0.986 £ 0.001 0.986 & 0.002 0.832 &+ le-4 0.878 £0.003  0.949 £0.010  0.926 £ 0.010 0.952 £ 0.006

GraphMixer 0.966 + 2e-4 0.952 + 2e-4 0.814 =+ 0.002 0.821+£0.004  0.758 £0.004  0.911 + 0.004 0.918 + Ge-4
Dygformer 0.985 + 3e-4 0.988 + 2¢-4 0.869 £ 0.004 0.942 £ 9e-4  0.897+0.003  0.945+ 0.001 0.931 & 4e-4
DyG2Vec 0.992+0.001 0.991+£0.002 0.938 £0.010 0.979 + 0.006  0.987 +0.004  0.976 + 0.002 0.978 £ 0.010

Todyformer | 0.989 + Ge-4 0.983+0.002 0.9484+0.009 0.981£0.005 0.989+8e-4 0.983+0.002 0.9821+0.005

Table 6: (Validation) Future Link Prediction performance in Validation MRR on TGB Leaderboard
datasets.

Model [ TGBWiki [ TGBReview | TGBCoin [ TGBComment | TGBFlight [ Avg. Rank |

D r]e(}) 0.411 +£0.015 0.356 + 0.016 0.512 4+ 0.014 0.291 £ 0.028 0.573 +0.013 4.2

G 0.737 £ 0.004 0.465 +0.010 0.607 £0.014 0.356 £ 0.019 0.731 £ 0.010 2.2
CAWN 0.794 £ 0.014 0.201 £ 0.002 OO OOM OOM 3
TCL 0.734 £0.007 0.194 £+ 0.012 Q0N OOM QOM 5
GraphMixer | 0.707 £0.014 0.411 £ 0.025 OOM OOM OOM 4

EdgeBank 0.641 0.0894 0.1244 0.388 0.492 4.6

Todyformer | 0.799 4 0.0092 | 0.4321 + 0.0040 | 0.6852 4+ 0.0021 | 0.7402 + 0.0037 | 0.7932 + 0.014 1.2

A.3.3 COMPLEMENTARY SENSITIVITY ANALYSIS AND ABLATION STUDY

In this section, we have presented the specifics of sensitivity and ablation experiments, which, while
of lesser significance in our hyper-tuning mechanism, contribute valuable insights. In all tables, the
Average Precision scores reported in the table are extracted from the same epoch on the validation
set. Table 7 showcases the influence of varying input window sizes and patch sizes on two datasets.
Table 8 illustrates the effects of various PEs, including SineCosine, Time2VecKazemi et al. (2019),
Identity, Linear, and a configuration utilizing Local Input as the Anchor Node Mode. The table
presents a comparison of results for these different PEs. Notably, the architecture appears to be
relatively insensitive to the type of PE used, as the results all fall within a similar range. However, it
is worth mentioning that SineCosine PE slightly outperforms the others. Consequently, SineCosine
PE will be selected as the primary module for all subsequent experiments.

In Table9, an additional ablation study has been conducted to elucidate the influence of positions
tagged to each node before being input to the Positional Encoder module. Various mechanisms for
adding positions are delineated as follows:

e Without PE: No position is utilized or tagged to the nodes.

¢ Random Index: An index is randomly generated and added to the embeddings of a given
node.

e Patch Index: The index of the patch from which the embedding of the given node originates
is used as a position.

* Edge Time: The most recent edge time within its patch is employed as a position.
e Edge Index: The index of the most recent interaction within the corresponding patch is
utilized as a position.

As evident from the findings in this table, the validation performance exhibits high sensitivity to
the positional encoder’s outcomes. Specifically, the model without positional encoder (PE) and the
model with random indices manifest the lowest performance among all available options. Consistent
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with our expectations from previous experiments, the patch index yields the highest performance,
providing a compelling rationale for its incorporation into the architecture.

Table 7: Sensitivity analysis on number of patches and target window size

dataset  Input Window size  Number of Patches ~ Average Precision 1

LastFM 262144 8 0.9772
LastFM 262144 16 0.9791
LastFM 262144 32 0.9758
MOOC 262144 8 0.9811
MOOC 262144 16 0.9864
MOOC 262144 32 0.9696
LastFM 16384 32 0.9476
LastFM 32768 32 0.9508
LastFM 65536 32 0.9591
LastFM 262144 32 0.9764
MOOC 16384 32 0.9798
MOOC 32768 32 0.9695
MOOC 65536 32 0.9685
MOOC 262144 32 0.9726

A.4 COMPUTATIONAL COMPLEXITY

A.4.1 QUALITATIVE ANALYSIS FOR TIME AND MEMORY COMPLEXITIES

In this section, we delve into the detailed measurement and discussion of the computational com-
plexity of Todyformer. Initially, we adopt the assumption that the time complexity of Transformers
is O(X?) for an input sequence of length X . The primary complexity of Todyformer encompasses
both the complexity of the Message Passing Neural Network (MPNN) component and the com-
plexity of the Transformer. To elaborate further, assuming we have a sparse dynamic graph with
temporal attributes, we can replace the complexity of MPNNs with O(l x (N + F)), where N and
E represent the number of nodes and edges within the temporal input subgraph, and [ is the number
of MPNN layers for the Graph Neural Network (GNN) tokenizer. In the transformer part, N unique
nodes are fed into the Multihead-Attention module. If the maximum length of the sequence fed to
the Transformer is IV, then the complexity of the Multihead-Attention module is O(N2). Notably,
N, is at most equal to M, the number of patches. This scenario occurs when a node appears in all
M patches and has interactions in all patches. Consequently, if L is the number of blocks the final
complexity is given by:

OLxIx(N+E)+LxN xM?*)~O(N +E) 3)

The LHS part of Equation 3 can be simplified to RHS if we assume that L, I, and M? are negligible
compared to N and E. The RHS of this equation is the time complexity of GNNs for sparse graphs.

A.4.2 TRAINING/INFERENCE SPEED

In this section, an analysis of Figure 1 is provided, depicting the performance versus inference
time across three sizable datasets. Considering the delicate trade-off between performance and
complexity, our models surpass all others in terms of Average Precision (AP) while concurrently

Positional Encoding  Anchor_Node_Mode Average Precision 1

SineCosinePos global target 0.9901
Time2VecPos global target 0.989
IdentityPos global target 0.99

LinearPos global target 0.9886
SineCosinePos local input 0.9448

Table 8: Ablation Study on Positional Encoding Options on MOOC Dataset: This table com-
pares the validation performance at the same epoch across various setups.
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Positional Encoding (PE) Input

Average Precision 1

without PE 0.9872
random index 0.9873
patch index 0.9889
edge time 0.9886
edge index 0.9877

Table 9: Ablation Study on the Input of Positional Encoding on MOOC Dataset: This table
compares the validation performance at the same epoch across various types of positions tagged to
nodes before PE layer.
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Figure 1: The performance versus inference time across LastFM, SocialEvol and MOOC datasets

positioning in the left segment of the diagrams, denoting the lowest inference time. Notably, as
depicted in Figure 4, Todyformer remains lighter and less complex than state-of-the-art (SOTA)
models like CAW across all datasets.

A.5 DISCUSSION ON OVER-SMOOTHING AND OVER-SQUASHING

In Figure 2, the blue curve illustrates the Average Precision performance of dynamic graph Mes-
sage Passing Neural Networks (MPNNs) across varying numbers of layers. Notably, an observed
trend indicates that as the number of layers increases, the performance experiences a decline—a
characteristic manifestation of oversmoothing and oversquashing phenomena.

Within the same figure, the red square dots represent the performance of MPNNs augmented with
transformers, specifically Todyformer with a single block. It is noteworthy that the increase in
the number of MPNN layers from 3 to 9 in this configuration results in a comparatively minor
performance drop compared to traditional MPNNSs.

Furthermore, the yellow circles denote the performance of Todyformer with an alternating mode,
where the total number of MPNNSs is 9, and three blocks are incorporated. In this setup, a trans-
former is introduced after every 3 MPNN layers. Strikingly, this configuration outperforms all
others, especially those that stack a similar number of MPNN layers without the insertion of a trans-
former layer in the middle of the architecture. This empirical observation serves as a significant
study, highlighting the efficacy of our architecture in addressing oversmoothing and oversquashing
challenges.
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Sensitivity Analysis on the Number of Layers and Blocks
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Figure 2: Sensitivity Analysis on the Number of Layers and Blocks on Mooc Dataset
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